Citation: | ZHANG Xusheng, YANG Xiuqing, ZHAO Jun, LIANG Ting, YANG Yun, LIANG Yongsheng, YANG Guowei, WANG Xiaoqing. 2023. Zircon U-Pb age of Xuanlong-type iron deposits in North China Craton and its constraints on genesis. Geological Bulletin of China, 42(1): 55-67. doi: 10.12097/j.issn.1671-2552.2023.01.005 |
Xuanlong-type iron deposit is the most important sedimentary-type iron ores in North China,which was deposited during the Mid-Proterozoic era(1800~800 Ma). Here we report the results of zircon U-Pb dating for the Xuanlong-type iron deposit. In this study,we have found abundant detrital zircons in the iron ores in the Dalingbu area,Hebei Province,and we have reported the LA-ICP-MS U-Pb ages of these detrital zircons. In addition,we also dating the granite veins which intruded into the Chuanlinggou Formation in Pangjiabu area. Combing previous studies,two peak detrital zircons ages can be observed,i.e.,the ages of 1873 Ma and 2530 Ma,respectively. These ages effectively record ca.1850 Ma and 2500 Ma tectonic thermal events of North China Craton,which indicated that the iron ores may share a similar zircon sources with the surrounding rocks in Xuanlong area. However,their sources are slightly different from that of the Chuanlinggou Formation in the Ming Tombs District,Beijing. Therefore,we speculate that Xuanlong-type iron ores may be the product of North China Craton in response to the breakup of the Columbia supercontinent. The U-Pb age of zircons from the granite vein was 202.3±1.4 Ma(n=27,MSWD=0.96),which suggests that the occurrence of Indosinian magmatic activity in the studied area. Meanwhile,this indicates that the formation of magnetite ores may not be related to the Yanshanian magmatism,and its genesis needs further study.
[1] | Bekker A, Planavsky N, Krapež B, et al. Iron formations: their origins and implications for ancient seawater chemistry[J]. Elsevier, 2014, 9: 561-628. |
[2] | Canfield D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453. doi: 10.1038/24839 |
[3] | Cox G M, Halverson G P, Minarik W G, et al. Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance[J]. Chemical Geology, 2013, 362: 232-249. doi: 10.1016/j.chemgeo.2013.08.002 |
[4] | Ding J, Shi Y, Kröner A, et al. Constraints on sedimentary ages of the Chuanlinggou formation in the Ming Tombs, Beijing, North China Craton: LA-ICP-MS and SHRIMP U-Pb dating of detrital zircons[J]. Acta Geochimica, 2018, 37: 1-24. doi: 10.1007/s11631-017-0179-x |
[5] | Duan C, Li Y H, Yang Y, et al. U-Pb ages and Hf isotopes of detrital zircon grains from the Mesoproterozoic Chuanlinggou Formation in North China Craton: Implications for the geochronology of sedimentary iron deposits and crustal evolution[J]. Minerals, 2018, 8: 547. |
[6] | Holland H. The chemical evolution of the atmosphere and oceans[M]. New York, Princeton University Press, 1984: 582. |
[7] | Hoskin P W, Schaltegger U. The composition of zircon and ignous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochenistry, 2003, 53(1): 27-62. doi: 10.2113/0530027 |
[8] | Johnson C M, Beard B L, Klein C, et al. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis[J]. Geochimica et Cosmochimica Acta, 2008, 72: 151-169. doi: 10.1016/j.gca.2007.10.013 |
[9] | Konhauser K O, Planavsky N J, Hardisty D S, et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172: 140-177. doi: 10.1016/j.earscirev.2017.06.012 |
[10] | Kusky T M, Li J. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Science, 2003, 22(4): 383-397. doi: 10.1016/S1367-9120(03)00071-3 |
[11] | Kusky T M, Santosh M. The Columbia connection in North China[J]. Geological Society London Special Publications, 2009, 323(1): 49-71. doi: 10.1144/SP323.3 |
[12] | Lin Y T, Tang D J, Shi X Y, et al. Shallow-marine ironstones formed by microaerophilic iron-oxidizing bacteria in terminal Paleoproterozoic[J]. Gondwana Research, 2019, 76: 1-18. doi: 10.1016/j.gr.2019.06.004 |
[13] | Lu S N, Zhao G C, Wang H M, et al. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review[J]. Precambrian Research, 2008, 160(1/2): 77-93. |
[14] | Rahiminejad A H, Zand-Moghadam H. Synsedimentary formation of ooidal iron stone: An example from the Jurassic deposits of SE central Iran[J]. Ore Geology Reviews, 2018, 95: 238-257. doi: 10.1016/j.oregeorev.2018.02.028 |
[15] | Ramanaidou E R, Wells M A. 13.13-sedimentary hosted iron ores[J]. Treatise on Geochemistry, 2014, 13: 313-355. |
[16] | Van Houten F B, Arthur M A. Temporal patterns among Phanerozoic oolitic ironstones and oceanic anoxia[J]. Geological Society Special Publication, 1989, 46: 33-49. doi: 10.1144/GSL.SP.1989.046.01.06 |
[17] | Xu D R, Wang Z L, Chen H Y, et al. Petrography and geochemistry of the Shilu Fe-Co-Cu ore district, South China: Implications for the origin of a Neoproterozoic BIF system[J]. Ore Geology Reviews, 2014, 57: 322-350. doi: 10.1016/j.oregeorev.2013.08.011 |
[18] | Young T P. Phanerozoic ironstones: an introduction and review[C]//Young T P, Taylor W E G. Phanerozoic Ironstones. Special Publication, Geological Society of London, 1989, 46: ix-xxv. |
[19] | Yuan H L, Gao S, Dai M N et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-117. doi: 10.1016/j.chemgeo.2007.10.003 |
[20] | Zhai M G, Bian A G, Zhao T P. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China(Series D), 2000, 30(S1): 219-232. |
[21] | 陈志明, 于洁, 侯奎. 冀西北宣龙地区菱铁矿的成因[J]. 地质科学, 1982, 4: 395-420. |
[22] | 戴永定, 宋海明, 沈继英. 河北宣龙铁矿化石细菌[J]. 中国科学(D辑), 2003, 33(8): 751-759. |
[23] | 杜汝霖, 胡华斌, 刘志礼, 等. 冀西北长城系宣龙式铁矿生物成矿作用[M]. 北京: 科学出版社, 1999: 1-160. |
[24] | 段超, 李延河, 魏明辉, 等. 河北宣化姜家寨铁矿床串岭沟组底部碎屑锆石LA-MC-ICP-MS U-Pb年龄及其地质意义[J]. 岩石学报, 2014, 30(1): 35-48. |
[25] | 高林志, 张传恒, 刘鹏举, 等. 华北-江南地区中、新元古代地层格架的再认识[J]. 地球学报, 2009, 30(4): 433-446. doi: 10.3321/j.issn:1006-3021.2009.04.004 |
[26] | 高维, 张传恒, 高林志, 等. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质通报, 2008, 27(6): 793-798. doi: 10.3969/j.issn.1671-2552.2008.06.007 |
[27] | 和政军, 牛宝贵, 张新元, 等. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄[J]. 地质通报, 2011, 30(5): 798-802. doi: 10.3969/j.issn.1671-2552.2011.05.020 |
[28] | 李厚民, 陈毓川, 李立兴, 等. 中国铁矿成矿规律[M]. 北京: 地质出版社, 2012: 1-246. |
[29] | 李怀坤, 苏文博, 周红英, 等. 华北克拉通北部长城系底界年龄小于1670Ma: 来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束[J]. 地学前缘, 2011, 18(3): 108-120. |
[30] | 李延河, 侯可军, 万德芳, 等. Algoma型和Superior型硅铁建造地球化学对比研究[J]. 岩石学报, 2012, 28(11): 3513-3519. |
[31] | 李志红, 朱祥坤. 河北省宣龙式铁矿的地球化学特征及其地质意义[J]. 岩石学报, 2012, 28(9): 2903-2911. |
[32] | 梁永生. 冀西北宣龙式铁矿中磁铁矿特征及成生机制[D]. 中国地质大学(北京)硕士学位论文, 2019: 1-71. |
[33] | 廖士范, 魏梁鸿, 刘成德, 等. 中国泥盆纪鲕铁石沉积环境、成因[J]. 沉积学报, 1993, 11(1): 93-102. |
[34] | 刘成维, 杨云, 谷振飞, 等. 河北陈家窑磁铁矿成因探讨[J]. 矿产勘查, 2013, 4(5): 519-524. doi: 10.3969/j.issn.1674-7801.2013.05.008 |
[35] | 刘敏. 宣龙铁矿地质地球化学特征及成因探讨[D]. 中国科学院地质研究所博士学位论文, 1995: 1-104. |
[36] | 陆松年, 李惠民. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年[J]. 中国地质科学院院报, 1991, 22(1): 137-146. |
[37] | 乔秀夫. 中朝板块元古宙板内地震带与盆地格局[J]. 地学前缘, 2002, (3): 141-149. |
[38] | 宋瑞先, 魏明辉, 王金锁, 等. 张家口地质矿产[M]. 北京: 地质出版社, 2012: 218-221. |
[39] | 孙会一, 高林志, 包创, 等. 河北宽城中元古代串岭沟组凝灰岩SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质学报, 2013, 87(4): 591-596. |
[40] | 汤冬杰, 史晓颖, 刘典波, 等. 华北古元古代末鲕铁岩: Columbia超大陆裂解初期的沉积响应[J]. 地球科学——中国地质大学学报, 2015, 40(2): 290-304. |
[41] | 万渝生, 董春艳, 颉颃强, 等. 华北克拉通太古宙研究若干进展[J]. 地球学报, 2015, 36(6): 685-700. |
[42] | 阎玉忠, 刘志礼. 中国北方燕山盆地长城纪生物群落和古环境关系探讨[J]. 微体古生物学报, 1998, 3: 29-46. |
[43] | 杨秀清, 毛景文, 张作衡, 等. 条带状铁建造: 特征、成因及其对地球环境的制约[J]. 矿床地质, 2020, 39(4): 697-727. |
[44] | 翟明国. 华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨[J]. 岩石学报, 2004, 20(6): 1343-1354. |
[45] | 翟明国, 彭澎. 华北克拉通古元古代构造事件[J]. 岩石学报, 2007, 11: 2665-2682. |
[46] | 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41(8): 1037-1046. |
[47] | 翟明国. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 2012, 86(9): 1335-1349. |
[48] | 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 北京: 地质出版社, 2011: 248-290. |
[49] | 张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪铁建造铁矿研究: 进展与问题[J]. 岩石学报, 2012, 28(11): 3431-3445. |
[50] | 张拴宏, 赵越, 叶浩, 等. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约[J]. 岩石学报, 2013, 29(7): 2481-2490. |
[51] | 赵一鸣, 毕承思. 宁乡式沉积铁矿床的时空分布和演化[J]. 矿床地质, 2020, 19(4): 350-362. |
Geological setting for the Xuanlong-type iron deposits
Cathodoluminescence images of the zircons
Zircon U-Pb concordia diagrams
Probability density map of U-Pb ages of zircons from the Chuanlinggou Formation