2023 Vol. 42, No. 11
Article Contents

LIU Yanrong, GUAN Qiangbing, ZHANG Haidong, ZHOU Qunjun, DANG Shun'an. 2023. Sulfides Rb-Sr and zircon U-Pb ages of the Erdaohezi Pb-Zn deposit in the western slope of the Great Xing'an Range and their constraints on tectonic setting. Geological Bulletin of China, 42(11): 1843-1853. doi: 10.12097/j.issn.1671-2552.2023.11.005
Citation: LIU Yanrong, GUAN Qiangbing, ZHANG Haidong, ZHOU Qunjun, DANG Shun'an. 2023. Sulfides Rb-Sr and zircon U-Pb ages of the Erdaohezi Pb-Zn deposit in the western slope of the Great Xing'an Range and their constraints on tectonic setting. Geological Bulletin of China, 42(11): 1843-1853. doi: 10.12097/j.issn.1671-2552.2023.11.005

Sulfides Rb-Sr and zircon U-Pb ages of the Erdaohezi Pb-Zn deposit in the western slope of the Great Xing'an Range and their constraints on tectonic setting

More Information
  • The Erdaohezi Zn-Pb deposit is located in the middle segment of the Derbugan metallogenic belt in the Erguna block that is on the western slope of the Great Xing'an Range.Rb-Sr dating for sulfides and U-Pb dating for zircons from the andesitic porphyrite were carried out in order to constrain the mineralization age.Three endogenic mineralization stages have been identified, namely a quartz-pyrite stage(I), a quartz-polymetallic sulfide stage(Ⅱ), and a quartz-calcite-pyrite stage(Ⅲ), of which, the second stage is the main ore-forming stage.The Rb and Sr contents of 5 sphalerites and 3 pyrites formed at the main mineralization stage in the ore belt Ⅲ vary from 0.081×10-6 to 2.632×10-6 and 0.661×10-6 to 3.186×10-6, respectively.Accordingly, Rb-Sr isotopic dating of sulfides yields a well-defined isochron age of 140.8±2.3 Ma, close to the zircon U-Pb age(138.8±1.7 Ma)of the andesitic porphyrite crosscutting or parallel to the ore body.The calculated initial 87Sr/86Sr ratios range from 0.71025 to 0.71205, which is lower than that of the earth's crust, but higher than that of mantle.Combined with the previous studies, we suggest that the Erdaohezi deposit is a hydrothermal-vein deposit and is associated with the andesitic magmatism event(andesitic porphyrite).Additionally, mineralization occurred in an Early Cretaceous extensional setting after the closure of the Mongolia-Okhotsk Ocean.

  • 加载中
  • [1] Fritzell E H, Bull A L, Sphephard G E. Closure of the Mongol-Okhotsk Ocean: Insights from seismic tomography and numerical modelling[J]. Earth and Planetary Science Letters, 2016, 445: 1-12. doi: 10.1016/j.epsl.2016.03.042

    CrossRef Google Scholar

    [2] Guo Z X, Yang Y T, Zyabrev S, et al. Tectonostratigraphic evolution of the Mohe-Upper Amur Basin reflects the final closure of the Mongol-Okhotsk Ocean in the latest Jurassic-earliest Cretaceous[J]. Journal of Asian Earth Sciences, 2017, 145: 494-511. doi: 10.1016/j.jseaes.2017.06.020

    CrossRef Google Scholar

    [3] Hnatyshin D, Kontak D J, Turner E C, et al. Geochronologic(Re-Os) and fluid-chemical constraints on the formation of the Mesoproterozoic-hosted Nanisivik Zn-Pb deposit, Nunavut, Canada: Evidence for early diagenetic, low-temperature conditions of formation[J]. Ore Geology Reviews, 2016, 79: 189-217. doi: 10.1016/j.oregeorev.2016.05.017

    CrossRef Google Scholar

    [4] Li T G, Wu G, Liu J, et al. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China[J]. Lithos, 2016, 261: 340-355. doi: 10.1016/j.lithos.2016.04.029

    CrossRef Google Scholar

    [5] Liu W H, Zhang X J, Zhang J, et al. Sphalerite Rb-Sr dating and in situ sulfur isotope analysis of the Daliangzi lead-zinc deposit in Sichuan province, SW China[J]. Journal of Earth Science, 2018, 29(3) : 573-586. doi: 10.1007/s12583-018-0785-5

    CrossRef Google Scholar

    [6] Ludwig K R. User's manual for Isoplot 3.0: A geochronological toolkit for Microsoft Excel[M]. California: Berkeley Geochronology Center Special Publication, 2003, 4: 1-70.

    Google Scholar

    [7] Niu S D, Li S R, Huizenga J M, et al. Zircon U-Pb geochronology and geochemistry of the intrusions associated with the Jiawula Ag-Pb-Zn deposit in the Great Xing'an Range, NE China and their implications for mineralization[J]. Ore Geology Reviews, 2017, 86: 35-54. doi: 10.1016/j.oregeorev.2017.02.007

    CrossRef Google Scholar

    [8] Niu S D, Li S R, Huizenga J M, et al. 40Ar/39Ar geochronology, fluid inclusions, and ore-grade distribution of the Jiawula Ag-Pb-Zn deposit, NE China: Implications for deposit genesis and exploration[J]. Geological Journal, 2020, 55: 1115-1127. doi: 10.1002/gj.3473

    CrossRef Google Scholar

    [9] Sun D Y, Gou J, Wang T H, et al. Geochronological and geochemical constraints on the Erguna massif basement, NE China-subduction history of the Mongol-Okhotsk oceanic crust[J]. International Geology Review, 2013, 55(14) : 1801-1816. doi: 10.1080/00206814.2013.804664

    CrossRef Google Scholar

    [10] Van der Voo R, van Hinsbergen D J J, Domeier M, et al. Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis[J]. The Geological Society of America Special Paper, 2015, 513: 1-18.

    Google Scholar

    [11] Wang Y X, Yang J D, Chen J, et al. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: Implications for the East Asian winter monsoon and source areas of loess[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 249(3/4) : 351-361.

    Google Scholar

    [12] Xu Z T, Sun J G, Liang X L, et al. Genesis of ore-bearing volcanic rocks in the Derbur lead-zinc mining area of the Erguna Massif, western slope of the Great Xing'an Range, NE China: Geochemistry, Sr-Nd-Pb isotopes, and zircon U-Pb geochronology[J]. Geological Journal, 2018, 54(6) : 1-18.

    Google Scholar

    [13] Xu Z T, Liu Y, Sun J G, et al. Nature and ore formation of the Erdaohezi Pb-Zn deposit in the Great Xing'an Range, NE China[J]. Ore Geology Reviews, 2020, 119: 103385. doi: 10.1016/j.oregeorev.2020.103385

    CrossRef Google Scholar

    [14] Yan J, Sun J G, Zhao S F, et al. LA-ICP-MS zircon U-Pb age of rhyolitic lithic-crystal tuffs in Erdaohezi lead-zinc deposit, Inner Mongolia[J]. Global Geology, 2015, 18(4) : 213-220. doi: 10.3969/j.issn.1673-9736.2015.04.02

    CrossRef Google Scholar

    [15] Yang Q, Liu W H, Zhang J, et al. Formation of Pb-Zn deposits in the Sichuan-Yunnan-Guizhou triangle linked to the Youjiang foreland basin: Evidence from Rb-Sr age and in situ sulfur isotope analysis of the Maoping Pb-Zn deposit in northeastern Yunnan Province, southeast China[J]. Ore Geology Reviews, 2019, 107: 780-800. doi: 10.1016/j.oregeorev.2019.03.022

    CrossRef Google Scholar

    [16] Zhang Y Q, Dong S W, Zhao Y, et al. Jurassic tectonics of North China: A synthetic view[J]. Acta Geologica Sinica, 2008, 82(2) : 310-326. doi: 10.1111/j.1755-6724.2008.tb00581.x

    CrossRef Google Scholar

    [17] Zhao X X, Coe R S, Zhou Y X, et al. New paleomagnetic results from northern China: collision and suturing with Siberia and Kazakhstan[J]. Tectonophysics, 1990, 181(1/4) : 43-81.

    Google Scholar

    [18] 曹艳华, 刘翼飞. 内蒙古甲乌拉银铅锌矿床成矿斑岩体锆石U-Pb年龄、地球化学特征及其成矿意义[J]. 地质通报, 2020, 39(2/3) : 353-464.

    Google Scholar

    [19] 陈文, 万渝生, 李华芹, 等. 同位素地质年龄测定技术及应用[J]. 地质学报, 2011, 85(11) : 1917-1947.

    Google Scholar

    [20] 成来顺, 黎洪秩, 尹力, 等. 二道河子银铅锌矿床地质特征及找矿方向研究[J]. 黄金科学技术, 2016, 24(3) : 58-63.

    Google Scholar

    [21] 党顺安, 王亚洲, 吕勃, 等. 内蒙古三道桥铅锌矿床地质特征及成因探讨[J]. 世界有色金属, 2022, 6: 114-116.

    Google Scholar

    [22] 段明新, 任云生, 侯召硕, 等. 内蒙古额尔古纳地区比利亚谷铅锌(银) 矿床成矿流体特征与矿床成因[J]. 矿物岩石, 2014, 34(2) : 60-67.

    Google Scholar

    [23] 葛文春, 吴福元, 周长勇, 等. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J]. 科学通报, 2007, 52(20) : 2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012

    CrossRef Google Scholar

    [24] 李进文, 梁玉伟, 王向阳, 等. 内蒙古二道河子铅锌矿成因研究[J]. 吉林大学学报(地球科学版), 2011, 41(6) : 1745-1783. doi: 10.13278/j.cnki.jjuese.2011.06.008

    CrossRef Google Scholar

    [25] 李铁刚, 武广, 刘军, 等. 大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义[J]. 岩石学报, 2014, 30(1) : 257-270.

    Google Scholar

    [26] 李文博, 黄智龙, 许德如, 等. 铅锌矿床Rb-Sr定年研究综述[J]. 大地构造与成矿学, 2002, 26(4) : 436-441.

    Google Scholar

    [27] 李兴, 刘云华, 关强兵等. 内蒙古二道河子铅锌矿床构造控矿作用及找矿方向[J]. 地球科学与环境学报, 2016, 38(6) : 791-802.

    Google Scholar

    [28] 刘桂香, 张春鹏, 吕骏超, 等. 大兴安岭甲乌拉铅锌银矿床石英二长斑岩锆石U-Pb年代学及地质意义[J]. 地质与资源, 2018, 27(5) : 424-430.

    Google Scholar

    [29] 刘艳荣, 李芳, 刘云华, 等. 内蒙古二道河子铅锌银多金属矿床流体包裹体红外显微测温研究[J]. 大地构造与成矿学, 2019, 43(5) : 953-966.

    Google Scholar

    [30] 刘艳荣, Robert M, 关强兵, 等. 内蒙古二道河子矿床闪锌矿LA-ICP-MS微量元素地球化学特征及成因意义[J]. 矿物岩石地球化学通报, 2023, 42(3) : 544-557.

    Google Scholar

    [31] 栾燕, 何克, 谭细娟. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 38(7) : 1206-1218.

    Google Scholar

    [32] 毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 21(1) : 169-188.

    Google Scholar

    [33] 孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27(4) : 1209-1226.

    Google Scholar

    [34] 佘宏全, 李进文, 向安平, 等. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 2012, 28(2) : 571-594.

    Google Scholar

    [35] 孙景贵, 张勇, 邢树文, 等. 兴蒙造山带东缘内生钼矿床的成因类型、成矿年代及成矿动力学背景[J]. 岩石学报, 2012, 28(4) : 1317-1332.

    Google Scholar

    [36] 王银之, 王非. 金属成矿40Ar/39Ar年代学的进展与问题——以黄铁矿、闪锌矿为例[J]. 地质科学, 2015, 50(4) : 1166-1177.

    Google Scholar

    [37] 吴涛涛, 赵东芳, 邵军, 等. 内蒙古比利亚谷铅锌银矿床地质地球化学特征及成因[J]. 中国地质, 2014, 41(4) : 1242-1252.

    Google Scholar

    [38] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16) : 1589-1604.

    Google Scholar

    [39] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2) : 339-353.

    Google Scholar

    [40] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5) : 1620-1646.

    Google Scholar

    [41] 杨红梅, 蔡红, 段瑞春, 等. 硫化物Rb-Sr同位素定年研究进展[J]. 地球科学进展, 2012, 27(4) : 379-385.

    Google Scholar

    [42] 杨梅, 孙景贵, 王忠禹, 等. 大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义: 锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(2) : 477-496.

    Google Scholar

    [43] 杨郧城, 郭万军, 王亚君, 等. 内蒙古东珺铅锌银矿床闪锌矿Rb-Sr定年及其地质意义[J]. 地学前缘, 2015, 22(3) : 348-356.

    Google Scholar

    [44] 张斌, 李进文, 张德全, 等. 内蒙古海拉尔盆地东珺铅锌银矿床地球化学特征[J]. 地质论评, 2011, 57(2) : 253-260.

    Google Scholar

    [45] 张长厚, 王根厚, 王果胜, 等. 辽西地区燕山板内造山带东段中生代逆冲推覆构造[J]. 地质学报, 2002, 76(1) : 64-76.

    Google Scholar

    [46] 张哲铭, 曾庆栋, 高帅, 等. 华北克拉通南缘卢氏多金属矿集区硫化物Rb-Sr定年及地质意义[J]. 岩石学报, 2019, 35(7) : 2013-2025.

    Google Scholar

    [47] 赵岩, 吕骏超, 张德宝, 等. 内蒙古东北部得耳布尔铅锌银矿床闪锌矿Rr-Sr年龄及地质意义[J]. 矿床地质, 2017, 36(4) : 893-904.

    Google Scholar

    [48] 赵岩, 吕骏超, 张朋, 等. 大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义[J]. 地质学报, 2018, 92(1) : 142-153.

    Google Scholar

    [49] 周建波, 石爱国, 景妍. 东北地块群: 构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46(4) : 1042-1055.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(1535) PDF downloads(129) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint