2023 Vol. 42, No. 1
Article Contents

WANG Xinwei, GUO Shiyan, GAO Nan'an, LIU Huiying, WANG Tinghao, WEI Guangren, LEI Haifei. 2023. Detection of carbonate geothermal reservoir in Niudong fault zone of Xiong'an New Area and its geothermal exploration significance. Geological Bulletin of China, 42(1): 14-26. doi: 10.12097/j.issn.1671-2552.2023.01.002
Citation: WANG Xinwei, GUO Shiyan, GAO Nan'an, LIU Huiying, WANG Tinghao, WEI Guangren, LEI Haifei. 2023. Detection of carbonate geothermal reservoir in Niudong fault zone of Xiong'an New Area and its geothermal exploration significance. Geological Bulletin of China, 42(1): 14-26. doi: 10.12097/j.issn.1671-2552.2023.01.002

Detection of carbonate geothermal reservoir in Niudong fault zone of Xiong'an New Area and its geothermal exploration significance

  • In Xiong'an New Area,because of prohibiting the exploitation of sandstone geothermal reservoir,it is of a great significance to find out the distribution position and the resources quality of the karst geothermal reservoir of the Niudong fault zone,as an eastern boundary of the karst geothermal resources,for the compilation of geothermal resources development and utilization planning and the layout of overall energy utilization. Based on the detection data of the D09 borehole,as the first exploration well for karst geothermal reservoir in the high-speed railway area of the Xiong'an New Area,and combined with the interpretation results of seismic sections,the spatial distribution characteristics,physical properties of reservoir and single well productivity parameters of the karst geothermal reservoir in the Niudong fault zone are analyzed,and its guiding significance for geothermal exploration is also summarized. The results show that the karst geothermal reservoir in the Niudong fault zone is mainly siliceous dolomite in the Wumishan Formation of the Jixian System,which is distributed at the top of the broad,gentle anticline of the bedrock on the west side of the fault,and is high quality geothermal heating utilization resource with the stable layers thickness of about 2000 m,the roof buried depth of 1000~1200 m,the geothermal water temperature of about 70℃ and the single well production of about 102 m3/h. There are 122 fractured karst zones in the strata of 678 m from the top of the weathering crust in the D09 borehole,with the total thickness of 251.20 m,the fracture ratio of 37%,and an average porosity of 9.26%. The fracture rate and average porosity are obviously 50% higher than those of the geothermal wells out of the fault zone. A comparative analysis of geothermal gradient of the strata,geochemical characteristics of geothermal water and water-conductivity of reservoir between the D09 hole and the geothermal wells around the Niudong fault zone shows that the Niudong fault zone with a vertical fault distance of 7000 m is a deep fault of water-conducting and thermal-conducting in the basin. The fault zone defines the eastern boundary of the karst water-bearing systems in the Xiong'an New Area,constitutes a water channel for the Niutuozhen uplift and a oil-gas migration barrier for Baxian depression,and results in formatting a complete geothermal field of the Niutuozhen uplift with an area of 1000 km2.

  • 加载中
  • [1] Cermark V, Rybach L. Vertical distribution of heat production in the continental Crust[J]. Tectonophysic, 1989, 159: 217-230. doi: 10.1016/0040-1951(89)90129-7

    CrossRef Google Scholar

    [2] Wang S F, Pang Z H, Liu J R, et al. Origin and evolution characteristics of geothermal water in the Niutuozhen geothermal field, north China plain[J]. Journal of Earth Science, 2013, 24(6): 891-902. doi: 10.1007/s12583-013-0390-6

    CrossRef Google Scholar

    [3] Wang X W, Mao X, Mao X P, et al. Characteristics and classification of the geothermal gradient in the Beijing-Tianjin-Hebei Plain, China[J]. Math Geosci., 2020, 52(6): 783-800. doi: 10.1007/s11004-019-09814-8

    CrossRef Google Scholar

    [4] 常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3): 1003-1016.

    Google Scholar

    [5] 曹新来. 容1雄101井地质和水文地质的研究[J]. 山西地震, 1989, 3: 39-42.

    Google Scholar

    [6] 陈墨香. 华北地热[M]. 北京: 科学出版社, 1988.

    Google Scholar

    [7] 陈墨香, 汪集旸, 汪缉安, 等. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 1990, 64(1): 80-91.

    Google Scholar

    [8] 戴明刚, 汪新伟, 刘金侠, 等. 雄安新区起步区及周边地热资源特征与影响因素[J]. 地质科学, 2019, 54(1): 176-191.

    Google Scholar

    [9] 多吉. 典型高温地热系统-羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47. doi: 10.3969/j.issn.1009-1742.2003.01.008

    CrossRef Google Scholar

    [10] 何登发, 崔永谦, 单帅强, 等. 渤海湾盆地冀中坳陷古潜山的三维地质结构特征[J]. 地质科学, 2018, 53(1): 1-24. doi: 10.3969/j.issn.1672-0636.2018.01.001

    CrossRef Google Scholar

    [11] 蒋喆, 聂凤军, 赵元艺, 等. 冰岛区域地质及矿产资源特征[J]. 地质通报, 2020, 39(5): 755-764.

    Google Scholar

    [12] 柯柏林, 林天懿, 李文, 等. 北京西山谷积山背斜地热系统成因模式及远景区预测[J]. 地质通报, 2019, 38(8): 1378-1385.

    Google Scholar

    [13] 廖志杰, 沈敏子, 过帼颖. 云南腾冲热海热田的热储特性[J]. 地质学报, 1991, 1: 73-85.

    Google Scholar

    [14] 鲁锴, 鲍志东, 季汉成, 等. 雄安新区蓟县系雾迷山组岩溶热储特征、主控因素及有利区预测[J]. 古地理学报, 2019, 21(6): 886-898.

    Google Scholar

    [15] 马致远, 吴敏, 郑会菊, 等. 对关中盆地腹部深层地下热水δ18O富集主控因素的再认识[J]. 地质通报, 2018, 37(2/3): 487-495.

    Google Scholar

    [16] 毛小平, 汪新伟, 李克文, 等. 地热田热量来源及形成主控因素[J]. 地球科学, 2018, 43(11): 4256-4267.

    Google Scholar

    [17] 庞忠和, 胡圣标, 王社教, 等. 地热系统与地热资源[C]//汪集暘, 等. 地热学及其应用. 北京: 科学出版社, 2015: 257-372.

    Google Scholar

    [18] 张云辉, 李晓, 徐正宣, 等. 川藏铁路康定隧址区地热水成因及其工程影响分析[J]. 水文地质工程地质, 2021, 48(5): 46-53.

    Google Scholar

    [19] 苏永强, 李郡. 雄安新区地热资源评价与开发应用潜力分析[J]. 河北工业大学学报, 2018, 47(4): 62-67.

    Google Scholar

    [20] 王贵玲, 张薇, 蔺文静, 等. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 2017, 44(6): 1074-1085.

    Google Scholar

    [21] 王钧, 黄尚瑶, 黄歌山, 等. 华北中、新生代沉积盆地的地温分布及地热资源[J]. 地质学报, 1983, 3: 304-316.

    Google Scholar

    [22] 汪新伟, 王婷灏, 张瑄, 等. 太原盆地西温庄地热田的成因机制[J]. 地球科学, 2019, 44(3): 1042-1056.

    Google Scholar

    [23] 王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11): 4313-4322.

    Google Scholar

    [24] 吴爱民, 马峰, 王贵玲, 等. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 2018, 39(5): 523-532.

    Google Scholar

    [25] 熊亮萍、张菊明. 热流的折射和再分配的数学模拟[J]. 地质科学, 1984, 4: 455-454.

    Google Scholar

    [26] 熊亮萍, 张菊明. 华北平原地温梯度与基底构造形态关系[J]. 地球物理学报, 1988, 31(2): 146-155.

    Google Scholar

    [27] 阎敦实, 于英太. 京津冀油区地热资源评价与利用[M]. 武汉: 中国地质大学出版社, 2000: 1-179.

    Google Scholar

    [28] 杨吉龙, 柳富田, 贾志, 等. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J]. 地球学报, 2018, 39(1): 71-78.

    Google Scholar

    [29] 杨明慧, 刘池洋, 杨斌谊, 等. 冀中坳陷古近纪的伸展构造[J]. 地质论评, 2002a, 48(1): 58-67.

    Google Scholar

    [30] 杨明慧, 刘池洋, 孙冬胜, 等. 冀中坳陷的伸展构造系统及其构造背景[J]. 大地构造与成矿学, 2002b, 26(2): 113-120.

    Google Scholar

    [31] 尹政, 柳永刚, 张旭儒, 等. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质, 2022, 50: 1-11.

    Google Scholar

    [32] 查明, 尉亚民, 高长海, 等. 牛驼镇凸起南段潜山勘探潜力分析[J]. 岩性油气藏, 2011, 23(2): 10-14.

    Google Scholar

    [33] 张保建, 高宗军, 张凤禹, 等. 华北盆地地下热水的水动力条件及水化学响应[J]. 地学前缘, 2015, 22(6): 217-226.

    Google Scholar

    [34] 赵贤正, 金凤鸣, 王权, 等. 中国东部超深超高温碳酸盐岩潜山油气藏的发现及关键技术——以渤海湾盆地冀中坳陷牛东1潜山油气藏为例[J]. 海相油气地质, 2011, 16(4): 1-10.

    Google Scholar

    [35] 张德忠, 马云青, 苏永强. 河北平原地热流体可采量计算方法及岩溶热储分布规律研究[J]. 中国地质调查, 2018, 5(2): 78-85.

    Google Scholar

    [36] 周瑞良, 刘琦胜, 张晶, 等. 华北断陷盆地牛驼镇基岩高凸起型热田地质特征及其开发前景[J]. 中国地质科学院562综合大队集刊, 1989, 第7、8号: 21-36.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(2052) PDF downloads(136) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint