2023 Vol. 42, No. 11
Article Contents

DU Qingxiang, WU Sainan, ZHANG Yong, SHEN Xiaoli, HAN Jinrui. 2023. Zircon U-Pb ages and geochemistry of volcanic rocks from the Baishan Formation in the Yuanbaoshan-Xirehada area in Beishan orogenic collage, Inner Mongolia, NW China, and implications for the subduction history of the Paleo-Asian Ocean. Geological Bulletin of China, 42(11): 1875-1893. doi: 10.12097/j.issn.1671-2552.2023.11.007
Citation: DU Qingxiang, WU Sainan, ZHANG Yong, SHEN Xiaoli, HAN Jinrui. 2023. Zircon U-Pb ages and geochemistry of volcanic rocks from the Baishan Formation in the Yuanbaoshan-Xirehada area in Beishan orogenic collage, Inner Mongolia, NW China, and implications for the subduction history of the Paleo-Asian Ocean. Geological Bulletin of China, 42(11): 1875-1893. doi: 10.12097/j.issn.1671-2552.2023.11.007

Zircon U-Pb ages and geochemistry of volcanic rocks from the Baishan Formation in the Yuanbaoshan-Xirehada area in Beishan orogenic collage, Inner Mongolia, NW China, and implications for the subduction history of the Paleo-Asian Ocean

More Information
  • Andesite and breccia-bearing granite porphyry samples were collected from the Baishan Formation in the Yuanbaoshan-Xirehada area of the northern Beishan orogenic collage in Inner Mongolia, NW China.Petrographic, LA-ICP-MS zircon U-Pb geochronology, and geochemical analyses were conducted to examine the Late Paleozoic tectonic evolution history in the Beishan area.The zircon U-Pb dating results suggest that the weighted mean ages of andesite and breccia-bearing granite porphyry are 300.0±2.5 Ma(MSWD=2.0, n=13)and 300.3±1.9 Ma(MSWD=1.9, n=23), respectively.These findings confirm that the stratigraphic age of Baishan Formation in the study area is Late Carboniferous.The volcanic rocks are relatively enriched in light rare earth elements and large ion lithophile elements(e.g.Rb, K, and Ba)and depleted in heavy rare earth elements and high field strength elements(e.g.Nb, P, and Ti).They exhibit geochemical characteristics related with active continental margin volcanic arcs, which indicate that the subduction history of the Paleo-Asian Ocean continued into the Late Carboniferous in the northern Beishan orogenic collage.Geochemical studies further suggest that the magma source of the andesite in the Carboniferous Baishan Formation is the middle-lower crust metasomatized by fluid in the subduction zone, and the breccia-bearing granite porphyry is mainly the product of the middle-lower crust melting, and the samples exhibit sediment incorporation.The volcanic rocks from the Baishan Formation changed from neutral and calc-alkalic rock series in the northern part to intermediate-acid or acid and high potassium calc-alkalic rock series in the southern part along the ophiolite mélange belt, indicating the southern subducted polarity of the Paleo-Asian Ocean plate.

  • 加载中
  • [1] Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chemical Geology, 1981, 32(1/4): 139-154.

    Google Scholar

    [2] Boynton W V. Chapter 3-Cosmochemistry of the Rare Earth Elements: Meteorite Studies[M]. Amsterdam: Elsevier, 1984: 63-114.

    Google Scholar

    [3] Cawood P A, Kroner A, Collins W J, et al. Accretionary orogens through Earth history[J]. Geological Society London Special Publications, 2009, 318(1): 1-36. doi: 10.1144/SP318.1

    CrossRef Google Scholar

    [4] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [5] Condie K C. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwestern united states[J]. Journal of Geology, 1986, 97: 845-864.

    Google Scholar

    [6] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [7] Devine J D. Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited[J]. Journal of Volcanology and Geothermal Research, 1995, 69(1): 1-33.

    Google Scholar

    [8] Dilek Y, Furnes H, Shallo M. Geochemistry of the Jurassic Mirdita ophiolite(Albania)and the MORB to SSZ evolution of a marginal basin oceanic crust[J]. Lithos, 2008, 100(1): 174-209.

    Google Scholar

    [9] Dobretsov N L, Berzin N A, Buslov M M. Opening and Tectonic Evolution of the Paleo-Asian Ocean[J]. International Geology Review, 1995, 37(4): 335-360. doi: 10.1080/00206819509465407

    CrossRef Google Scholar

    [10] Du Q X, Han Z Z, Shen X L, et al. Geochemistry and geochronology of Upper Permian-Upper Triassic volcanic rocks in eastern Jilin Province, NE China: implications for the tectonic evolution of the Palaeo-Asian Ocean[J]. International Geology Review, 2017, 59(3): 368-390. doi: 10.1080/00206814.2016.1266702

    CrossRef Google Scholar

    [11] Guo Q Q, Xiao W J, Windley B F, et al. Provenance and tectonic settings of Permian turbidites from the Beishan mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids[J]. Journal of Asian Earth Sciences, 2012, 49: 54-68. doi: 10.1016/j.jseaes.2011.03.013

    CrossRef Google Scholar

    [12] Irvine T N, Baragar W R A. A Guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [13] Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Geological Society of America Special Papers, 2000, 91(1/2): 181-193.

    Google Scholar

    [14] Kirscher U, Bachtadse V, Mikolaichuk A V, et al. Palaeozoic evolution of the North Tianshan based on palaeomagnetic data - transition from Gondwana towards Pangaea[J]. International Geology Review, 2017, 59(16): 2003-2020. doi: 10.1080/00206814.2017.1308840

    CrossRef Google Scholar

    [15] Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    [16] Li S, Wang T, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J]. Lithos, 2012, 134/135: 123-145. doi: 10.1016/j.lithos.2011.12.005

    CrossRef Google Scholar

    [17] Liu Y J, Li W M, Feng Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [18] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [19] Ludwig K R. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003.

    Google Scholar

    [20] Ma Y F, Liu Y J, Peskov A Y, et al. Paleozoic tectonic evolution of the eastern Central Asian orogenic belt in NE China[J]. China Geology, 2022, 5(4): 555-578.

    Google Scholar

    [21] Maniar P D, Piccoli PM. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [22] Mao Q, Xiao W, Windley B F, et al. The Liuyuan complex in the Beishan, NW China: a Carboniferous-Permian ophiolitic fore-arc sliver in the southern Altaids[J]. Geological Magazine, 2011, 149(3): 483-506.

    Google Scholar

    [23] Niu Y Z, Liu C Y, Shi G R, et al. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region(NW China)and implications for the timing of the Paleo-Asian Ocean closure[J]. Journal of Asian Earth Sciences, 2018, 167: 11-32. doi: 10.1016/j.jseaes.2018.06.019

    CrossRef Google Scholar

    [24] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [25] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [26] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3): 325-394.

    Google Scholar

    [27] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [28] Rudnick R L, Gao S. 3.01 - Composition of the continental crust[M]. Oxford: Pergamon; 2003: 1-64.

    Google Scholar

    [29] Safonova I. Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs[J]. Gondwana Research, 2017, 47: 6-27. doi: 10.1016/j.gr.2016.09.003

    CrossRef Google Scholar

    [30] Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [31] Song D, Xiao W, Han C, et al. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U-Pb and Hf isotopic data of high-grade complexes[J]. Precambrian Research, 2013, 227: 368-388. doi: 10.1016/j.precamres.2012.06.011

    CrossRef Google Scholar

    [32] Song D, Xiao W, Windley B F, et al. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 2015, 224/225: 195-213. doi: 10.1016/j.lithos.2015.03.005

    CrossRef Google Scholar

    [33] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [34] Taylor S R, Mclennan S M. The continental crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific Publications, 1985.

    Google Scholar

    [35] Taylor S R, McLennan S M. The Geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [36] Tian Z H, Xiao W J, Windley B F, et al. Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids[J]. Gondwana Research, 2014, 25(2): 820-841. doi: 10.1016/j.gr.2013.05.006

    CrossRef Google Scholar

    [37] Wang Z W, Wang Z H, Zhang Y, et al. Linking 1.4-0.8 Ga volcano-sedimentary records in eastern Central Asian orogenic belt with southern Laurentia in supercontinent cycles[J]. Gondwana Research, 2022, 105: 416-431. doi: 10.1016/j.gr.2021.09.019

    CrossRef Google Scholar

    [38] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [39] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1-20.

    Google Scholar

    [40] Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2010, 310(10): 1553-1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [41] Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 477-507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [42] Yu J, Guo L, Li J, et al. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China[J]. Lithos, 2016, 256/257: 250-268. doi: 10.1016/j.lithos.2016.04.003

    CrossRef Google Scholar

    [43] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [44] Zheng R, Xiao W, Li J, et al. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China[J]. Journal of Asian Earth Sciences, 2018, 153: 75-99. doi: 10.1016/j.jseaes.2016.12.008

    CrossRef Google Scholar

    [45] Zhou J B, Wilde S A, Zhao G C, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 76-93. doi: 10.1016/j.earscirev.2017.01.012

    CrossRef Google Scholar

    [46] 陈海东, 王子龙, 景耀祖, 等. 内蒙古北山风雷山地区流纹岩LA-ICP-MS锆石U-Pb年代学及地球化学特征[J]. 中国地质调查, 2017, 4(5): 48-54. doi: 10.19388/j.zgdzdc.2017.05.07

    CrossRef Google Scholar

    [47] 陈圆圆, 李杰, 白春东, 等. 北山北带圆包山地区中酸性火山岩地球化学特征及锆石U-Pb年龄[J]. 地质通报, 2019, 38(2/3): 266-275.

    Google Scholar

    [48] 陈智斌, 于洋, 薄海军. 内蒙古额济纳地区奥陶纪火山岩地球化学特征及其地质意义[J]. 地球科学, 2020, 45(2): 503-518.

    Google Scholar

    [49] 程海峰, 辛后田, 梁国庆, 等. 内蒙古北山地区黑红山一带斑状花岗闪长岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2018, 37(10): 1895-1904.

    Google Scholar

    [50] 程海峰, 张正平, 段先乐, 等. 内蒙古黑红山-圆包山地区石炭纪火山岩的发现及其地质意义[J]. 地质与勘探, 2022, 58(2): 335-351.

    Google Scholar

    [51] 段连峰, 牛文超, 张永, 等. 内蒙古北山造山带百合山地区350 Ma石英闪长岩的成因及对红石山-百合山洋俯冲时限的制约[J]. 地质通报, 2020, 39(9): 1330-1340.

    Google Scholar

    [52] 方维萱, 郑小明, 方同辉, 等. 甘肃红石山地区泥盆纪—石炭纪有限洋盆重建与蛇绿混杂岩深部结构[J]. 地质通报, 2021, 40(5): 649-673.

    Google Scholar

    [53] 龚全胜, 刘明强, 梁明宏, 等. 北山造山带大地构造相及构造演化[J]. 西北地质, 2003, 36(1): 11-17. doi: 10.3969/j.issn.1009-6248.2003.01.002

    CrossRef Google Scholar

    [54] 何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35(4): 30-40. doi: 10.3969/j.issn.1009-6248.2002.04.004

    CrossRef Google Scholar

    [55] 何世平, 周会武, 任秉琛, 等. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 2005, 38(3): 6-15. doi: 10.3969/j.issn.1009-6248.2005.03.002

    CrossRef Google Scholar

    [56] 黄增保, 金霞. 甘肃红石山地区白山组火山岩地质特征及构造背景[J]. 甘肃地质, 2006a, 15(1): 19-24.

    Google Scholar

    [57] 黄增保, 金霞. 甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J]. 中国地质, 2006b, 33(5): 1030-1037.

    Google Scholar

    [58] 贾元琴, 赵志雄, 许海, 等. 北山风雷山地区白山组流纹岩LA-ICP-MS锆石U-Pb年龄及构造环境[J]. 中国地质, 2016, 43(1): 91-98. doi: 10.3969/j.issn.1000-3657.2016.01.006

    CrossRef Google Scholar

    [59] 李光速, 杜庆祥, 韩作振, 等. 吉林省延边地区中酸性岩浆岩年龄、成因及其构造意义[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1174-1202. doi: 10.13278/j.cnki.jjuese.20210119

    CrossRef Google Scholar

    [60] 李敏, 任邦方, 滕学建, 等. 内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义[J]. 地球科学, 2018, 43(12): 4586-4605.

    Google Scholar

    [61] 李敏, 辛后田, 任邦方, 等. 内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J]. 地球科学, 2019, 44(1): 328-343.

    Google Scholar

    [62] 李向民, 余吉远, 王国强, 等. 甘肃北山红柳园地区泥盆系三个井组和墩墩山群LA-ICP-MS锆石U-Pb测年及其意义[J]. 地质通报, 2011, 30(10): 1501-1507. doi: 10.3969/j.issn.1671-2552.2011.10.003

    CrossRef Google Scholar

    [63] 卢进才, 陈高潮, 魏仙样, 等. 内蒙古西部额济纳旗及邻区石炭系—二叠系沉积建造与生烃条件——石炭系—二叠系油气地质条件研究之一[J]. 地质通报, 2011, 30(6): 811-826. doi: 10.3969/j.issn.1671-2552.2011.06.002

    CrossRef Google Scholar

    [64] 卢进才, 牛亚卓, 魏仙样, 等. 北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 岩石学报, 2013, 29(8): 2685-2694.

    Google Scholar

    [65] 卢进才, 史冀忠, 牛亚卓, 等. 内蒙古西部北山-银额地区石炭纪—二叠纪层序地层与沉积演化[J]. 岩石学报, 2018, 34(10): 3101-3115.

    Google Scholar

    [66] 南云. 新疆北东部三塘湖地区晚石炭世—二叠纪岩浆活动及成盆构造背景研究[D]. 西北大学博士学位论文, 2018.

    Google Scholar

    [67] 牛文超, 辛后田, 段连峰, 等. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1∶5万清河沟幅地质图的新认识[J]. 中国地质, 2019, 46(5): 977-994.

    Google Scholar

    [68] 牛文超, 辛后田, 段连峰, 等. 内蒙古北山造山带百合山SSZ型蛇绿岩地球化学特征、锆石U-Pb年龄及其对古亚洲洋演化的指示[J]. 地质通报, 2020, 39(9): 1317-1329.

    Google Scholar

    [69] 牛亚卓, 魏建设, 史冀忠, 等. 甘肃北山地区北部上石炭统火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地质通报, 2013, 32(11): 1720-1727. doi: 10.3969/j.issn.1671-2552.2013.11.004

    CrossRef Google Scholar

    [70] 牛亚卓, 卢进才, 魏建设, 等. 甘蒙北山地区下石炭统绿条山组时代修正及其构造意义[J]. 地质论评, 2014, 60(3): 567-576. doi: 10.16509/j.georeview.2014.03.009

    CrossRef Google Scholar

    [71] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23. doi: 10.13745/j.esf.2016.06.001

    CrossRef Google Scholar

    [72] 任云伟, 任邦方, 牛文超, 等. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物[J]. 地球科学, 2019, 44(1): 312-327.

    Google Scholar

    [73] 孙立新, 张家辉, 任邦方, 等. 北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J]. 岩石矿物学杂志, 2017, 36(2): 131-147. doi: 10.3969/j.issn.1000-6524.2017.02.001

    CrossRef Google Scholar

    [74] 王挨顺, 马云飞, 张宝艳, 等. 内蒙古阿拉善左旗乌兰尚德地区志留系圆包山组笔石化石的发现及其地质意义[J]. 地质通报, 2019, 38(6): 950-958.

    Google Scholar

    [75] 王国强, 李向民, 徐学义, 等. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 40(1): 71-81.

    Google Scholar

    [76] 卫彦升, 闫涛, 杨五宝, 等. 内蒙古北山造山带北带晚古生代地层时空格架的建立[J]. 地质通报, 2020, 39(9): 1367-1388.

    Google Scholar

    [77] 辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(9): 1297-1316.

    Google Scholar

    [78] 徐旭明, 鲁扬, 辛后田, 等. 内蒙古北山北缘古亚洲洋闭合时间制约: 来自黑红山晚石炭世石英闪长岩的证据[J]. 矿物岩石, 2018, 38(4): 66-75.

    Google Scholar

    [79] 徐学义, 何世平, 王洪亮. 中国西北部地质概论——秦岭、祁连、天山地区[M]. 北京: 科学出版社, 2008.

    Google Scholar

    [80] 杨富林, 邹运鑫, 曹霞, 等. 内蒙古北山地区蓬勃山南石英闪长岩LA-ICPMS锆石U-Pb测年及其意义[J]. 地质调查与研究, 2017, 40(2): 109-118.

    Google Scholar

    [81] 杨合群, 李英, 李文明, 等. 北山成矿构造背景概论[J]. 西北地质, 2008, 41(1): 22-28.

    Google Scholar

    [82] 杨合群, 李英, 赵国斌, 等. 北山蛇绿岩特征及构造属性[J]. 西北地质, 2010, 43(1): 26-36.

    Google Scholar

    [83] 尹海权, 周洪瑞, 程瑞, 等. 内蒙古阿拉善北部杭乌拉地区圆包山组时代、沉积特征及大地构造意义[J]. 沉积学报, 2015, 33(4): 665-678.

    Google Scholar

    [84] 尹海权, 周洪瑞, 徐东卓, 等. 中亚造山带中段南缘圆包山组碎屑锆石U-Pb年龄、物源及其构造演化意义[J]. 地质学报, 2017, 91(10): 2196-2211.

    Google Scholar

    [85] 张正平, 辛后田, 程海峰, 等. 内蒙古北山造山带发现额勒根蛇绿岩——红石山-百合山蛇绿岩带东延的证据[J]. 地质通报, 2020, 39(9): 1389-1403.

    Google Scholar

    [86] 赵志雄, 贾元琴, 许海, 等. 北山交叉沟石英闪长岩锆石LA-ICP-MS U-Pb年龄及构造意义[J]. 地质学报, 2015, 89(7): 1210-1218.

    Google Scholar

    [87] 赵志雄, 熊煜, 贾元琴, 等. 北山独龙包地区晚石炭世陆缘弧岩浆作用——花岗闪长岩锆石U-Pb年龄及地球化学证据[J]. 地质论评, 2018, 64(3): 597-609.

    Google Scholar

    [88] 朱炜, 张正平, 孙璎姝, 等. 内蒙古北山北缘蓬勃山一带古亚洲洋闭合时间制约——来自黑红山二长花岗岩的证据[J]. 地质通报, 2019, 38(11): 1846-1857.

    Google Scholar

    [89] 邹运鑫, 曹霞, 亢文丽. 北山六陀山地区上石炭统白山组LA-ICPMS锆石U-Pb年龄[J]. 西部资源, 2015, (5): 65-66.

    Google Scholar

    [90] 左国朝, 何国琦, 等. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990a.

    Google Scholar

    [91] 左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990b, 25(4): 305-314.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(2539) PDF downloads(111) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint