2023 Vol. 42, No. 11
Article Contents

CHEN Gang, CHEN Maohong, GE Rui, LI Yanglin, WANG Yu, PANG Honghai, HUANG Rui, WU Qiqiang. 2023. Magmatic-hydrothermal metallogenic system in Zhenlongshan, Guangxi: Evidence from ore-forming fluids and materials. Geological Bulletin of China, 42(11): 1854-1874. doi: 10.12097/j.issn.1671-2552.2023.11.006
Citation: CHEN Gang, CHEN Maohong, GE Rui, LI Yanglin, WANG Yu, PANG Honghai, HUANG Rui, WU Qiqiang. 2023. Magmatic-hydrothermal metallogenic system in Zhenlongshan, Guangxi: Evidence from ore-forming fluids and materials. Geological Bulletin of China, 42(11): 1854-1874. doi: 10.12097/j.issn.1671-2552.2023.11.006

Magmatic-hydrothermal metallogenic system in Zhenlongshan, Guangxi: Evidence from ore-forming fluids and materials

More Information
  • The Zhenlongshan magmatic hydrothermal metallogenic system is located in the dome formed by a large short axis anticline in the front arc of the "mountain shaped structure" in Guangxi.The deposits (occurrence) mainly occur in the Cambrian and Devonian clastic rocks.Fluid inclusion thermometry, laser Raman, and H-O-S isotope studies were conducted on typical ore deposits.The system elucidated the source of ore-forming fluids, characteristics and evolution of ore-forming fluids, and sources of ore-forming materials for gold, silver, copper, lead, and zinc deposits around the porphyry, and preliminarily explored the genetic connections of various ore deposits (occurrence) around the porphyry.The results show that the inclusions are mainly gas-liquid inclusions, and contain more CO2 and CH4 inclusions, and occasionally contain NaCl daughter crystals.The homogenization temperature of high temperature deposit is 320~339℃, and the salinity is 8%~9% NaCl eqv; the homogenization temperature of medium temperature deposit is 280~299℃, and the salinity is 7%~8% NaCl eqv; the homogenization temperature of low temperature deposit is 160~179℃, and the salinity is 5%~6% NaCl eqv.That is, with the decrease of homogenization temperature, salinity also decreases.The δDV-SMOW and δ18OV-PDB of quartz concentrate in -55‰~-80.1‰ and -9.1‰~-18.8‰.The H-O isotopic diagram is mainly in the range of magmatic water and tends to shift to meteoric water, which indicates that the main source of fluid in the above deposit may be magmatic water, and there is the mixing of meteoric water in the later stage.The sulfur isotope peak values are concentrated in the range of -2‰~2‰, in which arsenopyrite is mainly positive and stibnite is mainly negative.Generally, there is a relatively uniform sulfur source, indicating that the sulfur in sulfide comes from magma.The above research shows that the distribution of ore deposits (occurrence) in Zhenlongshan area has obvious zoning characteristics of magmatic hydrothermal metallogenic system.Porphyry high temperature hydrothermal deposits are developed in the pluton and its edge, and the periphery gradually transits to medium and low temperature hydrothermal deposits.The horizontal and vertical mineralization zoning model for the magmatic hydrothermal metallogenic system in Zhenlongshan area are established.

  • 加载中
  • [1] Bodnar R J. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids[J]. Econmic Geology, 1983, 78: 535-542. doi: 10.2113/gsecongeo.78.3.535

    CrossRef Google Scholar

    [2] Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684. doi: 10.1016/0016-7037(93)90378-A

    CrossRef Google Scholar

    [3] Clayton R, O'Neil J, Mayeda T. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 1972, 77(17): 3057-3067. doi: 10.1029/JB077i017p03057

    CrossRef Google Scholar

    [4] Fan H, Groves D, Mikucki E, et al. Contrasting fluid types at the Nevoria gold deposit in the Southern Cross greenstone belt, Western Australia: Implication for the origin of auriferous fluids depositing ores within an Archean banded iron formation[J]. Economic Geology, 2000, 95(7): 1527-1536.

    Google Scholar

    [5] Hoefs J. Stable Isotope Geochemistry(Forth Edition)[M]. Berlin: Springer-Verlag, 1997: 201.

    Google Scholar

    [6] Mao J, Zhang J, Pirajno F, et al. Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi province, East China-a linked ore system[J]. Ore Geology Reviews, 2011, 43(1): 203-216. doi: 10.1016/j.oregeorev.2011.08.005

    CrossRef Google Scholar

    [7] Mao J, Cheng Y, Chen M, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48: 267-294. doi: 10.1007/s00126-012-0446-z

    CrossRef Google Scholar

    [8] O'Neil J, Clayton R, Mayeda T. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 1969, 51: 5547-5558. doi: 10.1063/1.1671982

    CrossRef Google Scholar

    [9] Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5): 551-578. doi: 10.2113/gsecongeo.67.5.551

    CrossRef Google Scholar

    [10] Ohmoto H. Isotopes of sulfur and carbon[J]. Geochemistry of Hydrothermal Ore Deposits, 1979, 45(5): 509-567.

    Google Scholar

    [11] Pirajno F. Hydrothermal Processes and Mineral System[M]. Berlin: Springer, 2009: 1-1250.

    Google Scholar

    [12] Robert O. Hiroshi Ohmoto; Sulfur and Carbon Isotopes and Ore Genesis: A Review[J]. Economic Geology, 1974, 69(6): 826-842. doi: 10.2113/gsecongeo.69.6.826

    CrossRef Google Scholar

    [13] Sakai H. Isotopic properties of sulfur compounds in hydrothermal processes[J]. Geochemical Journal, 1968, 2(1): 29-49. doi: 10.2343/geochemj.2.29

    CrossRef Google Scholar

    [14] Sillitoe R H, Bonham H F. Sediment-hosted gold deposits: Distal products of magmatic-hydrothermal systems[J]. Geology, 1990, 18(12): 157-161.

    Google Scholar

    [15] Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    [16] Sinclair W D. Porphyry deposits. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods[C]//Canada: Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5: 223-243.

    Google Scholar

    [17] Xie G, Mao J, Richards J, et al. Distal Au deposits associated with Cu-Au skarn mineralization in the Fengshan area, eastern China[J]. Economic Geology, 2019, 114: 127-142 doi: 10.5382/econgeo.2019.4623

    CrossRef Google Scholar

    [18] Zhai D, Williams-Jones A, Liu J, et al. Mineralogical, fluid inclusion and multiple isotope (H-O-S-Pb) constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China[J]. Economic Geology, 2018, 113: 1359-1382. doi: 10.5382/econgeo.2018.4595

    CrossRef Google Scholar

    [19] Zhai D, Liu J, Cook N, et al. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita, 2019a, 54: 47-66. doi: 10.1007/s00126-018-0804-6

    CrossRef Google Scholar

    [20] Zhai D, Williams-Jones J, Liu J, et al. Evaluating the use of the molybdenite Re-Os chronometer in dating gold mineralization: Evidence from the Haigou deposit, NE China[J]. Economic Geology, 2019b, 114: 897-915. doi: 10.5382/econgeo.2019.4667

    CrossRef Google Scholar

    [21] Zhao P, Yuan S, MaoJ, et al. Constraints on the timing and genetic link of the large-scale accumulation of proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of the world-class Dongpo orefield, Nanling range, South China[J]. Ore Geology Reviews, 2017, 95: 140-1160.

    Google Scholar

    [22] Zhao P, Yuan S, Mao J, et al. Constraints on the timing and genetic link of the large-scale accumulation of proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of the world-class Dongpo orefield, Nanling Range, South China[J]. Ore Geology Reviews, 2018, 95: 1140-1160. doi: 10.1016/j.oregeorev.2017.12.005

    CrossRef Google Scholar

    [23] 毕诗健, 杨振, 李巍, 等. 钦杭成矿带大瑶山地区晚白垩世斑岩型铜矿床: 锆石U-Pb定年及Hf同位素制约[J]. 地球科学(中国地质大学学报), 2015, 40(9): 1458-1479.

    Google Scholar

    [24] 陈港, 陈懋弘, 马克忠, 等. 广西贵港六梅金矿的成因类型及找矿意义[J]. 黄金科学技术, 2020, 28(4): 479-496.

    Google Scholar

    [25] 陈懋弘, 李忠阳, 李青, 等. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J]. 地学前缘, 2015, 22(2): 41-53. doi: 10.13745/j.esf.2015.02.004

    CrossRef Google Scholar

    [26] 陈懋弘, 李忠阳, 韦子任, 等. 广西贵港大平天山岩浆热液成矿系统[C]//第十三届全国矿床会议论文集. 北京: 中国地质学会, 2016: 45-46.

    Google Scholar

    [27] 陈懋弘, 党院, 李忠阳, 等. 广西大瑶山地区多期次岩浆活动及成矿作用[M]. 北京: 地质出版社, 2019: 1-251.

    Google Scholar

    [28] 葛锐. 广西贵港市头闸银铅锌矿床地质特征和成因研究[D]. 中国地质大学(北京)硕士学位论文, 2019.

    Google Scholar

    [29] 广西壮族自治区二七三地质队. 广西镇龙山地区岩浆热液成矿系统及成矿预测研究报告[R]. 贵港: 广西壮族自治区二七三地质队, 2019: 1-115.

    Google Scholar

    [30] 简伟, 柳维, 石黎红. 斑岩型钼矿床研究进展[J]. 矿床地质, 2010, 29(2): 308-316. doi: 10.3969/j.issn.0258-7106.2010.02.012

    CrossRef Google Scholar

    [31] 蒋兴洲, 康志强, 许继峰, 等. 广西大瑶山隆起宝山铜矿区斑岩体锆石U-Pb定年及其地质意义[J]. 桂林理工大学学报, 2015, 35(4): 766-773. doi: 10.3969/j.issn.1674-9057.2015.04.014

    CrossRef Google Scholar

    [32] 李传华, 廖航. 广西镇龙山锑金多金属矿床成矿模式初论——以小圣矿区为例[J]. 大众科技, 2014, 16(9): 139-141, 125.

    Google Scholar

    [33] 李建强, 陈冬梅, 陈贤. 宾阳县镇龙山银锑多金属矿床地质特征及其成因[J]. 南方国土资源, 2008, (5): 42-44.

    Google Scholar

    [34] 李建威, 赵新福, 邓晓东, 等. 新中国成立以来中国矿床学研究若干重要进展[J]. 中国科学: 地球科学, 2020, 49(11): 1720-1771.

    Google Scholar

    [35] 李培喜. 广西镇龙山金(银)矿的构造控制特征[J]. 黄金, 1993, 23(12): 1-6.

    Google Scholar

    [36] 李蔚铮, 许仿实, 李先粤. 广西龙头山—镇龙山地区金(银)铜铅锌矿成矿规律和成矿预测[J]. 华南地质与矿产, 1998, 25(4): 34-46.

    Google Scholar

    [37] 李忠阳, 党院, 韦子任, 等. 广西大瑶山大黎斑岩型钼铜矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 桂林理工大学学报, 2019, 39(2): 249-257.

    Google Scholar

    [38] 刘晓菲, 袁顺达, 王旭东, 等. 湖南金船塘锡铋矿床流体包裹体特征及矿床成因的初步研究[J]. 岩石学报, 2013, 29(12): 4245-4260.

    Google Scholar

    [39] 卢焕章, 毕献武, 王蝶, 等. 斑岩铜(钼-金)矿床的成矿流体[J]. 矿床地质, 2016, 35(5): 933-952.

    Google Scholar

    [40] 卢焕章. 论成矿流体[J]. 矿物学报, 2009, 29(S1): 230-231.

    Google Scholar

    [41] 卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011, 27(5): 1253-1261.

    Google Scholar

    [42] 倪培, 迟哲, 潘君屹, 等. 热液矿床的成矿流体与成矿机制——以中国若干典型矿床为例[J]. 矿物岩石地球化学通报, 2020, 37(3): 369-394.

    Google Scholar

    [43] 倪培, 范宏瑞, 丁俊英. 流体包裹体研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 1-5.

    Google Scholar

    [44] 秦锦华, 王登红, 陈毓川, 等. 矿田尺度成矿规律与成矿系列研究——以湖南水口山为例[J]. 地质学报, 2020, 94(1): 255-269.

    Google Scholar

    [45] 王雪苹, 舒晓峰, 朱传宝, 等. 青海五一河地区岩浆热液型铁多金属矿床地质特征与成矿模式[J]. 地质与勘探, 2014, 50(2): 234-245.

    Google Scholar

    [46] 王莹, 谢玉玲, 钟日晨, 等. 大别造山带沙坪沟斑岩型钼-热液脉型铅锌矿成矿系统: 流体包裹体及稳定同位素约束[J]. 中国有色金属学报, 2019, 29(3): 628-648.

    Google Scholar

    [47] 杨志强, 李骏青, 马天龙, 等. 广西贵港—平南地区铅锌铜矿床地质特征[J]. 地质与勘探, 2004, 12(6): 28-33.

    Google Scholar

    [48] 翟裕生. 地球系统、成矿系统到勘查系统[J]. 地学前缘, 2007, 12(1): 172-181.

    Google Scholar

    [49] 翟裕生. 矿床学思维方法探讨[J]. 地学前缘, 2020, 27(2): 1-12.

    Google Scholar

    [50] 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 17(1): 14-28.

    Google Scholar

    [51] 翟裕生, 王建平, 邓军, 等. 成矿系统时空演化及其找矿意义[J]. 现代地质, 2008, 26(2): 143-150.

    Google Scholar

    [52] 张武饰, 黄锐, 梁明建. 浅谈广西镇龙山穹窿铜矿成矿地质条件及成矿规律[J]. 世界有色金属, 2020, 13(22): 97-98.

    Google Scholar

    [53] 郑永飞, 徐宝龙, 周根陶. 矿物稳定同位素地球化学研究[J]. 地学前缘, 2000, 22(2): 299-320.

    Google Scholar

    [54] 钟宏, 宋谢炎, 黄智龙, 等. 近十年来中国矿床地球化学研究进展简述[J]. 矿物岩石地球化学通报, 2021, 40(4): 819-844.

    Google Scholar

    [55] 周永章, 郑义, 曾长育, 等. 关于钦-杭成矿带的若干认识[J]. 地学前缘, 2015, 22(2): 1-6.

    Google Scholar

    [56] 周永章, 李兴远, 郑义, 等. 钦杭结合带成矿地质背景及成矿规律[J]. 岩石学报, 2017, 33(3): 667-681.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Tables(3)

Article Metrics

Article views(1519) PDF downloads(110) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint