2023 Vol. 42, No. 7
Article Contents

WU Wenbin, SHEN Liang, LI Haiyang, WANG Yuping, LI Chao, WANG Xiaoliang, DU Jiyu, CHANG Shiwei. 2023. Zircon U-Pb age and geochemistry of Late Triassic intrusive rocks in Qinghe area, eastern Liaoning Province and its indication to the tectonic evolution of the eastern North China Craton. Geological Bulletin of China, 42(7): 1118-1131. doi: 10.12097/j.issn.1671-2552.2023.07.005
Citation: WU Wenbin, SHEN Liang, LI Haiyang, WANG Yuping, LI Chao, WANG Xiaoliang, DU Jiyu, CHANG Shiwei. 2023. Zircon U-Pb age and geochemistry of Late Triassic intrusive rocks in Qinghe area, eastern Liaoning Province and its indication to the tectonic evolution of the eastern North China Craton. Geological Bulletin of China, 42(7): 1118-1131. doi: 10.12097/j.issn.1671-2552.2023.07.005

Zircon U-Pb age and geochemistry of Late Triassic intrusive rocks in Qinghe area, eastern Liaoning Province and its indication to the tectonic evolution of the eastern North China Craton

  • Monzodiorite and monzogranite are developed in Qinghe area of Liaodong Peninsula, which is located in the east of North China Craton.We have carried out systematic LA-ICP-MS zircon U-Pb dating and geochemistry of the two types of intrusive rocks to explore the magmatic emplacement mechanism and tectonic background of Qinghe area of Liaodong Peninsula in the Late Triassic.The weighted average zircon U-Pb ages of monzodiorite and monzogranite are 212 ±2 Ma and 221 ±2 Ma, respectively.According to geochemical analysis, monzodiorite has medium SiO2 content(50.44%~55.18%, with an average of 52.20%), high MgO(3.18%~6.2%, with an average of 5.20%), TFe2O3(7.83%~8.85%, with an average of 8.37%)and total alkali(7.04%~8.00%, with an average of 7.50%), indicating that the monzodiorite in Qinghe area belongs to quasi aluminous shoshonite series.The rocks are enriched with large ion lithophile elements(LILE), relatively deficient in high field strength elements(HFSE), medium Nd/Th(3.70~9.75, average 5.83)and Rb/Sr(0.07~0.12, average 0.09)ratios, and high Nb/U(9.11~13.2, average 10.8)ratios, indicating that they are mainly composed of crust derived materials and a small amount of mantle derived materials.Monzogranite is rich in SiO2(76.10%~76.80%, with an average of 77.12%), poor in MgO and TFe2O3.Its magmatic composition is mainly composed of siliceous and aluminous components in the crust, belonging to peraluminous Ⅰ-type granite.At the same time, it is deficient in high field strength elements Nb, Ta, P and Ti, and the Nd/Th(0.62~1.73, average 1.23)ratios are close to the value of crust source rock, suggesting that the original magma should be a partial melting of continental crust materials.Through the analysis of petrology, geochronology, geochemistry and tectonic environment, combined with the study of regional tectonic evolution of Liaodong Peninsula, it is considered that the monzodiorite is the result of deep subduction of the Yangtze craton and post extension of the North China craton, and the monzogranite is in the syn-collision and compression environment.

  • 加载中
  • [1] Bea F, ArzamastsevA, Montero P, et al. Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy & Petrology, 2001, 140(5): 554-566.

    Google Scholar

    [2] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[C]//Developments in Geochemistry, 1984: 63-114.

    Google Scholar

    [3] Cho D L, Lee S R, Armstrong R. Termination of thePermo-Triassic Songrim(Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications[J]. Lithos, 2008, 105(3/4): 191-200.

    Google Scholar

    [4] Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China[J]. Geotectonica et Metallogenia, 1992, 16: 171-180.

    Google Scholar

    [5] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [6] Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J]. Earth Planetary Science Letters, 2008, 270: 41-53. doi: 10.1016/j.epsl.2008.03.008

    CrossRef Google Scholar

    [7] Gao S, Zhang J F, Xu W L, et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54: 3367.

    Google Scholar

    [8] Huang F, Xu J F, Liu Y S, et al. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton[J]. Contributions to Mineralogy and Petrology, 2017, 172(5): 28. doi: 10.1007/s00410-017-1342-4

    CrossRef Google Scholar

    [9] Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 2011, 171(3): 223-232.

    Google Scholar

    [10] Li Y, Brouwer F M, Xiao W, et al. A Paleozoic fore-arc complex in the eastern Central Asian Orogenic Belt: Petrology, geochemistry and zircon U-Pb-Hf isotopic composition ofparagneisses from the Xilingol Complex in Inner Mongolia, China[J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [11] Liu J, Zhang J, Liu Z H, et al. A new discovery of Cretaceous(~125 Ma) migmatite in Liaodong Peninsula, North China Craton[J]. Acta Geologica Sinica, 2019, 93(6): 1969-1970. doi: 10.1111/1755-6724.13836

    CrossRef Google Scholar

    [12] Liu J, Zhang J, Yin C Q, et al. Newly identified Jurassic-Cretaceous migmatites in the Liaodong Peninsula: Unravelling a Mesozoic anatectic event related to the lithospheric thinning of the North China Craton[J]. Geological Magazine, 2020, 158(3): 1-17.

    Google Scholar

    [13] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43.

    Google Scholar

    [14] Ma Q, Xu Y G, Huang L X, et al. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: Evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths[J]. Geochimica et Cosmochimica Acta, 2020, 278: 94-109. doi: 10.1016/j.gca.2019.09.009

    CrossRef Google Scholar

    [15] Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001-1012. doi: 10.1016/0016-7037(92)90043-I

    CrossRef Google Scholar

    [16] Pupin J P. Zircon and granite petrology[J]. Contributions to Mineralogy & Petrology, 1980, 73(3): 207-220.

    Google Scholar

    [17] Quan Y K, Yang D B, Mu M S, et al. Tectonic evolution of the northeastern North China Craton: Constraints from geochronology and Sr-Nd-Hf-O isotopic data from Late Triassic intrusive rocks on Liaodong Peninsula, NE China[J]. Lithos, 2020: 362-363.

    Google Scholar

    [18] Ree J H, Kwon S H, Park Y, et al. Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting[J]. Tectonics, 2001, 20(6): 850-867. doi: 10.1029/2000TC001267

    CrossRef Google Scholar

    [19] Sagong H, Kwon S T, R Ee J H. Mesozoic episodic magmatism in South Korea and its tectonic implication[J]. Tectonics, 2005, 24(5): 1-18.

    Google Scholar

    [20] Taylor S R, McLennan S M. The Geochemical Evolution of the Continental Crust[J]. Reviews of Geophysics, 1995, 33(2): 241. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [21] Williams I S, Cho D L, Kim S W. Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism[J]. Lithos, 2009, 107(3/4): 239-256.

    Google Scholar

    [22] Yang J H, Wu F Y, Wilde S A, et al. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton[J]. Chemical Geology, 2007a, 242(1/2): 155-175.

    Google Scholar

    [23] Yang J H, Sun J F, Chen F, et al. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-collisional Lithosphere Thinning of the Eastern North China Craton[J]. Journal of Petrology, 2007b, (10): 48.

    Google Scholar

    [24] Yang J H, Wu F Y. Triassic magmatism and its relation todecratonization in the eastern North China Craton[J]. Science in China Series D(Earth Sciences), 2009, 52(9): 1319-1330. doi: 10.1007/s11430-009-0137-5

    CrossRef Google Scholar

    [25] Yang J J. Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications[J]. Lithos, 2003, 70(3/4): 359-379.

    Google Scholar

    [26] Zheng Y F, Xu Z, Zhao Z F, et al. Mesozoic mafic magmatism in North China: Implications for thinning and destruction ofcratonic lithosphere[J]. Science China Earth Sciences, 2018, 61: 353-85. doi: 10.1007/s11430-017-9160-3

    CrossRef Google Scholar

    [27] 戴立群, 方伟, 赵子福. 辽东-胶东半岛三叠纪镁铁质岩浆岩: 记录从洋壳俯冲到大陆碰撞的构造转换[J]. 矿物岩石地球化学通报, 2021, 40(5): 1012-1033.

    Google Scholar

    [28] 段雪鹏, 田永飞, 王宁, 等. 辽东地区大石湖沟铜矿化构造背景——来自闪长玢岩锆石成因的指示[J]. 吉林大学学报(地球科学版), 2023, 53(1): 140-160.

    Google Scholar

    [29] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-481.

    Google Scholar

    [30] 刘杰勋, 郭巍, 朱凯. 辽东岫岩地区早白垩世侵入岩的年代学、地球化学及地质意义[J]. 岩石学报, 2016, 32(9): 2889-2900.

    Google Scholar

    [31] 刘锦, 刘正宏, 李世超, 等. 华北北缘东段开原地区三叠纪侵入岩年代学及岩石地球化学研究[J]. 岩石学报, 2016, 32(9): 2739-2756. .

    Google Scholar

    [32] 刘俊来, 纪沫, 申亮, 等. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵[J]. 中国科学: 地球科学, 2011, 41(5): 618-637.

    Google Scholar

    [33] 裴福萍, 许文良, 于洋, 等. 吉林南部晚三叠世蚂蚁河岩体的成因: 锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2008, 38(3): 351-362.

    Google Scholar

    [34] 彭游博, 刘文彬, 赵军, 等. 辽南岩体LA-ICP-MS锆石U-Pb年龄, 岩石地球化学特征及其地质意义——以盖州万福-岫岩龙潭地区三叠纪侵入岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(6): 125-139.

    Google Scholar

    [35] 申亮. 华北克拉通东部晚中生代构造体制转换[D]. 中国地质大学(北京) 博士学位论文, 2013.

    Google Scholar

    [36] 田涛, 万丽娟, 刘瑶. 埃达克岩成因研究进展概述[J]. 云南地质, 2014, 33(3): 309-313.

    Google Scholar

    [37] 王焰. 不同构造环境中双峰式火山岩的主要特征[J]. 岩石学报, 2000, 16(2): 169-173.

    Google Scholar

    [38] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238.

    Google Scholar

    [39] 吴福元, 徐义刚, 高山, 等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6): 1145-1174.

    Google Scholar

    [40] 吴福元, 杨进辉, 柳小明. 辽东半岛中生代花岗质岩浆作用的年代学格架[J]. 高校地质学报, 2005, 11(3): 305-317.

    Google Scholar

    [41] 吴开彬, 邓新, 杨坤光. 北大别白垩纪花岗岩多期侵位与造山带演化的关系[J]. 地球科学, 2013, 38(S1): 43-52.

    Google Scholar

    [42] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589.

    Google Scholar

    [43] 肖庆辉, 邢作云, 张昱, 等. 当代花岗岩研究的几个重要前沿[J]. 地学前缘, 2003, 10(3): 9.

    Google Scholar

    [44] 杨进辉, 吴福元. 华北东部三叠纪岩浆作用与克拉通破坏[J]. 中国科学: 地球科学, 2009, 39(7): 910-921.

    Google Scholar

    [45] 张旗, 潘国强, 李承东, 等. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 2007, 23(11): 2683-2698.

    Google Scholar

    [46] 郑永飞, 徐峥, 赵子福, 等. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学: 地球科学, 2018, 48(4): 379-414.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1135) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint