Citation: | HOU Yundong, JIANG Ziwen, LIU Xinshe, LUO Jinglan, FAN Liyong, HU Xinyou, DU Yifan. 2023. Age and petrogenetic implication of the Early Mesozoic dykes in the southwestern Ordos Basin. Geological Bulletin of China, 42(7): 1098-1117. doi: 10.12097/j.issn.1671-2552.2023.07.004 |
The Early Mesozoic dykes in Longmen area, the southwestern Ordos Basin are infrequent records of magmatism, which provides an ideal object for discussing the tectonic setting of the Early Mesozoic in the Ordos Basin.Petrography, petrogeochemistry and zircon U-Pb dating as well as Lu-Hf isotope for the Early Mesozoic dykes in the Longmen area of the southwestern Ordos Basin are studied.The result shows that these dykes are calc-alkaline to high poassium calc-alkaline dioritic porphyrite and monzonitic porphyrite characterized by low Mg#, Cr, Ni and Co contents.They are relatively rich in REE and LILE, poor in HFSE and depleted in Nb, Ta, Ti and P.However, the LREE/HREE ratios of monzonitic porphyrite are slightly lower and with much lower Yb, Y and higher Sr, Sr/Y ratios than those of the dioritic porphyrite, indicating that the former was formed by partial melting of deeper crustal materials under relatively high pressure, while the later was the product of melting of shallow crust material under lower pressure.Both of the dioritic and monzonitic porphyrite yield 242 Ma, consisting with those magmatism during the initial compression after the Early Mesozoic ocean basin closure in the Qinling orogenic belt.Their zircon εHf(t)=-33.89~-9.73, tDM2=1564~2780 Ma, which implies that the tectonic and magmatic activity occurred in Qinling orogenic belt since the Early Mesozoic has affected the southwestern Ordos Basin.All suggested that these dykes are resulted from the partial melting of Neoarchean and Paleoproterozoic basement of the Ordos Basin at different depths under the background of northward subduction of the Mianlue ocean basin in Qinling orogenic belt, which were roughly corresponding to the early Mesozoic tectonic transition from compression to extension in the Qinling orogenic belt.Consequently, the Ordos Basin has entered into a tectonic setting from the compression to the extension at the initiation of Chang 7 Member deposition during the Late Triassic.
[1] | Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X |
[2] | Belousova E A, Griffin W L, Reilly S Y O, et al. Igneous zircon: trace element composition as an indicator of source rocktype[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 |
[3] | Borba M L, Tassinari C C G, Matos F M V, et al. Tracking hydrothermal events using zircon REE geochemistry from the Carajás Mineral Province, Brazil[J]. Journal of Geochemical Exploration, 2021, 221: 106679. doi: 10.1016/j.gexplo.2020.106679 |
[4] | Brown M, Averkin Y A, Mclellan E L. Melt segregation inmigmatites[J]. Journal of Geophysical Research, 1995, 100(B5): 15655-15679. |
[5] | Castillo P R. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico[J]. Geological Society of America Bulletin, 2008, 120(3/4): 451-462. |
[6] | Castillo P R. 埃达克岩成因回顾[J]. 科学通报, 2006, 51(6): 617-627. doi: 10.3321/j.issn:0023-074X.2006.06.001 |
[7] | Castro A, Douce A E P, Corretgé L G, et al. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis[J]. Contrib Mineral Petrol, 1999, 135: 255-276. doi: 10.1007/s004100050511 |
[8] | Defant M, Drummond M. Derivation of some modern arc magmas by melting of young subductedlithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0 |
[9] | Geisler T, Rashwan A A, Rahn M K W, et al. Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt[J]. Mineralogical Magazine, 2003, 67(3): 485-508. doi: 10.1180/0026461036730112 |
[10] | Hofmann A W. Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceaniccrust[J]. Earth and Planetary Science Letters, 1988, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X |
[11] | Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 2000, 28(7): 627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2 |
[12] | Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphicpetrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027 |
[13] | Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimicaet Cosmochimica Acta, 2005, 69(3): 37-648. |
[14] | King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, SoutheasternAustralia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371 |
[15] | Kriegsman L M. Partial melting, partial melt extraction and partial back reaction in anatecticmigmatites[J]. Lithos, 2001, 56: 75-96. doi: 10.1016/S0024-4937(00)00060-8 |
[16] | Lei W Y, Shi G H, Santosh M, et al. Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment: A case study from the Myanmar jadeitite[J]. Lithos, 2016, 266/267: 16-27. doi: 10.1016/j.lithos.2016.09.031 |
[17] | Li H, Watanabe K, Yonezu K. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralizationprocesses[J]. Ore Geology Reviews, 2014, 60: 14-35. doi: 10.1016/j.oregeorev.2013.12.009 |
[18] | Li N, Chen Y J, Santosh M, et al. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257. doi: 10.1016/j.gr.2013.09.017 |
[19] | Liao X Y, Liu L, Zhai M G, et al. Metamorphic evolution and Petrogenesis of garnet-corundum silica-undersaturated metapelitic granulites: a new case study from the Mianlüe Tectonic Zone of South Qinling, CentralChina[J]. Lithos, 2021, 392/393: 106154. doi: 10.1016/j.lithos.2021.106154 |
[20] | Maniar P D, Piccoli P M. Tectonic discrimination ofgranitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
[21] | Meng Q R, Zhang G W. Timing of collision of the North and South China blocks: Controversy andreconciliation[J]. Geology, 1999, 27(2): 123-126. doi: 10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2 |
[22] | Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, centralChina[J]. Tectonophysics, 2000, 323(3/4): 183-196. |
[23] | Middlemost E A K. Naming materials in the magma/igneous rocksystem[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224. |
[24] | Miller C F, Mcdowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation ofinheritance[J]. Geology, 2003, 31(6): 529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 |
[25] | Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, NorthernTurkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81. |
[26] | Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the cordillera blanca batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491 |
[27] | Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantlerecycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891 |
[28] | Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages andmetamorphism[J]. Chemical Geology, 2002, 184: 123-138. doi: 10.1016/S0009-2541(01)00355-2 |
[29] | Schaltegger U. HydrothermalZircon[J]. Elements, 2007, 3(1): 51-59. doi: 10.2113/gselements.3.1.51 |
[30] | Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401. doi: 10.1016/j.gr.2012.02.004 |
[31] | Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition andprocesses[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[32] | Taylor S R, Mclennan S M. The continental crust: its composition and evolution, an examination of the geochemical record preserved in sedimentaryrocks[M]. Blackwell Scientific Publishing, 1985: 117-140. |
[33] | Thompson A B, Connolly J A D. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonicsetting[J]. Journal of Geophysical research, 1995, 100(B8): 15565-15579. doi: 10.1029/95JB00191 |
[34] | Thompson P, Harley S L, Carrington D P. The distribution of H2O-CO2 between cordierite and granitic melt under fluid-saturated conditions at 5 kbar and 900℃[J]. Contributions to Mineralogy and Petrology, 2001, 142: 107-118. doi: 10.1007/s004100100276 |
[35] | Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magmatypes[J]. Earth and Planetary Science Letters, 1983, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X |
[36] | Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granitegenesis[J]. Geological Magazine, 1969, 106: 370-384. doi: 10.1017/S0016756800058222 |
[37] | Xiong X L, Li X H, Xu J F, et al. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: the Late Cretaceous Zhantang andesites in the Huichang Basin, SEChina[J]. Geochemical Journal, 2003, 37: 233-252. doi: 10.2343/geochemj.37.233 |
[38] | Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x |
[39] | Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-118. doi: 10.1016/j.chemgeo.2007.10.003 |
[40] | Zhao Z H, Xiong X L, Wang Q, et al. Late Paleozoic underplating in North Xinjiang: evidence from shoshonites andadakites[J]. Gondwana Research, 2009, 16(2): 216-226. doi: 10.1016/j.gr.2009.03.001 |
[41] | 陈海云, 孙晓东, 张志. 西昆仑上其木干花岗岩锆石饱和温度和Ti温度的地质意义[J]. 现代地质, 2021, 35(5): 1206-1217. doi: 10.19657/j.geoscience.1000-8527.2021.036 |
[42] | 陈丕基. 中国陆相侏罗、白垩系划分对比述评[J]. 地层学杂志, 2000, 24(2): 114-119. doi: 10.3969/j.issn.0253-4959.2000.02.006 |
[43] | 邓秀芹, 李文厚, 刘新社, 等. 鄂尔多斯盆地中三叠统与上三叠统地层界线讨论[J]. 地质学报, 2009, 83(8): 1089-1096. doi: 10.3321/j.issn:0001-5717.2009.08.005 |
[44] | 邓秀芹, 蔺昉晓, 刘显阳, 等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报, 2008, 10(2): 159-166. |
[45] | 邓秀芹, 罗安湘, 张忠义, 等. 秦岭造山带与鄂尔多斯盆地印支期构造事件年代学对比[J]. 沉积学报, 2013, 31(6): 939-953. doi: 10.14027/j.cnki.cjxb.2013.06.015 |
[46] | 高春云, 周立发. 鄂尔多斯盆地西缘南段若干不整合面特征及其构造意义[J]. 地质科技情报, 2019, 38(6): 121-132. |
[47] | 贾建称, 贾茜, 张妙逢, 等. 鄂尔多斯盆地西南缘侏罗系-下白垩统划分对比与煤炭开发区划研究[J]. 中国煤炭地质, 2015, 27(7): 29-36. doi: 10.3969/j.issn.1674-1803.2015.07.08 |
[48] | 金维浚, 张旗, 何登发, 等. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 2005, 21(3): 959-966. |
[49] | 雷盼盼. 鄂尔多斯盆地西南缘构造演化及其对奥陶系油气成藏条件的影响[D]. 西北大学硕士学位论文, 2015: 1-100. |
[50] | 李曙光, 孙卫东, 张国伟, 等. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭合时代的证据[J]. 中国科学(D辑), 1996, 26(3): 223-230. |
[51] | 李玉宏, 卢进才, 李金超, 陈高潮, 魏仙样. 渭河盆地富氦天然气井分布特征与氦气成因[J]. 吉林大学学报(地球科学版), 2011, 41(S1): 47-53. |
[52] | 李再会, 林仕良, 丛峰, 等. 滇西腾冲-梁河地块石英闪长岩-二长花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 地质学报, 2012, 86(7): 1047-1062. doi: 10.3969/j.issn.0001-5717.2012.07.002 |
[53] | 梁庆韶, 田景春, 王峰, 等. 构造活动影响下地质事件沉积序列——以鄂尔多斯盆地延长组长7油层组为例[J]. 地质论许, 2023, 69(2): 481-495. |
[54] | 刘红涛, 孙世华, 刘建明, 等. 华北克拉通北缘中生代高锶花岗岩类: 地球化学与源区性质[J]. 岩石学报, 2002, 18(3): 257-274. |
[55] | 刘晔, 柳小明, 胡兆初, 等. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析[J]. 岩石学报, 2007, 23(5): 1203-1210. |
[56] | 祁凯, 任战利, 张梦婷, 等. 渭河地区及周缘晚古生代中生代碎屑锆石年代学、地球化学及构造沉积意义[J]. 岩石学报, 2020, 36(6): 1897-1912. |
[57] | 任战利, 崔军平, 郭科, 等. 鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析[J]. 科学通报, 2015, 60(14): 1298-1309. |
[58] | 宋立军, 陈隽璐, 张英利, 等. 鄂尔多斯盆地西南部汭水河地区上三叠统碎屑锆石U-Pb年代学特征及其地质意义[J]. 地质学报, 2010, 84(3): 370-386. |
[59] | 王建其, 柳小明. X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J]. 岩矿测试, 2016, 35(2): 145-151. |
[60] | 王建强, 贾楠, 刘池洋, 等. 鄂尔多斯盆地西南部下白垩统宜君组砾岩砾组分析及其意义[J]. 沉积学报, 2011, 29(2): 226-234. |
[61] | 王建强, 刘池洋, 赵红格, 等. 鄂尔多斯盆地西南部三叠纪末抬升剥蚀事件及热年代学记录[J]. 岩石学报, 2020, 36(4): 1199-1212. |
[62] | 王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45(8): 1109-1125. |
[63] | 王宗起, 闫全人, 闫臻, 等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报, 2009, 83(11): 1527-546. |
[64] | 魏安军, 边飞, 马晔, 等. 大场金矿热液错石特征研究[J]. 长江大学学报(自然科学版), 2012, 9(7): 38-40. |
[65] | 翁凯, 李荣西, 徐学义, 等. 鄂尔多斯盆地西南缘龙门隐伏碱性杂岩体地球化学特征[J]. 新疆地质, 2012, 30(4): 471-476. |
[66] | 翁凯. 鄂尔多斯盆地西南缘岩浆活动及其对油气形成的影响[D]. 长安大学硕士学位论文, 2012: 1-71. |
[67] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. |
[68] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[69] | 杨献忠, 李麟, 康丛轩, 等. 鄂尔多斯古陆金刚石成矿条件及找矿潜力[J]. 地质通报, 2019, 38(1): 22-26. |
[70] | 尤佳. 鄂尔多斯盆地西南缘熊耳群年代学、地球化学及其构造意义[D]. 西北大学硕士学位论文, 2016: 1-59. |
[71] | 俞军真, 郑有业, 许荣科. 柴北缘双口山金-银-铅矿床赋矿围岩及含金石英脉热液锆石U-Pb定年对成矿时代的限定及其成因启示[J]. 地质学报, 2020, 94(11): 3361-3375. |
[72] | 张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(03): 304-316. |
[73] | 张成立, 张国伟, 晏云翔, 等. 南秦岭勉略带北光头山花岗岩体群的成因及其构造意义[J]. 岩石学报, 2005, 21(3): 711-720. |
[74] | 张国伟. 秦岭勉略构造带与中国大陆构造[M]. 北京: 科学出版社, 2015: 1-516. |
[75] | 张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25(5): 746-768. |
[76] | 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001: 1-855. |
[77] | 张宗清, 张国伟, 唐索寒. 南秦岭变质地层同位素年代学[M]. 北京: 地质出版社, 2002: 1-259. |
Sketch geological map of the southwestern Ordos Basin(a) and tectonic unit of the Ordos Basin(b)
Stratigraphic column of the Permian He 8 Member and sampling location in well X
Microscopic photos of the intrusive rocks in the He 8 Member of well X in the southwestern Ordos Basin
Cathodoluminescence images of zircon grains from the X-3 and X-7 samples
Zircon U-Pb age concordance diagrams of dioritic porphyrite (a) and monzonitic porphyrite(b)
εHf(t) values vs. ages of zircons from the dioritic porphyrite sample
Diagrams of TAS (a), AR-SiO2 (b), silicon - potassium (c) and A/CNK-A/NK (d) in the samples
Chondrite-normalized REE distribution patterns (a) and primitive-mantle normalized trace element spidergrams (b) of the intrusive rocks from the He 8 Member in the southwestern Ordos Basin
Chondrite-normalized REE distribution patterns of the < 300 Ma concordant zircons from sample X-3 (a) and X-7 (b) of the intrusive rocks from the He 8 Member in the southwestern Ordos Basin
The La-(Sm/La)N (a), LaN-U (b), ∑LREE-U (c), δEu-δCe(d), δEu-(Sm/La)N (e), and (Sm/La)N-(Yb/Gd)N (f) diagrams of zircons with the ages less than 300 Ma from sample X-3 and X-7
Y-Sr/Y diagram (a) and YbN-(La/Yb)N diagram (b) of the samples in the study area