2022 Vol. 41, No. 2-3
Article Contents

LI Changbo, JIANG Ren, ZENG Jianwei, LIU Kai, ZHAO Ling, YU Junjie, PENG Bo, LAO Jinxiu, ZHOU Xiaohua. Construction of bedrock geological model in shallow overburden area: Application of a joint inversion of gravity anomaly and borehole data in the Tanlu Fault Zone, Sihong area[J]. Geological Bulletin of China, 2022, 41(2-3): 425-435. doi: 10.12097/j.issn.1671-2552.2022.2-3.020
Citation: LI Changbo, JIANG Ren, ZENG Jianwei, LIU Kai, ZHAO Ling, YU Junjie, PENG Bo, LAO Jinxiu, ZHOU Xiaohua. Construction of bedrock geological model in shallow overburden area: Application of a joint inversion of gravity anomaly and borehole data in the Tanlu Fault Zone, Sihong area[J]. Geological Bulletin of China, 2022, 41(2-3): 425-435. doi: 10.12097/j.issn.1671-2552.2022.2-3.020

Construction of bedrock geological model in shallow overburden area: Application of a joint inversion of gravity anomaly and borehole data in the Tanlu Fault Zone, Sihong area

  • The establishment of the bedrock geological model with gravity anomaly data in the covered area usually requires a lot of geological and rock-physical data.The results are often disturbed by geological prior information and human factors.A joint inversion method of gravity anomaly and borehole data for constructing the geological bedrock model in shallow overburden area was introduced to explore the feasibility of rapidly and efficiently constructing the geological model of bedrock surface undulation, fault distribution and density distribution in the case of less human intervention.In the practical application of the Tanlu Fault Zone, Sihong area, the wavelet multi-scale decomposition method was used to extract the gravity anomaly field of bedrock surface; furthermore, the geological model of bedrock in this region was constructed by means of wavelet fault analysis, linear regression inversion and apparent density mapping.The results show that this method can construct the geological model of overburden area quickly and efficiently without requiring a lot of geological prior information.This model can truthfully reflect the structural and physical characteristics of the bedrock surface, and refine the regional tectonic characteristics of the Tanlu Fault, which is meaningful for the better understanding of the regional tectonic evolution and geophysical data inversion of buried bedrock.

  • 加载中
  • [1] 刘保金, 酆少英, 姬计法, 等. 郯庐断裂带中南段的岩石圈精细结构[J]. 地球物理学报, 2015, 58(5): 1610-1621.

    Google Scholar

    [2] 张鹏, 王良书, 钟锴, 等. 郯庐断裂带的分段性研究[J]. 地质论评, 2007, 53(5): 721-722.

    Google Scholar

    [3] 徐嘉炜. 郯城-庐江平移断裂系统[J]. 构造地质论丛, 1984, 3: 19-22.

    Google Scholar

    [4] 王小凤, 李中坚, 陈柏林, 等. 郯庐断裂带[M]. 北京: 地质出版社, 2000.

    Google Scholar

    [5] 朱光, 王道轩, 刘国生, 等. 郯庐断裂带的演化及其对西太平洋板块运动的响应[J]. 地质科学, 2004, 40(1): 36-49. doi: 10.3321/j.issn:0563-5020.2004.01.005

    CrossRef Google Scholar

    [6] 张鹏, 李丽梅, 张景发, 等. 郯庐断裂带江苏段第四纪活动特征及其动力学背景探讨[J]. 防灾减灾工程学报, 2011, 31(4): 389-396.

    Google Scholar

    [7] 刘备, 朱光, 胡红雷, 等. 郯庐断裂带江苏段新构造活动规律分析[J]. 地质学报, 2015, 89(8): 1352-1366. doi: 10.3969/j.issn.0001-5717.2015.08.002

    CrossRef Google Scholar

    [8] 朱光, 刘国生, 牛漫兰, 等. 郯庐断裂带的平移运动与成因[J]. 地质通报, 2003, 22(3): 200-207. doi: 10.3969/j.issn.1671-2552.2003.03.009

    CrossRef Google Scholar

    [9] 朱光, 牛漫兰, 刘国生, 等. 郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件[J]. 地质学报, 2002, 76(3): 325-334. doi: 10.3321/j.issn:0001-5717.2002.03.005

    CrossRef Google Scholar

    [10] 朱光, 王道轩, 刘国生, 等. 郯庐断裂带的伸展活动及其动力学背景[J]. 地质科学, 2001, 36(3): 269-278. doi: 10.3321/j.issn:0563-5020.2001.03.002

    CrossRef Google Scholar

    [11] 朱光, 张力, 谢成龙, 等. 郯庐断裂带构造演化的同位素年代学制约[J]. 地质科学, 2009, 44(4): 1327-1342. doi: 10.3321/j.issn:0563-5020.2009.04.019

    CrossRef Google Scholar

    [12] 刘国生, 朱光, 牛漫兰, 等. 合肥盆地对郯庐断裂带同造山走滑活动的沉积响应[J]. 合肥工业大学学报(自然科学版), 2005, 28(10): 1233-1237. doi: 10.3969/j.issn.1003-5060.2005.10.001

    CrossRef Google Scholar

    [13] 刘国生, 朱光, 宋传中, 等. 郯庐断裂带新近纪以来的挤压构造与合肥盆地的反转[J]. 安徽地质, 2002, 12(2): 81-85. doi: 10.3969/j.issn.1005-6157.2002.02.001

    CrossRef Google Scholar

    [14] 侯明金, 朱光, Mercier J. 郯庐断裂带(安徽段)及邻区的动力学分析与区域构造演化[J]. 地质科学, 2007, 42(2): 362-381. doi: 10.3321/j.issn:0563-5020.2007.02.010

    CrossRef Google Scholar

    [15] Grimmer J C, Jonckheere R, Enkelmann E, et al. Cretaceous-Cenozoic history of the southern Tan-Lu Fault Zone: apatite fission-track and structural constraints from the Dabie Shan(eastern China)[J]. Tectonophysics, 2002, 359(3): 225-253.

    Google Scholar

    [16] 牛漫兰, 朱光, 刘国生. 郯庐断裂带中-南段中生代岩浆活动的构造背景与深部过程[J]. 地质科学, 2002, 37(4): 393-404. doi: 10.3321/j.issn:0563-5020.2002.04.002

    CrossRef Google Scholar

    [17] 孙卫东, 凌明星, 汪方跃, 等. 太平洋板块俯冲与中国东部中生代地质事件[J]. 矿物岩石地球化学通报, 2007, 27(s1): 218-225.

    Google Scholar

    [18] 王勇生, 朱光, 宋传中, 等. 大别山东端郯庐断裂带由走滑向伸展运动转换的40Ar-39Ar年代学记录[J]. 地质科学, 2006, 41(2): 242-255. doi: 10.3321/j.issn:0563-5020.2006.02.007

    CrossRef Google Scholar

    [19] 万天丰, 朱鸿, 赵磊, 等. 郯庐断裂带的形成与演化: 综述[J]. 现代地质, 1996, 10(2): 159-168.

    Google Scholar

    [20] 张岳桥, 董树文. 郯庐断裂带中生代构造演化史: 进展与新认识[J]. 地质通报, 2008, 27(9): 1371-1390. doi: 10.3969/j.issn.1671-2552.2008.09.002

    CrossRef Google Scholar

    [21] Li C B, Jiang R, Zeng J W, et al. Deep structures underneath the Sihong Segment of the Tan-Lu Fault Zone, Eastern China: Interpretations of gravity anomaly and seismic profiles[J]. Journal of Asian Earth Sciences, 2019, 176: 229-243. doi: 10.1016/j.jseaes.2019.02.014

    CrossRef Google Scholar

    [22] Sun B, Wang L, Dong P, et al. Integrated analysis on gravity and magnetic fields of the Hailar Basin, NE China: Implications for basement structure and deep tectonics[J]. Pure and Applied Geophysics, 2012, 169(11): 2011-2029. doi: 10.1007/s00024-012-0452-1

    CrossRef Google Scholar

    [23] 喻劲松, 荆磊, 王乔林, 等. 特殊地质地貌区填图物化探技术应用[J]. 地质力学学报, 2016, 22(4): 893-906. doi: 10.3969/j.issn.1006-6616.2016.04.008

    CrossRef Google Scholar

    [24] 刘彦, 严加永, 吴明安, 等. 基于重力异常分离方法寻找深部隐伏铁矿——以安徽泥河铁矿为例[J]. 地球物理学报, 2012, 55(12): 4181-4193. doi: 10.6038/j.issn.0001-5733.2012.12.030

    CrossRef Google Scholar

    [25] 邓震, 孟贵祥, 汤贺军, 等. 浅覆盖区1:5万基岩地质填图实践探索——以准噶尔北缘克什克涅绍喀尔(L45E009020)图幅为例[J]. 地球学报, 2019(5): 651-660.

    Google Scholar

    [26] Beltrão J F, Silva J B C, Costa J C. Robust polynomial fitting method for regional gravity estimation[J]. Geophysics, 1991, 56(1): 80-89. doi: 10.1190/1.1442960

    CrossRef Google Scholar

    [27] Mickus K L, Aiken C L V, Kennedy W D. Regional-residual gravity anomaly separation using the minimum-curvature technique[J]. Geophysics, 1991, 56(2): 279-283. doi: 10.1190/1.1443041

    CrossRef Google Scholar

    [28] Mallick K, Sharma K K. A finite element method for computation of the regional gravity anomaly[J]. Geophysics, 1999, 64(2): 461-469. doi: 10.1190/1.1444551

    CrossRef Google Scholar

    [29] 侯遵泽, 杨文采. 中国重力异常的小波变换与多尺度分析[J]. 地球物理学报, 1997, 40(1): 85-95. doi: 10.3321/j.issn:0001-5733.1997.01.010

    CrossRef Google Scholar

    [30] 刘天佑, 吴招才, 詹应林, 等. 磁异常小波多尺度分解及危机矿山的深部找矿: 以大冶铁矿为例[J]. 地球科学——中国地质大学学报, 2007, (1): 135-140.

    Google Scholar

    [31] Xu Y, Hao T, Li Z, et al. Regional gravity anomaly separation using wavelet transform and spectrum analysis[J]. Journal of Geophysics & Engineering, 2009, (3): 279-287.

    Google Scholar

    [32] 杨文采, 施志群, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4): 534-541. doi: 10.3321/j.issn:0001-5733.2001.04.012

    CrossRef Google Scholar

    [33] 牟力, 陈召曦. 重力资料多尺度分析最优小波基的选择[J]. 物探与化探, 2015, 39(5): 1013-1019.

    Google Scholar

    [34] Daubechies I. Orthonormal base of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 1998, XLI: 909-996.

    Google Scholar

    [35] Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 2002, 38(2): 617-643.

    Google Scholar

    [36] Spector A, Grant F S. Statistical models for interpreting aeromagnetic data[J]. Geophysics, 1970, 35(2): 293-302. doi: 10.1190/1.1440092

    CrossRef Google Scholar

    [37] Cook R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 42(1): 65-68.

    Google Scholar

    [38] Fan D, Li S, Meng S, et al. Predicting submarine topography by linear regression analysis[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 2018.

    Google Scholar

    [39] 汪冬华. 多元统计分析与SPSS应用[M]. 上海: 华东理工大学出版社, 2010.

    Google Scholar

    [40] 王谦身, 安玉林, 张赤军, 等. 重力学[M]. 北京: 地震出版社, 2003.

    Google Scholar

    [41] Jiang R, Cao K, Zeng J, et al. Late Cenozoic tectonic evolution of the southern segment of the Tan-Lu fault zone, Eastern China[J]. Journal of Asian Earth Sciences, 2019, 182: 103932. doi: 10.1016/j.jseaes.2019.103932

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(2094) PDF downloads(97) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint