2023 Vol. 42, No. 1
Article Contents

ZHANG Zhen, DENG Xiguang, YAO Huiqiang, YU Miao, WANG Haifeng, XIAO Huizhong, CHENG Yuan. 2023. Shallow and submarine identifications of gas hydrate in the Makran accretionary prism, northern Arabian Sea. Geological Bulletin of China, 42(1): 27-40. doi: 10.12097/j.issn.1671-2552.2023.01.003
Citation: ZHANG Zhen, DENG Xiguang, YAO Huiqiang, YU Miao, WANG Haifeng, XIAO Huizhong, CHENG Yuan. 2023. Shallow and submarine identifications of gas hydrate in the Makran accretionary prism, northern Arabian Sea. Geological Bulletin of China, 42(1): 27-40. doi: 10.12097/j.issn.1671-2552.2023.01.003

Shallow and submarine identifications of gas hydrate in the Makran accretionary prism, northern Arabian Sea

More Information
  • The Makran accretionary prism located in the northern Arabian Sea is formed by the subduction of the Arabian plate beneath the Eurasian plate in a northerly direction at low speed and low angle,and there are abundant gas hydrate resources in the accretionary prism. Based on the high-resolution multi-channel seismic data,sub-bottom profile and multi-beam echo sounding data acquired by China in 2019, combined with the former investigation results,this paper discusses the shallow and submarine identifications of gas hydrate in the Makran accretionary prism. The seismic identifications mainly include bottom simulating reflector(BSR)and acoustic blank zone. The topographic and geomorphic signs include submarine pockmark,submarine slump,mound,mud volcano and cold seeps system. The water body signs mainly is flare. Gas hydrate samples have been drilled at the stations with water depth of 1000 m and 2900 m respectively. The abundant hydrate identifications of Makran accretionary prism may be related to the low velocity and low angle subduction geological background,which makes the hydrate identifications in this area show the characteristics of active continental and passive continental margins. Based on the distribution characteristics of identifications in the study area,the anticlinal ridges and theiradjacent areas in the central and western parts of accretionary prism are the gas hydrates prospective areas.

  • 加载中
  • [1] Abid H, Moin R K, Nadeem A, et al. Mud diapirism induced structuration and implications for the definition and mapping of hydrocarbon traps in Makran accretionary prism, Pakistan[C]//Washington: AAPG/SEG International Conference & Exhibition, 2015: 13-16.

    Google Scholar

    [2] Arthuron R S, Farah A, Ahmed W. The late Cretaceous-Cenozoic history of western Baluchistan, Pakistan-the northern margin of the Makran subduction complex[C]//Legett J K. Trench-Forearc geology. Special Publication Geological Society of London, 1982, 10: 373-385.

    Google Scholar

    [3] Bohrmann G, Bahr A, Brinkmann F, et al. Cold seeps of the Makran subduction zone(continental margin of Pakistan): R/V Meteor cruise report M74/3: M74, Leg 3, Fujairah-Male, 30 October-28 November, 2007[M]. Berichte, Fachbereich Geowissenschaften, Universität Bremen, No. 266, 2008: 1-161.

    Google Scholar

    [4] Byrne D E, Sykes L R, Davis D M. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone[J]. Journal of Geophysical Research Solid Earth, 1992, 97: 449-478. doi: 10.1029/91JB02165

    CrossRef Google Scholar

    [5] Campbell K A. Hydrocarbon seep and hydrothermal vent palaeoenvironments and palaeontology: past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeogeography, 2006, 232(2/4): 362-407.

    Google Scholar

    [6] Delisle G, von Rad U, Andruleit H, et al. Active mud volcanoes on-and offshore eastern Makran, Pakistan[J]. International Journal of Earth Sciences, 2002, 91: 93-110. doi: 10.1007/s005310100203

    CrossRef Google Scholar

    [7] Demets C, Gordon R G, Argus D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80. doi: 10.1111/j.1365-246X.2009.04491.x

    CrossRef Google Scholar

    [8] Dillon W P, Lee M W, Felhaber K, et al. Gas hydrates on the Atlantic continental margin of the United States-Controls on the concentration[C]//Howell D G. The Feature of Energy Gases. U.S. Geological Survey Professional Paper 1570, 1993: 313-330.

    Google Scholar

    [9] Ellouz-Zimmermann N, Deville E, Müller C, et al. Impact of sedimentation on convergent margin tectonics: example of the Makran accretionary prism(Pakistan)[C]//Lacombe O, Roure F, Lavé J, et al. Thrust Belts and Foreland Basins. Springer, France Chapter, 2007, 17: 327-350.

    Google Scholar

    [10] Ellouz-Zimmermann N, Lallemant S J, Castilla R, et al. Offshore frontal part of the Makran accretionary prism: the Chamak survey(Pakistan)[J]. Frontiers in Earth Sciences, 2007, 18: 351-366.

    Google Scholar

    [11] Foucher J P, Westbrook G K, Boetius A, et al. Structure and drivers of cold seep ecosystems[J]. Oceanography, 2009, 22(1): 92-109. doi: 10.5670/oceanog.2009.11

    CrossRef Google Scholar

    [12] Grando G, McClay K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran[J]. Sedimentary Geology, 2007, 196(1): 157-179.

    Google Scholar

    [13] Gutscher M A, Westbrook G K. Great earthquakes in slow-subduction, low-taper margins[C]//Lallemand S, Funiciello F. Subduction Zone Geodynamics. Berlin: Springer-Verlag Berlin, 2009: 119-133.

    Google Scholar

    [14] Holbrook W S, Hoskins H, Wood W T, et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling[J]. Science, 1996, 273: 1840-1843. doi: 10.1126/science.273.5283.1840

    CrossRef Google Scholar

    [15] Hovland M, Judd A G. Seabed pockmarks and seepages[M]. London: Graham & Trotman Ltd., 1988.

    Google Scholar

    [16] Hovland M, Svensen H. Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea[J]. Marine Geology, 2006, 228: 15-23. doi: 10.1016/j.margeo.2005.12.005

    CrossRef Google Scholar

    [17] Hovland M, Heggland R, Vries M H D, et al. Unit-pockmarks and their potential significance for predicting fluid flow[J]. Marine & Petroleum Geology, 2010, 27(6): 1190-1199.

    Google Scholar

    [18] Judd A, Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment[M]. Cambridge, Cambridge University Press, 2007.

    Google Scholar

    [19] Kopp C, Fruehn J, Flueh E R, et al. Structure of the Makransubduction zone from wide-angle and reflection seismic data[J]. Tectonophysics, 2000, 329(1): 171-191.

    Google Scholar

    [20] Kukowski N, Schillhorn T, Huhn K, et al. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan[J]. Marine Geology, 2001, 173: 1-19. doi: 10.1016/S0025-3227(00)00167-5

    CrossRef Google Scholar

    [21] Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrates[C]//Paull C K, Dillon W P. Natural Gas Hydrates: Occurrence, Distribution and Detection. USA: AGU Geophysical Monograph, 2001: 3-18.

    Google Scholar

    [22] Majumdar U, Cook A E, Shedd W, et al. The connection between natural gas hydrate and bottom-simulating reflectors[J]. Geophysical Research Letters, 2016, 43(13): 7044-7051. doi: 10.1002/2016GL069443

    CrossRef Google Scholar

    [23] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167(1): 29-42.

    Google Scholar

    [24] Noguchi S, Shimoda N, Takano O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan[J]. Marine & Petroleum Geology, 2011, 28: 1817-1828.

    Google Scholar

    [25] Paull C K, Normark W R, Ussler W, et al. Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California[J]. Marine Geology, 2008, 250: 258-275. doi: 10.1016/j.margeo.2008.01.011

    CrossRef Google Scholar

    [26] Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin[J]. Marine Geology, 2007, 244(1/4): 15-32.

    Google Scholar

    [27] Platt J P, Leggett J K, Alam S. Slip vectors and fault mechanics in the Makran accretionary wedge, Southwest Pakistan[J]. Journal of Geophysical Research, 1988, 93(7): 7955-7973.

    Google Scholar

    [28] Römer M, Sahling H, Pape T, et al. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin(offshore Pakistan)[J]. Journal of Geophysical Research, 2012, 117(C10015): 1-19.

    Google Scholar

    [29] Serié C, Huuse M, Schodt N H. Gas hydrate pingoes: Deep seafloor evidence of focused fluid flow on continental margins[J]. Geology, 2012, 40: 207-210.

    Google Scholar

    [30] Shipley T H, Houston M H, Buffler R T, et al. Seismic evidence for widespread possible gas hydrate hotizons on continental slope and rises[J]. AAPG Bulletin, 1979, 63(12): 2204-2213.

    Google Scholar

    [31] Smith G L, McNeill L C, Henstock T J, et al. The structure and fault activity of the Makran accretionaryprism[J]. Journal of Geophysical Research, 2012, 117: 1-17.

    Google Scholar

    [32] Vanreusel A, Andersen A C, Boetius A, et al. Biodiversity of cold seep ecosystems along the European margins[J]. Oceanography, 2009, 22(1): 110-127. doi: 10.5670/oceanog.2009.12

    CrossRef Google Scholar

    [33] Von Rad U, Berner U, Delisle G, et al. Gas and fluid venting at the Makran accretionary wedge off Pakistan[J]. Geo-Marine Letters, 2000, 20(1): 10-19. doi: 10.1007/s003670000033

    CrossRef Google Scholar

    [34] Webb K E, Hammer O, Lepland A, et al. Pockmarks in the inner Oslofjord, Norway[J]. Geo-Marine Letters, 2009, 29(2): 111-124. doi: 10.1007/s00367-008-0127-1

    CrossRef Google Scholar

    [35] Wiedicke M, Neben S, Spiess V. Mud volcanoes at the front of the Makran accretionary complex, Pakistan[J]. Marine Geology, 2001, 172: 57-73. doi: 10.1016/S0025-3227(00)00127-4

    CrossRef Google Scholar

    [36] Xu Z Z, Chen S Y, Yang S Q, et al. Identification signs and prospects of hydrate gas[J]. Marine Science Bulletin, 2007, 9(1): 84-96. doi: 10.3969/j.issn.1000-9620.2007.01.010

    CrossRef Google Scholar

    [37] Zhang Z, Deng X G, Yao H Q, et al. A preliminary study on geomorphological characteristics and genetic mechanism of pockmarks in the Makran accretionary prism, northern Arabian Sea[J]. Geo-Marine Letters, 2021, 41(3): 1-16.

    Google Scholar

    [38] Zhang Z, He G W, Yao H Q, et al. Diapir structure and its constraint on gas hydrate accumulation in the Makran accretionary prism, offshore Pakistan[J]. China Geology, 2020, 3(4): 611-622. doi: 10.31035/cg2020049

    CrossRef Google Scholar

    [39] 樊栓狮, 关进安, 梁德青, 等. 天然气水合物动态成藏理论[J]. 天然气地球科学, 2007, 18(6): 819-826. doi: 10.3969/j.issn.1672-1926.2007.06.009

    CrossRef Google Scholar

    [40] 方银霞, 高金耀, 黎明碧, 等. 冲绳海槽天然气水合物与地质构造的关系[J]. 海洋地质与第四纪地质, 2005, 25(1): 85-91.

    Google Scholar

    [41] 龚建明, 廖晶, 孙晶, 等. 巴基斯坦马克兰增生楔天然气水合物的主控因素[J]. 海洋地质前沿, 2016, 32(12): 10-15.

    Google Scholar

    [42] 龚建明, 廖晶, 张莉, 等. 印度洋北部马克兰增生楔泥火山分布及主控因素探讨[J]. 现代地质, 2018, 32(5): 1025-1030.

    Google Scholar

    [43] 龚跃华, 杨胜雄, 王宏斌, 等. 南海北部神狐海域天然气水合物成藏特征[J]. 现代地质, 2009, 23(2): 210-216. doi: 10.3969/j.issn.1000-8527.2009.02.003

    CrossRef Google Scholar

    [44] 胡高伟, 卜庆涛, 吕万军, 等. 主动、被动大陆边缘天然气水合物成藏模式对比[J]. 天然气工业, 2020, 40(8): 45-58.

    Google Scholar

    [45] 匡增桂, 方允鑫, 梁金强, 等. 珠江口盆地东部海域高通量流体运移的地貌-地质-地球物理标志及其对水合物成藏的控制[J]. 中国科学: 地球科学, 2018, 48(8): 1033-1044.

    Google Scholar

    [46] 廖晶, 龚建明, 何拥军, 等. 马克兰增生楔地层层序及发育过程[J]. 海洋地质前沿, 2019, 35(4): 69-72.

    Google Scholar

    [47] 刘杰, 孙美静, 苏明, 等. 海底泥火山特征及其与天然气水合物的成矿关系[J]. 海洋地质前沿, 2015, 31(8): 53-61.

    Google Scholar

    [48] 沙志彬, 王宏斌, 张光学, 等. 底辟构造与天然气水合物的成矿关系[J]. 地学前缘, 2005, 12(3): 283-288.

    Google Scholar

    [49] 王后金, 沙志斌, 梁劲. 南海神狐暗沙海区天然气水合物地震识别特征[J]. 新疆石油地质, 2013, 34(1): 83-87.

    Google Scholar

    [50] 张光学, 祝有海, 梁金强, 等. 构造控制型天然气水合物矿藏及其特征[J]. 现代地质, 2006, 20(4): 605-612.

    Google Scholar

    [51] 张伟, 梁金强, 苏丕波, 等. 双似海底反射层与天然气水合物成藏关系研究进展与展望[J]. 中国地质, 2020, 47(1): 29-42.

    Google Scholar

    [52] 张旭东, 尹成, 曾凡祥, 等. 南海北部陆坡聚集流体活动系统及其对天然气水合物成藏的指示意义[J]. 地质通报, 2021, 40(2/3): 280-286.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(1)

Article Metrics

Article views(2500) PDF downloads(132) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint