2023 Vol. 42, No. 7
Article Contents

HUANG Xiaoming, MOU Chuanlong, LUO Liang, CONG Feng, DONG Hui. 2023. U-Pb geochronology of the detrital zircons from the southern segment of the Changning-Menglian suture zone in western Yunnan: Constraints on sedimentary age and tectonic environment. Geological Bulletin of China, 42(7): 1069-1081. doi: 10.12097/j.issn.1671-2552.2023.07.002
Citation: HUANG Xiaoming, MOU Chuanlong, LUO Liang, CONG Feng, DONG Hui. 2023. U-Pb geochronology of the detrital zircons from the southern segment of the Changning-Menglian suture zone in western Yunnan: Constraints on sedimentary age and tectonic environment. Geological Bulletin of China, 42(7): 1069-1081. doi: 10.12097/j.issn.1671-2552.2023.07.002

U-Pb geochronology of the detrital zircons from the southern segment of the Changning-Menglian suture zone in western Yunnan: Constraints on sedimentary age and tectonic environment

More Information
  • Clarify the evolution characteristics of the Lincang Block, it is necessary to restrict the sedimentary age and tectonic environment of the Nanduan Formaiton.The U-Pb geochronology of detrital zircon in the Nanduan Formaiton is studied in this paper.The study shows that the age of the youngest group from the Nanduan Formation are 512 Ma and 509.6 Ma.The source has the characteristics of three age groups: Pan African period (680~530 Ma), late Greenville period (980~900 Ma) and early Greenville period (1300~1100 Ma).The results show that it is considered that the maximum sedimentary lower limit of the Nanduan Formaiton is Cambrian, and the upper limit of the middle and the upper part is Carboniferous.The provenance comes from at least three orogenic belts in the East Gondwana supercontinent, which is mainly the Pinjarra orogenic belt in Antarctica, the Albany Fraser orogenic belt in Western Australia and the Paterson-Peterman orogenic belt in eastern Australia, with a pro-Gondwana continental nature.In the reconstruction of Gondwana continent in Paleozoic, the Nanduan Formation is located on the northern edge of the Australian plot, which expervenced an evolutionary process from the western Australia Block to the eastern Australia Block, moving north to East, and transforming from the passive continental margin to the active continental margin.The early sedimentary environment was coastal shallow sea or delta, and the later stage is forearc accretionary wedge sedimentary environment.

  • 加载中
  • [1] Anderson T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3/4): 249-270.

    Google Scholar

    [2] Cawood P A, Nemchin A A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia[J]. Sedimentary Geology, 2000, 134: 209-234. doi: 10.1016/S0037-0738(00)00044-0

    CrossRef Google Scholar

    [3] Cawood P A, Johnson M R W, Nemchin A A. Early Paleozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.

    Google Scholar

    [4] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1

    CrossRef Google Scholar

    [5] Clark D J, Hensen B J, Kinny P D. Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia[J]. Precambrain Research, 2000, 102(3/4): 155-183.

    Google Scholar

    [6] Chen W T, Zhou M F, Zhao X F. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 2013, 231: 61-77. doi: 10.1016/j.precamres.2013.03.011

    CrossRef Google Scholar

    [7] Downes P J, Dunkley D J, Fletcher I R, et al. Zirconolite, zircon and monazite-(Ce)U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range carbonatite complex, Halls Creek Orogen, Kimberley region, Western Australia[J]. Mineralogy and Petrology, 2016, 110(2/3): 199-222.

    Google Scholar

    [8] Dong C Y, Li C, Wan Y S, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China (Earth Sciences), 2011, 54(7): 1034-1042. doi: 10.1007/s11430-010-4166-x

    CrossRef Google Scholar

    [9] Feng Q L. Stratigraphy of volcanic rocks in the Changning-Menglian belt in southwestern Yunnan, China[J]. Journal of Asian Earth Sciences, 2002, 20(6): 657-664. doi: 10.1016/S1367-9120(02)00006-8

    CrossRef Google Scholar

    [10] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303. doi: 10.2113/0530277

    CrossRef Google Scholar

    [11] Fontaine H. Permian of Southeast Asia: an overview[J]. Journal of Asian Earth Sciences, 2002, 20(6): 567-588. doi: 10.1016/S1367-9120(01)00076-1

    CrossRef Google Scholar

    [12] Gehrels G, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan or ogen[J]. Tectonics, 2011, 30(5): TC5016.

    Google Scholar

    [13] Guo L, Zhang H F, Harris N, et al. Late Devonian-Early Carboniferous magmatism in the Lhasa terrane and its tectonic implications: Evidences from detrital zircons in the Nyingchi Complex[J]. Lithos, 2016, 245: 47-59. doi: 10.1016/j.lithos.2015.06.018

    CrossRef Google Scholar

    [14] Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7): 643-646. doi: 10.1130/G23603A.1

    CrossRef Google Scholar

    [15] Hughes N C, Myrow P M, McKenzie N R, et al. Age and implications of the phosphatic Birmania Formation, Rajasthan, India[J]. Precambrian Research, 2015, 267: 164-173. doi: 10.1016/j.precamres.2015.06.012

    CrossRef Google Scholar

    [16] Jian P, Liu D, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅰ): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks[J]. Lithos, 2009a, 113: 748-766. doi: 10.1016/j.lithos.2009.04.004

    CrossRef Google Scholar

    [17] Jian P, Liu D, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009b, 113: 767-784. doi: 10.1016/j.lithos.2009.04.006

    CrossRef Google Scholar

    [18] Jin X C, Wang Y Z, Xie G L. Devonian to Triassic Successions of the Changning-Menglian Belt, Western Yunnan, China[J]. Acta Geologica Sinica, 2003, 77(4): 440-456. doi: 10.3321/j.issn:1000-9515.2003.04.004

    CrossRef Google Scholar

    [19] Ksienzyk A K, Jacobs J, Boger S D, et al. U-Pb ages of metamorphic monazite and detrital zircon from the Northampton Complex: evidence of two orogenic cycles in Western Australia[J]. Precambrian Research, 2012, 198: 37-50.

    Google Scholar

    [20] Li C, Zhai Q G, Dong Y S, et al. High-Pressure Eclogite-Blueschist Metamorphic Belt and Closure of Paleo-Tethys Ocean in Central Qiangtang, Qinghai-Tibet Plateau[J]. Journal of Earth Science, 2009, 20(2): 209-218. doi: 10.1007/s12583-009-0021-4

    CrossRef Google Scholar

    [21] Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceousstrata in the Lhasa terrane, southern Tibet[J]. Basin Research, 2007, 19(3): 361-378. doi: 10.1111/j.1365-2117.2007.00330.x

    CrossRef Google Scholar

    [22] Liu X M, Gao S, Diwu C R, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4): 421-468. doi: 10.2475/04.2008.02

    CrossRef Google Scholar

    [23] Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys[J]. Journal of the Geological Society of Australia, 1996, 43: 605-623.

    Google Scholar

    [24] Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 2002, 20: 551-566. doi: 10.1016/S1367-9120(02)00022-6

    CrossRef Google Scholar

    [25] Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context[J]. Gondwana Research, 2006, 9: 24-46. doi: 10.1016/j.gr.2005.04.002

    CrossRef Google Scholar

    [26] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [27] Meert J G. A synopsis of events related to the assembly of eastern Gondwana[J]. Tectonophysics, 2003, 362(1/4): 1-40.

    Google Scholar

    [28] Malone S J, Meert J G, Banerjee D M, et al. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana Basins[J]. Precambrian Research, 2008, 164: 137-159. doi: 10.1016/j.precamres.2008.04.004

    CrossRef Google Scholar

    [29] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.

    Google Scholar

    [30] Stampfli G M, Borel G D. A plate tectonic model for the Paleozoic and Mesozoic of the Tethyan domain constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[C]//1st International Symposium of the Faculty of Mines on Earth Science and Engineering, Istanbul Technical University, 2002: 77.

    Google Scholar

    [31] Stampfli G M, Borel G D. The transmed transects in space and time: constrained on the Paleozoic evolution of Mediterranean domain[C]//Cavazza W, Roure F, Spakman W, et al. The Transmed Atlas (the Mediterranean Region from Crust to Mantle). Springer-Verlag Berlin Heidelberg, 2004: 53-90.

    Google Scholar

    [32] Turner C C, Meert J G, Pandit M K, et al. A detrital zircon U-Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography[J]. Gondwana Research, 2014, 26(1): 348-364. doi: 10.1016/j.gr.2013.07.009

    CrossRef Google Scholar

    [33] Wang L J, Yu J H, Griffin W L, et al. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 2012, 222/223: 368-385. doi: 10.1016/j.precamres.2011.08.001

    CrossRef Google Scholar

    [34] Wang L J, Griffin W L, Yu J H, et al. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution[J]. Gondwana Research, 2013, 23(4): 1261-1272. doi: 10.1016/j.gr.2012.04.013

    CrossRef Google Scholar

    [35] Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J]. Earth Science Reviews, 2005, 68(3): 245-279.

    Google Scholar

    [36] Voice P J, Kowalewski M, Eriksson K A. Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains[J]. The Journal of Geology, 2011, 119(2): 109-126. doi: 10.1086/658295

    CrossRef Google Scholar

    [37] Yin C Q, Lin S F, Davis D W, et al. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan Orogenic Belt and implications for the tectonic interpretation of South China[J]. Precambrian Research, 2013, 236: 145-156. doi: 10.1016/j.precamres.2013.07.022

    CrossRef Google Scholar

    [38] Yang J H, Cawood P A, Du Y S, et al. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261/262: 120-131. doi: 10.1016/j.sedgeo.2012.03.018

    CrossRef Google Scholar

    [39] Zhao T Y, Feng Q L, Metcalfe I, et al. Detrital zircon U-Pb-Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks, SWChina: Implications for Proto-Tethys and Paleo-Tethys evolution and Gondwana reconstruction[J]. Gondwana Research, 2017, 51: 193-208. doi: 10.1016/j.gr.2017.07.012

    CrossRef Google Scholar

    [40] Zhu D C, Zhao Z D, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39: 727-730.

    Google Scholar

    [41] Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews, 2012, 114: 236-249. doi: 10.1016/j.earscirev.2012.06.001

    CrossRef Google Scholar

    [42] Zhang K J, Cai J X, Zhang Y X, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 722-729.

    Google Scholar

    [43] 曾文涛, 刘桂春, 冯庆来, 等. 临沧地体亲缘性及南段组物源——来自泥盆纪—石炭纪南段组碎屑锆石U-Pb年龄的证据[J]. 地质通报, 2017, 36(7): 1175-1187. doi: 10.3969/j.issn.1671-2552.2017.07.008

    CrossRef Google Scholar

    [44] 成都地质调查中心. 1: 5万大芒光房幅、双江县幅、文东幅区域地质矿产调查报告[R]. 2019.

    Google Scholar

    [45] 崔春龙, 曾允孚, 黄志勋, 等. 滇西昌宁-孟连带南段组沉积环境及沉积机理[J]. 西南工学院学报, 1998, 13(1): 33-38.

    Google Scholar

    [46] 邓军, 王庆飞, 李龚健. 复合造山和复合成矿系统: 三江特提斯例析[J]. 岩石学报, 2016, 32(8): 2225-2247.

    Google Scholar

    [47] 邓军, 王长明, 李文昌, 等. 三江特提斯复合造山与成矿作用研究态势及启示[J]. 地学前缘, 2014, 21(1): 52-64.

    Google Scholar

    [48] 邓军, 杨立强, 王长明. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 2011, 27(9): 2501-2509.

    Google Scholar

    [49] 段向东. 滇西南耿马地区昌宁-孟连带盆地演化研究[D]. 中国地质大学(武汉) 博士学位论文, 2013.

    Google Scholar

    [50] 方宗杰, 周志澄, 林敏基. 关于滇西地质的若干新认识[J]. 科学通报, 1990, 5: 363-365.

    Google Scholar

    [51] 方宗杰, 周志澄, 林敏基. 从地层学的角度探讨昌宁-孟连缝合带的若干问题[J]. 地层学杂志, 1992, 16(4): 292-303.

    Google Scholar

    [52] 冯庆来, 刘本培, 叶玫, 等. 滇西南南段组和拉巴群地质时代及构造背景[J]. 地层学杂志, 1996, 20(3): 183-189.

    Google Scholar

    [53] 耿元生, 旷红伟, 杜利林, 等. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报, 2019, 35(8): 2299-2324.

    Google Scholar

    [54] 龚一鸣, 杜远生, 冯庆来, 等. 造山带沉积地质与圈层耦合[M]. 武汉: 中国地质大学出版社, 1996: 1-16.

    Google Scholar

    [55] 贾进华. 滇西南昌宁-孟连带南段群沉积特征及其构造古地理意义——兼论临沧地体的性质[J]. 岩相古地理, 1994, 14(4): 42-48.

    Google Scholar

    [56] 金小赤, 王义昭, 谢广连. 滇西昌宁-孟连带的地层格架[J]. 地质通报, 2002, 21(6): 315-321.

    Google Scholar

    [57] 李三忠, 赵国春, 孙敏. 华北克拉通早元古代拼合与Columbia超大陆形成研究进展[J]. 科学通报, 2016, 61(9): 919-925.

    Google Scholar

    [58] 李维科, 王晓林, 刘兵, 等. 滇西保山地块南部公养河群研究新进展[J]. 地质通报, 2018, 37(11): 1970-1979.

    Google Scholar

    [59] 李兴振, 潘桂棠, 罗建宁. 论三江地区冈瓦纳和劳亚大陆的分界[J]. 青藏高原地质文集, 1990, (20): 217-233.

    Google Scholar

    [60] 李永森, 陈炳蔚. 怒江、澜沧江、金沙江地区构造与成矿作用[J]. 矿床地质, 1991, 10(4): 289-299.

    Google Scholar

    [61] 刘本培, 冯庆来, 方念乔, 等. 滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化[J]. 地球科学——中国地质大学学报, 1993, 18(5): 529-539.

    Google Scholar

    [62] 毛晓长. 保山-镇康地块及邻区早古生代地质特征及特提斯构造演化[D]. 中国地质大学(北京) 博士学位论文, 2016.

    Google Scholar

    [63] 聂小妹. 滇西南及泰国北部古生代早中期特提斯演化研究[D]. 中国地质大学(武汉) 博士学位论文, 2016.

    Google Scholar

    [64] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23.

    Google Scholar

    [65] 彭虎, 李才, 解超明, 等. 藏北羌塘中部日湾茶卡组物源——LA-ICP-MS锆石U-Pb年龄及稀土元素特征[J]. 地质通报, 2014, 33(11): 1715-1727.

    Google Scholar

    [66] 彭智敏, 王保弟, 胡金锋, 等. 云南滇西地区早古生代增生杂岩的厘定及其洋壳俯冲消减作用——基于1: 5万文东幅地质调查的新认识[J]. 中国地质, 2022, 49(5): 1656-1672.

    Google Scholar

    [67] 彭智敏, 王国之, 王保弟, 等. 云南邦丙澜沧岩群中发现蓝闪石榴辉岩[J]. 成都理工大学学报(自然科学版), 2019, 46(5): 639-640.

    Google Scholar

    [68] 宋培平, 丁林, 李震宇, 等. 北羌塘地块的"前世今生"[C]//2018年中国地球科学联合学术年会. 中国北京, 2018: 1.

    Google Scholar

    [69] 王保弟, 王立全, 王冬兵, 等. 三江昌宁-孟连带原-古特提斯构造演化[J]. 地球科学, 2018, 43(8): 2527-2550.

    Google Scholar

    [70] 王舫, 刘福来, 冀磊, 等. 澜沧江杂岩带澜沧群浅变质岩系碎屑锆石LA-ICP-MS U-Pb年代学及其构造意义[J]. 岩石学报, 2017, 33(9): 2975-2985.

    Google Scholar

    [71] 王慧宁. 昌宁-孟连造山带榴辉岩、蓝片岩和变沉积岩的岩石学、变质演化及其时古特提斯洋-陆俯冲造山的制约[D]. 中国地质科学院博士学位论文, 2020.

    Google Scholar

    [72] 王新利, 林丽, 朱利东, 等. 对滇西昌宁-孟连带大地构造背景的认识[J]. 地质找矿论丛, 2007, 22(2): 134-138.

    Google Scholar

    [73] 王义昭, 李兴林, 段丽兰, 等. 三江地区南段大地构造与成矿[M]. 北京: 地质出版社, 2000.

    Google Scholar

    [74] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 16: 1589-1604.

    Google Scholar

    [75] 邢晓婉, 张玉芝. 滇西西盟帕可组沉积时代厘定及构造意义: 锆石U-Pb年代学及Lu-Hf同位素证据[J]. 矿物岩石地球化学通报, 2016.35(5): 936-948.

    Google Scholar

    [76] 杨学俊, 贾小川, 熊昌利, 等. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 264-276.

    Google Scholar

    [77] 于远山, 张斌辉, 陈敏华, 等. 滇西勐海西定地区南段组褶叠层构造及其研究意义[J]. 沉积与特提斯地质, 2020, 42(4): 626-641.

    Google Scholar

    [78] 云南省地质局. 1: 20万澜沧县幅、勐海县幅区域地质报告[R]. 1982.

    Google Scholar

    [79] 云南省地质矿产局. 1: 20万凤庆幅区域地质报告[R]. 1981.

    Google Scholar

    [80] 云南省地质矿产局. 1: 20万孟连幅区域地质报告[R]. 1982.

    Google Scholar

    [81] 云南省地质矿产局. 1: 20万沧源幅、上班老幅区域地质报告[R]. 1986.

    Google Scholar

    [82] 云南省地质矿产局, 云南省区域地质志[M]. 北京: 地质出版社. 1990.

    Google Scholar

    [83] 云南省地质矿产局. 云南省岩石地层[M]. 武汉: 中国地质大学出版社, 1996: 1-366.

    Google Scholar

    [84] 张开均, 唐显春. 青藏高原腹地榴辉岩研究进展及其地球动力学意义[J]. 科学通报, 2009, 54(13): 1804-1814.

    Google Scholar

    [85] 赵林涛, 李三忠, 吕勇, 等. 滇西允沟岩组碎屑锆石年龄谱对相关地块亲缘性的约束[J]. 岩石学报, 2019, 35(9): 2911-2925.

    Google Scholar

    [86] 郑建彬. 昌宁-孟连带东部晚古生代碎屑岩沉积学与碎屑锆石年代学研究——对滇西古特提斯演化的指示意义[D]. 中国地质科学院博士学位论文, 2019.

    Google Scholar

    [87] 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998.

    Google Scholar

    [88] 周美玲, 夏小平, 彭头平, 等. 滇西保山地块早古生代碎屑锆石U-Pb-Hf同位素研究及其对冈瓦纳大陆重建的制约[J]. 岩石学报, 2020, 36(2): 469-483.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1417) PDF downloads(72) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint