Citation: | ZHANG Tianbing, WANG Jianqiang, HAN Peng, PENG Heng, ZHAO Hongge. 2023. Geogical characteristics of tuffs and its constraints on the tectonic regimes transformation in the southern Ordos Basin. Geological Bulletin of China, 42(7): 1082-1097. doi: 10.12097/j.issn.1671-2552.2023.07.003 |
Tuff is the product of volcanic activity.Tuff layers in sedimentary basins are often isochronous, which is an important link for exploring the tectonic evolution of sedimentary basins and adjacent orogenic belts.The Phanerozoic magmatism in the Ordos Basin is very limited.However, in the late Early Paleozoic and Late Triassic Yanchang periods, there are many layers of tuff interlayers widely distributed in the southern basin.It indicates a close relationship between magmatic activities in adjacent orogenic belts.Predecessors have conducted a certain discussion on each of the two periods of tuff, but there is a lack of overall comprehensive research and analysis on why tuff is distributed in the southern part of the basin, and what genetic connections and tectonic significance it has.Based on previous research results, this paper systematically analyzes the distribution characteristics, source rock discrimination, development time and regional tectonic background of the above-mentioned two stage tuffs.The results show that the tuffs in the Ordos Basin are developed in deep water environments, gradually thinning from south to north.At the same time, geochemical discrimination reveals that they are all intermediate and acidic magmas, which is closely related to the origin of volcanic island arc eruption.The development time are respectively concentrated in the Late Ordovician Sandbian-Katian period(449~453 Ma)and the Late Triassic Ladinian-Carnian period(227~242 Ma), which are closely related to the key period of the Ordos Basin evolution in time and space.Combined with regional tectonics analysis, it is believed that the above-mentioned two stages of tuff development is the responses and records of volcanic events in adjacent basins during the subduction and closure of Caledonian Shangdan Ocean and Indosinian Mianlue Ocean in the Qinling Orogenic Belt.It shows that the tectonic evolution of the Qinling Orogenic Belt has an obvious control on the early Paleozoic marine basin disappearance and the development of the Mesozoic large intracontinental lake basin in the southern Ordos Basin.The above understanding has certain guiding significance for in-depth exploration of the long-term basin-mountain evolution and petroleum exploration during the Phanerozoic in the southern Ordos Basin and the Qinling Orogenic Belt.
[1] | Astini R A, Collo G, Martina F, et al. Ordovician K-bentonites in the upper-plate active margin of Western Gondwana, (Famatina Ranges): Stratigraphic and palaeogeographic significance[J]. Gondwana Research, 2007, 11(3): 311-325. doi: 10.1016/j.gr.2006.05.005 |
[2] | Cabanis B. Le diagramme La/10-Y/15-Nb/8: unoutil pour la discrimination des series volcaniques et la mise en evidence des processus de melande et/ou de contamination crustale[J]. Research Gate, 1989, 309: 2023-2029. |
[3] | Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002 |
[4] | Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009 |
[5] | Foreman B Z, Rogers R R, Deino A L, et al. Geochemical characterization of bentonite beds in the two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age[J]. Cretaceous Research, 2008, 29(3): 373-385. doi: 10.1016/j.cretres.2007.07.001 |
[6] | Grevenitz P, Carr P, Hutton A, et al. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia[J]. International Journal of Coal Geology, 2003, 55: 27-46. doi: 10.1016/S0166-5162(03)00064-8 |
[7] | Huff W D. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras[J]. Quaternary International, 2008, 178(1): 276-287. doi: 10.1016/j.quaint.2007.04.007 |
[8] | Jiang Y H, Liu Z, Jia R Y, et al. Miocene potassic granite-syenite association in western Tibetan Plateau: Implications for shoshonitic and high Ba-Sr granite genesis[J]. Lithos, 2012, 134/135(3): 146-162. |
[9] | Kramer W, Weatherall G, Offler R, et al. Origin and correlation of tuffs in the Permian Newcastle and Wollombi Coal Measures, NSW, Australia, using chemical finger printing[J]. International Journal of Coal Geology, 2001, 47: 115-135. doi: 10.1016/S0166-5162(01)00034-9 |
[10] | Maitre R W L. A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram[J]. Australian Journal of Earth Sciences, 1984, 31(2): 243-255. doi: 10.1080/08120098408729295 |
[11] | Mullen E D. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 1983, 62(1): 53-62. doi: 10.1016/0012-821X(83)90070-5 |
[12] | Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5 |
[13] | Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Andesites: Orogenic Andesites and Related Rocks. John Willey and Sons, 1982: 525-548. |
[14] | Pearce J A, Harris N B W, Tindle A G, et al. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Jour. Petrol., 1984, (4): 956-983. |
[15] | Pearce J A, Peate D W. Tectonic Implications of the Composition of Volcanic ARC Magmas[J]. Annual Review Earth & Planetary Science Letter, 1995, 23(1): 251-285. |
[16] | Qiu X W, Liu C Y, Mao G Z, et al. Late Triassic tuff intervals in the Ordos basin, Central China: Their depositional, petrographic, geochemical characteristics and regional implications[J]. Journal of Asian Earth Sciences, 2014, 80: 148-160. doi: 10.1016/j.jseaes.2013.11.004 |
[17] | Su W B, Zhang S, Huff W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3): 543-553. doi: 10.1016/j.gr.2008.04.007 |
[18] | Sun Y, Li x, Liu Q, et al. In search of the inland Carnian Pluvial Event: Middle-Upper Triassic transition profile and U-Pb isotopic dating in the Yanchang Formation in Ordos Basin, China[J]. Geological Journal, 2019, (4): 1-15. |
[19] | Sun S S, Mc, Donough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[20] | Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2 |
[21] | Xie X. Sedimentary record of Mesozoic intracontinental deformation in the south Ordos Basin, China[D]. Ph. D., Department of Geology and Geophysics, 2007. |
[22] | Yang J, Cawood P A, Montaez I P, et al. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition[J]. Earth and Planetary Science Letters, 2020, 534: 1-9. |
[23] | Yuan W, Liu G D, Xu L M, et al. Petrographic and geochemical characteristics of organic-rich shale and tuff of the Upper Triassic Yanchang Formation, Ordos Basin, China: implications for lacustrine fertilization by volcanic ash[J]. Canadian Journal of Earth Sciences, 2018, 56(1): 47-59. |
[24] | Zhang S H, Z Y, Song B, et al. Zircon SHRIMP U-Pb and in-situ Lu-Hf isotope analyses of a tuff from Western Beijing: Evidence for missing Late Paleozoic arc volcano eruptions at the northern margin of the North China block[J]. Gondwana Research, 2007, 12(1/2): 157-165. |
[25] | Zhu R K. High-precision Dating and Geological Significance of Chang 7 Tuff Zircon of the Triassic Yanchang Formation, Ordos Basin in Central China[J]. Acta Geologica Sinica, 2019, 93(6): 1823-1834. doi: 10.1111/1755-6724.14329 |
[26] | 陈诚, 史晓颖, 裴云鹏, 等. 鄂尔多斯盆地南缘晚奥陶世钾质斑脱岩——SHRIMP测年及其成因环境[J]. 现代地质, 2012, 26(2): 205-219. |
[27] | 陈丹玲, 刘良, 孙勇, 等. 北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J]. 科学通报, 2004, (18): 1901-1908. |
[28] | 陈隽璐, 徐学义, 王洪亮, 等. 北秦岭西段早古生代埃达克岩地球化学特征及岩石成因[J]. 地质学报, 2008, (4): 475-484. |
[29] | 陈朝兵, 陈新晶, 黄锦袖, 等. 造山带隆升与非均衡沉降盆地的响应关系——以鄂尔多斯盆地陇东地区长7-长6油层组为例[J]. 石油实验地质, 2019, 41(5): 674-681, 690. |
[30] | 邓胜徽, 卢远征, 罗忠, 等. 鄂尔多斯盆地延长组的划分、时代及中—上三叠统界线[J]. 中国科学: 地球科学, 2018, 48(10): 1293-1311. |
[31] | 邓秀芹, 罗安湘, 张忠义, 等. 秦岭造山带与鄂尔多斯盆地印支期构造事件年代学对比[J]. 沉积学报, 2013, 31(6): 939-953. |
[32] | 付玲, 李建忠, 徐旺林, 等. 鄂尔多斯盆地中东部奥陶系盐下深层储层特征及主控因素[J]. 天然气地球科学, 2020, 31(11): 1548-1561. |
[33] | 高璞, 高纬, 姚志刚, 等. 鄂尔多斯盆地延长组钾质斑脱岩地球化学特征[J]. 西安石油大学学报(自然科学版), 2017, 32(1): 8-13. doi: 10.3969/j.issn.1673-064X.2017.01.002 |
[34] | 胡艳华, 刘健, 周明忠, 等. 奥陶纪和志留纪钾质斑脱岩研究评述[J]. 地球化学, 2009, 38(4): 393-404. doi: 10.3321/j.issn:0379-1726.2009.04.010 |
[35] | 黄栋, 惠倩楠. 华北地块南缘富平奥陶系赵老峪组凝灰岩定年研究[J]. 西部资源, 2016, 74(5): 91-92. |
[36] | 计波, 焦养泉, 刘阳, 等. 鄂尔多斯盆地东北部下侏罗统富县组底部石英砂岩成因与物源[J]. 地质通报, 2022, 41(9): 1601-1612. |
[37] | 景辅泰, 罗霞, 杨智, 等. 页岩层系致密储层物性下限——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 天然气地球科学, 2020, 31(6): 835-845. |
[38] | 赖小东, 杨晓勇, 高鹏, 等. 鄂尔多斯盆地南部延长组富铀凝灰岩地球化学特征及形成机制[J]. 地质科学, 2010, 45(3): 757-776. doi: 10.3969/j.issn.0563-5020.2010.03.011 |
[39] | 李子颖, 刘武生, 李伟涛, 等. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用[J]. 中国地质, 2022, 49(4): 1009-1047. |
[40] | 李惠民, 陈志宏, 相振群, 等. 秦岭造山带商南-西峡地区富水杂岩的变辉长岩中斜锆石与锆石U-Pb同位素年龄的差异[J]. 地质通报, 2006, 25(6): 653-659. doi: 10.3969/j.issn.1671-2552.2006.06.001 |
[41] | 李泯星, 屈海洲, 曾琪, 等. 四川盆地西北部上二叠统吴家坪组火山碎屑岩孔隙演化特征及有利储集区分布[J]. 天然气地球科学, 2020, 31(11): 1574-1584. |
[42] | 李文厚, 梅志超, 陈景维, 等. 陕西渭北奥陶系放射虫硅质岩与火山凝灰岩的成因环境[J]. 地质通报, 1997, (4): 423-427. |
[43] | 李文厚, 陈强, 李智超, 等. 鄂尔多斯地区早古生代岩相古地理[J]. 古地理学报, 2012, 14(1): 85-100. |
[44] | 李振宏. 鄂尔多斯盆地对秦岭造山过程的构造沉积响应[D]. 中国地质科学院博士学位论文, 2011. |
[45] | 李振宏, 徐黎明, 刘新社, 等. 鄂尔多斯盆地南缘奥陶纪沉积充填记录的关键时限及其构造意义[J]. 地质科学, 2015, 50(2): 428-445. |
[46] | 梁晓伟, 关梓轩, 牛小兵, 等. 鄂尔多斯盆地延长组7段页岩油储层储集性特征[J]. 天然气地球科学, 2020, 31(10): 1489-1500. |
[47] | 廖纪佳, 朱筱敏, 邓秀芹, 等. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘, 2013, 20(2): 29-39. |
[48] | 刘池洋, 赵红格, 桂小军, 等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿) 响应[J]. 地质学报, 2006, (5): 617-638. |
[49] | 刘池洋, 王建强, 邱欣卫, 等. 鄂尔多斯盆地延长期富烃坳陷形成的动力学环境与构造属性[J]. 岩石学报, 2020, 36(6): 1913-1930. |
[50] | 刘军锋, 孙勇, 孙卫东, 等. 秦岭拉鸡庙镁铁质岩体锆石LA-ICP-MS年代学研究[J]. 岩石学报, 2009, 25(2): 320-330. |
[51] | 裴先治, 丁仨平, 李佐臣, 等. 西秦岭北缘关子镇蛇绿岩的形成时代: 来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质学报, 2007, (11): 1550-1561. |
[52] | 邱欣卫, 刘池洋, 李元昊, 等. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义[J]. 沉积学报, 2009, 27(6): 1138-1146. |
[53] | 邱欣卫, 刘池洋, 毛光周, 等. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征[J]. 地球科学, 2011, (1): 139-150. |
[54] | 邱欣卫, 刘池洋, 王建强, 等. 鄂尔多斯盆地晚三叠世深湖区同沉积变形构造特征及成因[J]. 地质科学, 2013, 48(1): 204-216. |
[55] | 邵东波, 包洪平, 魏柳斌, 等. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征[J]. 古地理学报, 2019, 21(4): 537-556. |
[56] | 苏犁, 宋述光, 宋彪, 等. 松树沟地区石榴辉石岩和富水杂岩SHRIMP锆石U-Pb年龄及其对秦岭造山带构造演化的制约[J]. 科学通报, 2004, (12): 1209-1211. |
[57] | 万斌, 关成国, 周传明, 等. 华南埃迪卡拉系底部钾质斑脱岩的岩石地球化学特征及其地质意义[J]. 岩石学报, 2013, 29(12): 4373-4386. |
[58] | 王多云, 辛补社, 杨华, 等. 鄂尔多斯盆地延长组长7底部凝灰岩锆石SHRIMP U-Pb年龄及地质意义[J]. 中国科学: 地球科学, 2014, 44(10): 2160-2171. |
[59] | 王洪亮, 陈亮, 孙勇, 等. 北秦岭西段奥陶纪火山岩中发现近4.1 Ga的捕虏锆石[J]. 科学通报, 2007, (14): 1685-1693. |
[60] | 王建强, 刘池洋, 郭真, 等. 鄂尔多斯盆地中南部晚三叠世延长期区域构造环境转变的沉积响应[J]. 地学前缘, 2015, 22(3): 194-204. |
[61] | 王建强, 刘池洋, 李行, 等. 鄂尔多斯盆地南部延长组长7段凝灰岩形成时代、物质来源及其意义[J]. 沉积学报, 2017, 35(4): 691-704. |
[62] | 王振涛, 周洪瑞, 王训练, 等. 鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用[J]. 地质学报, 2015, 89(11): 1990-2004. |
[63] | 王振涛, 周洪瑞, 王训练, 等. 鄂尔多斯盆地西南缘奥陶纪火山活动记录: 来自陕甘地区平凉组钾质斑脱岩地球化学和锆石年代学的信息[J]. 岩石学报, 2015, 31(9): 2633-2654. |
[64] | 王振涛, 周洪瑞, 王训练, 等. 陕西耀县上奥陶统桃曲坡组下部钾质斑脱岩U-Pb年龄的首次报道[J]. 地质学报, 2018, 92(2): 330-340. |
[65] | 吴素娟, 李振宏, 胡健民, 等. 鄂尔多斯盆地南缘赵老峪剖面奥陶系凝灰岩锆石SHRIMPU-Pb定年及其地质意义[J]. 地质论评, 2014, 60(4): 903-912. |
[66] | 吴素娟, 张永生, 邢恩袁, 等. 鄂尔多斯盆地西北缘奥陶纪凝灰岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 地质论评, 2017, 63(5): 1309-1327. |
[67] | 解国爱, 张庆龙, 郭令智, 等. 鄂尔多斯盆地西缘和南缘古生代前陆盆地及中央古隆起成因与油气分布[J]. 石油学报, 2003, (2): 18-23, 29. |
[68] | 许锋, 朱增伍, 李长春, 等. 鄂尔多斯盆地东南部延长组长7段厚层熔结凝灰岩特征及其地质意义[J]. 现代地质, 2019, 33(2): 389-400. |
[69] | 闫全人, 陈隽璐, 王宗起, 等. 北秦岭小王涧枕状熔岩中淡色侵入岩的地球化学特征、SHRIMP年龄及地质意义[J]. 中国科学(D辑), 2007, (10): 1301-1313. |
[70] | 杨甫, 陈刚, 陈强, 等. 鄂尔多斯盆地西南缘上奥陶统平凉组碎屑岩锆石U-Pb年龄及物源分析[J]. 地质论评, 2015, 61(1): 172-182. |
[71] | 杨华, 席胜利, 魏新善, 等. 鄂尔多斯多旋回叠合盆地演化与天然气富集[J]. 中国石油勘探, 2006, (1): 17-24. |
[72] | 杨文龙, 李碧乐, 王国志, 等. 沱沱河地区多才玛铅锌矿晶屑熔结凝灰岩锆石SHRIMP年龄及岩石地球化学特征[J]. 西北地质, 2016, 49(2): 59-69. |
[73] | 杨钊, 董云鹏, 柳小明, 等. 西秦岭天水地区关子镇蛇绿岩锆石LA-ICP-MSU-Pb定年[J]. 地质通报, 2006, (11): 85-89. |
[74] | 袁卫国. 鄂尔多斯盆地南缘中奥陶统火山凝灰岩的研究与意义[J]. 石油实验地质, 1995, (2): 167-170. |
[75] | 袁效奇, 苏德辰, 贺静, 等. 鄂尔多斯南缘中奥陶统中的滑塌构造及其地震成因[J]. 地质论评, 2014, 60(3): 529-540. |
[76] | 袁珍, 李文厚, 杨喜彦, 等. 鄂尔多斯盆地三叠系延长组事件沉积及其地质意义[J]. 西北大学学报(自然科学版), 2019, 49(3): 406-416. |
[77] | 张本健, 王宇峰, 裴森奇, 等. 川西北地区上二叠统吴家坪组沉积演化[J]. 天然气地球科学, 2019, 30(12): 1709-1720. |
[78] | 张成立, 刘良, 王涛, 等. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报, 2013, 58(23): 2323-2329. |
[79] | 张辉, 彭平安, 张文正. 鄂尔多斯盆地延长组长7段凝灰岩锆石U-Pb年龄、Hf同位素组成特征及其地质意义[J]. 岩石学报, 2014, 30(2): 575-574. |
[80] | 张进, 李锦轶, 刘建峰, 等. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息[J]. 岩石学报, 2012, 28(9): 2912-2934. |
[81] | 张文, 李玉宏, 张乔, 等. 鄂尔多斯盆地南部延长组时代划分及长73对印支Ⅰ幕的响应[J]. 地球科学, 2017, 42(9): 1565-1577. |
[82] | 张文正, 杨华, 彭平安, 等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学, 2009, 38(6): 573-582. |
[83] | 张文正, 杨华, 解丽琴, 等. 湖底热水活动及其对优质烃源岩发育的影响——以鄂尔多斯盆地长7烃源岩为例[J]. 石油勘探与开发, 2010, 37(4): 424-429. |
[84] | 张云, 张天福, 程先钰, 等. 鄂尔多斯盆地东北部侏罗纪含铀岩系三维地质结构与铀成矿规律浅析[J]. 中国地质, 2022, 49(1): 66-80. |
[85] | 赵姣, 陈丹玲, 谭清海, 等. 北秦岭东段二郎坪群火山岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J]. 地学前缘, 2012, 19(4): 118-125. |
[86] | 赵向东. 二叠纪末大灭绝后鄂尔多斯湖泊生态系统的恢复[D]. 中国科学技术大学硕士学位论文, 2020. |
[87] | 赵振宇, 郭彦如, 王艳, 等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 19(5): 15-20, 151. |
The tectonic location of the Ordos Basin (a) and geological sketch map of the southern and surrounding tectonic belts of the Ordos Basin (b)
Field outcrops and mineral characteristics of the Middle—Upper Ordovician tuff in southern Ordos Basin
Field outcrops and mineral characteristics of the Yanchang Formation tuff in southern Ordos Basin
Standardized spider diagram of the primitive mantle of trace elements and chondrite normalized rare earth element distribution patten of tuff in Ordos Basin
Discriminant diagrams of the characteristics of two-stage tuff protoliths in southern Ordos Basin
Comprehensive comparison maps of zircon U-Pb ages of tuff in southern Ordos Basin and rock mass in Qinling area
Discriminant diagrams of two-stage tuff tectonic environment in the southern Ordos Basin