2022 Vol. 41, No. 2-3
Article Contents

ZHANG Wei, LYU Yong, LIANG Donghui, WU Jianqiang, LIU Wei, ZHU Chaoqiang. Application of active and passive-sourced seismic surface wave exploration to the detecting of shallow overburden karst area[J]. Geological Bulletin of China, 2022, 41(2-3): 416-424. doi: 10.12097/j.issn.1671-2552.2022.2-3.019
Citation: ZHANG Wei, LYU Yong, LIANG Donghui, WU Jianqiang, LIU Wei, ZHU Chaoqiang. Application of active and passive-sourced seismic surface wave exploration to the detecting of shallow overburden karst area[J]. Geological Bulletin of China, 2022, 41(2-3): 416-424. doi: 10.12097/j.issn.1671-2552.2022.2-3.019

Application of active and passive-sourced seismic surface wave exploration to the detecting of shallow overburden karst area

  • The active and passive-sourced seismic surface wave exploration was carried out to study the three-dimensional geological structure of the typical shallow overburden area in Xing'an County, Guilin City.The dispersion curve extracted from active and passive surface wave data broadened the frequency band and improved the resolution of low-frequency signals.The experimental results show that the shear wave velocity of underground medium ranges from 161.5 m/s to 519.5 m/s in the survey area.According to the difference of velocity value, the underground medium in the experimental area is roughly divided into four layers.The velocity of the first layer ranges from 161.5 m/s to 281 m/s, the second from 281 m/s to 360.5 m/s, the third from 360.5 m/s to 400.2 m/s, and the fourth from 400.2 m/s to 519.5 m/s.Combined with the drilling data, the lithology of the above-mentioned four layers corresponds to clay, silty clay, sand to glutenite, and limestone, respectively; and some local structures such as soil caves and karst caves are locally developed.The research results show that the Rayleigh surface wave exploration method can more precisely describe the soil thickness, structure distribution and the undulating shape of the contact between the soil layer and the bedrock.

  • 加载中
  • [1] Aki K. Space and time spectra of stationary stochastic waves with special reference to microtremors[J]. Bull. Earthquake. Res. Inst. Tokyo, 1957, 35: 415-456.

    Google Scholar

    [2] 王振东. 微动的空间自相关法及其实用技术[J]. 物探与化探, 1986, 10(2): 123-133.

    Google Scholar

    [3] 何正勤, 丁志峰, 贾辉, 等. 用微动中的面波信息探测地壳浅部的速度结构[J]. 地球物理学报, 2007, 50(2): 492-498. doi: 10.3321/j.issn:0001-5733.2007.02.021

    CrossRef Google Scholar

    [4] 孙勇军, 徐佩芳, 凌盨群, 等. 微动勘查方法及其研究进展[J]. 地球物理学进展, 2009, 24(1): 326-334.

    Google Scholar

    [5] 罗松, 罗银河. SPAC系数计算方法研究[C]//中国地球科学联合会学术年会——专题14: 地下介质结构及其变化的地震面波背景噪声及尾波研究论文集. 北京: 中国地球物理学会, 2014: 755.

    Google Scholar

    [6] 冯少孔. 微动勘探技术及其在土木工程中的应用[J]. 岩石力学与工程学报, 2003, 22(6): 1029-1036. doi: 10.3321/j.issn:1000-6915.2003.06.025

    CrossRef Google Scholar

    [7] 徐佩芬, 李传金, 凌盨群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009, 52(7): 1923-1930. doi: 10.3969/j.issn.0001-5733.2009.07.028

    CrossRef Google Scholar

    [8] 丁立锋, 徐佩芳, 凌苏群, 等. 微动勘探方法探测林南仓煤矿岩浆岩侵入体[J]. 煤炭科学技术, 2010, 38(7): 100-103.

    Google Scholar

    [9] 徐佩芳, 侍文, 凌苏群, 等. 二维微动剖面探测"孤石": 以深圳地铁7号线为例[J]. 地球物理学报, 2012, 55(6): 2120-2128.

    Google Scholar

    [10] 徐佩芳, 李世豪, 杜建国, 等. 微动探测: 地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013, 29(5): 1841-1845.

    Google Scholar

    [11] 徐佩芬, 李世豪, 凌甦群, 等. 利用SPAC法估算地壳S波速度结构[J]. 地球物理学报, 2013, 56(11): 3846-3854. doi: 10.6038/cjg20131126

    CrossRef Google Scholar

    [12] 廖武林, 林亚洲, 李井冈, 等. 微动探测方法在武汉后湖勘察中的应用[J]. 地震工程与工程振动, 2014, 34(S1): 173-177.

    Google Scholar

    [13] 张伟, 甘伏平, 梁东辉, 等. 利用微动法快速探测岩溶塌陷区覆盖层厚度[J]. 人民长江, 2016, 47(24): 51-54.

    Google Scholar

    [14] 陈逢. 被动源面波勘探方法及其在城市地区的应用[D]. 中国地质大学(武汉)博士学位论文, 2018.

    Google Scholar

    [15] 姜文龙, 涂善波, 何效周, 等. 基于车辆振动噪声的城市面波观测方法研究及其应用[J]. 地球物理学进展, 2020, 35(4): 1557-1564.

    Google Scholar

    [16] 李远林. 被动源面波法在渭河盆地地层结构分层中的应用研究[D]. 长安大学硕士学位论文, 2020.

    Google Scholar

    [17] 刘国峰, 刘语, 孟小红, 等. 被动源面波和体波成像在内蒙古浅覆盖层区勘探应用[J]. 地球物理学报, 2021, 64(3): 937-948.

    Google Scholar

    [18] Jones R. Surface wave technique for measuring the elastic properties and thickness of roads: theoretical development[J]. British J. Appl. Phys., 1962, 13(1): 21-29. doi: 10.1088/0508-3443/13/1/306

    CrossRef Google Scholar

    [19] 杨成林. 瑞雷波法勘探原理及其应用[J]. 物探与化探, 1989, 13(6): 465-468.

    Google Scholar

    [20] 刘云祯, 王振东. 瞬态面波法的数据采集处理系统及其应用研究[J]. 物探与化探, 1996, 20(1): 28-34.

    Google Scholar

    [21] 张碧星, 鲁来玉, 鲍光淑. 瑞利波勘探中"之"字形频散曲线研究[J]. 地球物理学报, 2002, 45(2): 263-274. doi: 10.3321/j.issn:0001-5733.2002.02.013

    CrossRef Google Scholar

    [22] 刘强. 基于瑞雷波理论的公路无损检测方法研究[D]. 长安大学博士学位论文, 2009.

    Google Scholar

    [23] 潘冬明. 瑞雷面波频散分析与应用[D]. 中国矿业大学博士学位论文, 2009.

    Google Scholar

    [24] 刘雪峰, 凡友华. Rayleigh波勘探中"之"字形频散曲线"起跳点"频率研究[J]. 地球物理学报, 2011, 54(8): 2124-2135. doi: 10.3969/j.issn.0001-5733.2011.08.020

    CrossRef Google Scholar

    [25] 杨威. 瑞雷波在岩溶勘查中的应用研究[D]. 中南大学硕士学位论文, 2012.

    Google Scholar

    [26] 郑柱坚. 多道瞬态面波法在强夯地基处理工程的应用[J]. 云南大学学报(自然科学版), 2012, 34(S2): 291-295.

    Google Scholar

    [27] 袁伟, 周洪生, 刘成东, 等. 短时傅立叶变换和广义S变换用于提取面波频散曲线效果对比研究[J]. 物探化探计算技术, 2013, 35(1): 54-59. doi: 10.3969/j.issn.1001-1749.2013.01.09

    CrossRef Google Scholar

    [28] Park C B, Miller R D, Ryden N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental & Enginerring Geophysics, 2006, 10(3): 323-334.

    Google Scholar

    [29] 张维, 何正勤, 胡刚, 等. 用人工源和天然源面波联合探测浅层速度结构[J]. 震灾防御技术, 2012, 7(1): 26-36. doi: 10.3969/j.issn.1673-5722.2012.01.003

    CrossRef Google Scholar

    [30] 张维, 何正勤, 胡刚, 等. 用面波联合勘探技术探测浅部速度结构[J]. 地球物理学进展, 2013, 28(4): 2199-2206.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(1690) PDF downloads(99) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint