2023 Vol. 42, No. 1
Article Contents

LIU Yanbing, WEN Meilan, WU Yanbin, ZHAO Chen, ZHENG Chaojie. 2023. Genesis of the newly discovered rubidium deposit in Hami, Xinjiang: evidence from deposit geology and geochemistry. Geological Bulletin of China, 42(1): 41-54. doi: 10.12097/j.issn.1671-2552.2023.01.004
Citation: LIU Yanbing, WEN Meilan, WU Yanbin, ZHAO Chen, ZHENG Chaojie. 2023. Genesis of the newly discovered rubidium deposit in Hami, Xinjiang: evidence from deposit geology and geochemistry. Geological Bulletin of China, 42(1): 41-54. doi: 10.12097/j.issn.1671-2552.2023.01.004

Genesis of the newly discovered rubidium deposit in Hami, Xinjiang: evidence from deposit geology and geochemistry

More Information
  • The newly discovered Zhangbaoshan rubidium deposit,located in Hami,Xinjiang,is a typical super-large,rare metal deposit in the East Tianshan area. Based on geological field surveys,mineralogy petrology,and geochemistry studies were conducted to study the granite mineralization and guide the prospecting of rare metals in this region to reveal the ore genesis. Research around the geochemical analysis of major and trace elements,rare earth elements (REE) shows that the petrochemical composition of rock mass was characterized by high silicon,alkali rich,Na2O>K2O,high F (>2%),high Rb,and ∑REE contents ranging from 21.4×10-6 to 190.4×10-6,with strong negative Eu anomaly. The distribution pattern of lanthanon has an "M" type REE tetrad effect. The trace elements are characterized by rich rare and scattered elements such as Li,Rb,Cs,W,Sn,Nb,Hf,Th,and Ga,which provide a material basis for rare metal mineralization. Element F,hosted in mica,has a high content in different phase bands of the magmatic evolution stage. F and rare metal elements form a series of complex compounds,which will migrate to the rock mass. Electron probe analysis indicates that element Rb presents isomorphism in the rock-forming minerals potassium feldspar and muscovite. The concentration of Rb in the veinis positively connected with the amount of potassium feldspar and muscovite. The rubidium-bearing rock body successively invaded the light granite,amazonite-bearing granite,amazonite granite,topaz-bearing amazonite granite,topaz albite granite,and amazonite-bearing granite pegmatite veins. The comprehensive analysis argues that the Zhangbaoshan rubidium deposit experienced multi-stage evolution and belongs to the magmatic crystallization and differentiation along with the metasomatismgenesis. The deposit type is a magmatic-hydrothermal deposit,whose formation era is in the late Indosinian period.

  • 加载中
  • [1] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare earth element geochemistry. Amsterdam: Elservier Science Publishers, 1984: 63-114.

    Google Scholar

    [2] Cerny P. Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlledby tectonic setting or source lithologies?[J]. Precambrian Research, 1991, 51(1/4): 429-468.

    Google Scholar

    [3] Keppler H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy & Petrology, 1993, 114(4): 479-488.

    Google Scholar

    [4] Norton J J. Lithium, cesium and rubidium-the rare alkali metals[C]//Brobst D A, Prah W P. United States Mineral Resources. U.S. Geological Survey Professional, 1973, 820: 365-378.

    Google Scholar

    [5] Ponader C W, Brown G E. Rare earth elements in silicate, ja: math, systems: I. Effects of composition on the coordination environments of La, Gd, and Yb[J]. Geochimica Et Cosmochimica Acta, 1989, 53(11): 2893-2903. doi: 10.1016/0016-7037(89)90166-X

    CrossRef Google Scholar

    [6] Simmons E C. Rubidium: Element and geochemistry[C]//Geochemistry. Springer Netherlands, 1998: 555-556.

    Google Scholar

    [7] Simmons W S, Webber K L, Falster A U, et al. Pegmatology: Pegmatite mineralogy, petrology and petrogenesis[M]. Rubellite Press, New Orleans, 2003.

    Google Scholar

    [8] Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Rev. Geophys., 1995, 33: 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [9] Webster J D, Holloway J R, Hervig R L. Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt[J]. Economic Geology, 1989, 84(1): 116-134. doi: 10.2113/gsecongeo.84.1.116

    CrossRef Google Scholar

    [10] 陈乐柱, 肖惠良, 范飞鹏, 等. 广东始兴良源铷铌钽钨多金属矿资源潜力及找矿方向[J]. 矿床地质, 2014, 33(S1): 1-2.

    Google Scholar

    [11] 范飞鹏, 肖惠良, 陈乐柱, 等. 南岭地区含铷花岗岩地质、地球化学特征[J]. 矿床地质, 2014, 33(S1): 1163-1166.

    Google Scholar

    [12] 顾连兴. 东疆星星峡地区白石头泉高铷氟花岗岩的特征和成因[J]. 岩石学报1994, 10(1): 41-53. doi: 10.3321/j.issn:1000-0569.1994.01.004

    CrossRef Google Scholar

    [13] 顾连兴, 苟晓琴, 张遵忠, 等. 东天山一个多相带高铷氟花岗岩的地球化学及成岩作用[J]. 岩石学报, 2003, 19(4): 585-600.

    Google Scholar

    [14] 顾连兴, 吴昌志, 张遵忠, 等. 东疆白石头泉含黄玉天河石花岗岩体的地球化学: 分带和岩浆演化[J]. 高校地质学报, 2007, 12(2): 207-223. doi: 10.3969/j.issn.1006-7493.2007.02.006

    CrossRef Google Scholar

    [15] 洪大卫, 王式洸, 韩宝福, 等. 碱性花岗岩的构造环境分类及其鉴别标志[J]. 中国科学(B辑), 1995, 25(4): 418-426.

    Google Scholar

    [16] 贾志磊. 甘肃南祁连-北山铌钽铷等稀有金属成矿地质特征与成矿规律的研究[D]. 兰州大学博士学位论文, 2016.

    Google Scholar

    [17] 赖杨, 杨磊, 李丹峰, 等. 甘肃国宝山铷矿床矿石特征研究[J]. 矿产综合利用, 2016, (3): 71-75. doi: 10.3969/j.issn.1000-6532.2016.03.017

    CrossRef Google Scholar

    [18] 李福春, 朱金初, 漆亮, 等. 富氟花岗岩体系岩浆流体内稀土元素演化规律的实验研究[J]. 高校地质学报, 2002, 8(1): 10-16.

    Google Scholar

    [19] 李华萍. 广东贵人峰铷矿床矿床地质特征及成因[D]. 长江大学硕士学位论文, 2019.

    Google Scholar

    [20] 李建康, 王永磊, 孙艳. 湖南桂东小江花岗岩体: 一个潜在Rb-Nb-Y矿床的岩石化学特征及其成矿远景[J]. 大地构造与成矿学, 2012, 36(3): 350-356. doi: 10.3969/j.issn.1001-1552.2012.03.006

    CrossRef Google Scholar

    [21] 李建领, 刘强, 许令兵, 等. 河南嵩县石门铷矿地质特征及成因浅析[J]. 矿产与地质, 2015, 29(2): 203-207.

    Google Scholar

    [22] 李静萍, 许世红. 长眼睛的金属——铯和铷[J]. 化学世界, 2005.46(2): 85-85. doi: 10.3969/j.issn.0367-6358.2005.02.019

    CrossRef Google Scholar

    [23] 李胜虎. 华南典型花岗岩型稀有金属矿床的成矿机制与找矿模式研究[D]. 中国地质大学(北京)博士学位论文, 2015.

    Google Scholar

    [24] 李顺庭, 祝新友, 王京彬. 我国稀有金属矿床研究现状初探[J]. 矿物学报, 2011, 31(S1): 256-7.

    Google Scholar

    [25] 刘会文, 雷爱全, 刘长财. 青海省团保山长石铷矿床地质特征及成因分析[J]. 西部探矿工程, 2010, 22(7): 117-119.

    Google Scholar

    [26] 刘四海, 吴昌志, 顾连兴, 等. 中天山白石头泉岩体年代学、岩石成因及构造意义[J]. 岩石学报, 2008, 24(12): 2720-2730.

    Google Scholar

    [27] 刘翼飞, 樊志勇, 蒋胡灿, 等. 内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究[J]. 地质学报, 2014, 88(12): 2373-2385.

    Google Scholar

    [28] 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J], 岩石学报, 2007, (10): 2329-38.

    Google Scholar

    [29] 邵厥年, 陶维屏. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2010.

    Google Scholar

    [30] 孙承辕, 于镇凡, 李贤琏. 华南花岗岩类中锂、铷、铯的地球化学[J]南京大学学报(自然科学版), 1983, (4): 731-744.

    Google Scholar

    [31] 孙艳, 王瑞江, 李建康, 等. 锡林浩特石灰窑铷多金属矿床白云母40Ar-39Ar年代及找矿前景分析[J]. 地质论评, 2015, 61(2): 463-468.

    Google Scholar

    [32] 孙艳, 王登红, 王成辉, 等. 我国铷矿成矿规律、新进展和找矿方向[J]. 地质学报, 2019, (6): 1232-1243.

    Google Scholar

    [33] 王京彬. 湖南道县正冲稀有金属云英斑岩的特征和成因[J]. 地质论评, 1990, 36(6): 534-539.

    Google Scholar

    [34] 王瑞江, 王登红, 李建康, 等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社, 2015.

    Google Scholar

    [35] 王润民, 王志辉, 范怀仲, 等. 新疆白石头泉天河石花岗岩稀土元素丰度型式及其地质意义[J]. 成都理工大学学报(自然科学版), 1984, 1: 46.

    Google Scholar

    [36] 王守敬, 刘璐, 海东靖. 甘肃国宝山铷矿工艺矿物学研究[J]. 矿产保护与利用, 2017, (3): 80-83.

    Google Scholar

    [37] 文春华, 张进富, 肖冬贵, 等. 湖南省双峰县大坪铷矿地球化学特征及成矿作用[J]. 地质科技情报, 2017, 36(6): 94-103.

    Google Scholar

    [38] 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学地球科学, 2017, 47(7): 745-765.

    Google Scholar

    [39] 夏卫华, 章锦统, 冯志文. 南岭花岗岩型稀有金属矿床地质[M]. 武汉: 中国地质大学出版社, 1989.

    Google Scholar

    [40] 杨兴武, 贾志磊, 王金荣, 等. 甘肃北山地区国宝山花岗岩稀土元素四分组效应及其意义[J]. 甘肃地质, 2017, 26(1): 25-31.

    Google Scholar

    [41] 叶德隆, 任迎新, 邰道乾. 河北兴隆M111稀有金属花岗岩体地球化学和矿化特征研究[J]. 现代地质, 1991, 5(1): 13-23.

    Google Scholar

    [42] 叶松, 亓利剑, 罗永安, 等. 四川平武稀有金属花岗岩与绿柱石的成矿属性[J]. 地质科技情报, 2001, 20(2): 65-70.

    Google Scholar

    [43] 叶松. 稀有金属花岗岩的特征及其成矿作用[J]. 岩石矿物学杂志, 2015, 34(5): 767-776.

    Google Scholar

    [44] 袁忠信, 白鸽. 中国内生稀有稀土矿床的时空分布[J]. 矿床地质, 2001, (4): 347-54.

    Google Scholar

    [45] 张敏. 广东省蕉岭县贵人峰铷矿床地质特征浅析[J]. 世界有色金属, 2016, (1): 40-41.

    Google Scholar

    [46] 张学渊. 邓阜仙花岗岩体稀有有色金属矿床地质特征[C]//第四届全国矿床会议论文. 1989.

    Google Scholar

    [47] 赵振华, 包志伟, 乔玉楼. 一种特殊的"M"与"W"复合型稀土元素四分组效应: 以水泉沟碱性正长岩为例[J]. 科学通报, 2010, (15): 1474-1488.

    Google Scholar

    [48] 赵振华, 增田彰正, Shabani M B. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, (3): 221-233.

    Google Scholar

    [49] 周凤英, 朱金初, 王汝成. 癫子岭黄玉云英岩中流体-熔融包裹体研究——黄玉云英岩成因的探讨[J]. 矿物学报, 1995, 15(3): 259-264.

    Google Scholar

    [50] 周玉, 杨磊, 刘飞燕, 等. 西藏申扎县某铷矿床铷赋存状态研究[J]. 矿产保护与利用, 2018, (6): 81-86.

    Google Scholar

    [51] 朱金初, 饶冰, 熊小林, 等. 富锂氟含稀有矿化花岗质岩石的对比和成因思考[J]. 地球化学, 2002, 31(2): 141-152.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(2579) PDF downloads(124) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint