Citation: | YAO Yuan, CHEN Jie, LI Tao, QIN Jintang, DI Ning, ZHANG Weiheng. Newly discovered backthrust fault and related active fold scarp in the first piedmont anticline belt of the foreland thrust belt of the North Tianshan[J]. Geological Bulletin of China, 2022, 41(11): 1942-1949. doi: 10.12097/j.issn.1671-2552.2022.11.004 |
The tectonic wedge is an important seismogenic structure in the active compression area.The foreland thrust belts of the North Tianshan developed a complex extruded tectonic wedge and formed 3~4 groups of fold belts on the surface.It was generally believed that the first group of piedmont anticline belt in the southern part had ceased to be active since the Quaternary.In the field investigation, we found that there were two nearly parallel Late Quaternary active back thrusts (Kasha backthrust fault, KBT) arranged southward in the first piedmont anticline belt, the monocline area on the north wing of South Anjihai anticline.It had faulted the Late Quaternary landform on both sides of the Anjihai river and formed a series of southward thrust fault scarps.The gray-green mudstones of the Anjihaihe Formation (E2-3a) thrust southward along the KBT bedding onto the brick-red sandstones of the Shawan Formation (E3-N1s), it causing repeated exposure of the strata.On the west of the Anjihai river, the KBT plane on the south side is shovel-shaped along the bedding to form a fault bend.The continuous activity of the fault caused the simultaneous bending of the upper terrace and the base surface, forming a slanting fault-bending fold scarp.The terraces on the south side of the fold scarp are relatively thin, and they have obvious thickening to the north.They have the characteristics of growing strata, indicating that KBT has continuous activities during the terrace accumulation process.The discovery of the Kasha backthrust fault scarp and active fold scarp indicate that the South Anjihai anticline has been active since the Late Quaternary.These backthrust faults and related fold structures provide a window for us to study the activity of tectonic wedges in the southern margin of Junggar, and provide a reliable and convenient way to further define the deformation mechanism, rate and growth history of the active tectonic wedge.
[1] | Stockmeyer J M, Shaw J H, Guan S. Seismic Hazards of Multisegment Thrust-Fault Ruptures: Insights from the 1906 Mw 7.4-8.2 Manas, China, Earthquake[J]. Seismological Research Letters, 2014, 85(4): 801-808. doi: 10.1785/0220140026 |
[2] | Guzofski A, Shaw J H, Lin G Q, et al. Seismically active wedge structure beneath the Coalinga anticline, San Joaquin basin, California[J]. Journal of Geophysical Research Atmospheres, 2007, 112(B3): B03S05. |
[3] | Li T, Chen J, Fang L H, et al. The 2015 Mw6.4 Pishan earthquake: Seismic hazards of an active blind wedge thrust system at the Western Kunlun range front, Northwest Tibetan Plateau[J]. Seismological Research Letters, 2016, 87(3): 601-608. doi: 10.1785/0220150205 |
[4] | Sun J, Shen Z K, Li T, et al. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China Earthquake from Sentinel-1A radar interferometry[J]. Tectonophysics, 2016, 683: 77-85. doi: 10.1016/j.tecto.2016.05.051 |
[5] | VonHagke C, Malz A. Triangle zones-Geometry, kinematics, mechanics, and the need for appreciation of uncertainties[J]. Earth-Science Reviews, 2018, 177: 24-42. doi: 10.1016/j.earscirev.2017.11.003 |
[6] | Medwedeff D A. Geometry and kinematics of an active, laterally propagating wedge-thrust, Wheeler Ridge, California[C]//Mitra S, Fisher G W. Structural Geology of Fold and Thrust Belts. Johns Hopkins University Press, 1992. |
[7] | Medwedeff D A. Structural analysis and tectonic significance of Late-Tertiary and Quaternary, Compressive-Growth Folding[D]. San Joaquin Valley, California: Ph. D. thesis, Princeton University, 1988: 1-184. |
[8] | Shaw J, Connors H C, Suppe J. Seismic Interpretation of Contractional Fault-Related Folds[J]. An AAPG Seismic Atlas, Studies in Geology, 2005: 53. |
[9] | Taborda A, Spratt D. Structural style in the Peel region[C]//Butler R, McCaffrey B, Torvela T. Mobil057-79-44: Peel Plateau; Northwest Territories. Virtual Seismic Atlas. http://www.seismicatlas.org/entity?id=5cba926c-3cbf-4de8-8861-18f3335aaede.2008. |
[10] | Ortner H, Aichholzer S, Zerlauth M, et al. Geometry, amount, and sequence of thrusting in the subalpine Molasse of western Austria and southern Germany, European Alps[J]. Tectonics, 2015, 34: 1-30. doi: 10.1002/2014TC003550 |
[11] | Schuller V, Frisch W, Herzog U. Critical taperbehaviour and out-of-sequence thrusting on orogenic wedges-an example of the eastern Alpine Molasse Basin[J]. Terra Nova, 2015, 27: 231-237. doi: 10.1111/ter.12152 |
[12] | 管树巍, 张朝军, 何登发, 等. 前陆冲断带复杂构造解析与建模——以准噶尔盆地南缘第一排背斜带为例[J]. 地质学报, 2006, 80(8): 1131-1140. doi: 10.3321/j.issn:0001-5717.2006.08.005 |
[13] | 管树巍, 李本亮, 何登发, 等. 复杂构造解析中的几何学方法与应用[J]. 地球科学, 2007, 42(4): 722-739. |
[14] | 管树巍, 李本亮, 何登发, 等. 构造模形体的识别与勘探——以准噶尔盆地南缘为例[J]. 地学前缘, 2009, 16(3): 129-137. doi: 10.3321/j.issn:1005-2321.2009.03.009 |
[15] | 管树巍, 陈竹新, 方世虎. 准噶尔盆地南缘油气勘探的3个潜在领域——来自构造模型的论证[J]. 石油勘探与开发, 2012, 39(1): 37-44. |
[16] | 管树巍, 何登发, 雷勇良, 等. 中国中西部前陆冲断带运动学分类、模型与勘探领域[J]. 石油勘探与开发, 2013, 40(1): 66-78. |
[17] | 李本亮, 管树巍, 陈竹新, 等. 断层相关褶皱理论与应用——以准噶尔盆地南缘地质构造为例[M]. 北京: 石油工业出版社, 2010. |
[18] | 李本亮, 管树巍, 陈竹新, 等. 楔形构造在山前冲断构造位移量消减中的作用——以准噶尔盆地南缘为例[J]. 地质学报, 2012, 86(6): 890-897. doi: 10.3969/j.issn.0001-5717.2012.06.004 |
[19] | Qiu J H, Rao G, Wang X, et al. Effects of fault slip distribution on the geometry and kinematics of the southern Junggar fold-and-thrust belt, northern Tian Shan[J]. Tectonophysics, 2019, 772: 1-14 |
[20] | Guan S W, Stockmeyer J M, Shaw J H, et al. Structural inversion, imbricate wedging, and out-of-sequence thrusting in the southern Junggar fold-and-thrust belt, northern Tian Shan, China[J]. The American Association of Petroleum Geologists, 2016, 100(9): 1443-1468. doi: 10.1306/04041615023 |
[21] | Lu H H, Cheng L, Wang Z, et al. Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland[J]. Quaternary Sciences Review, 2018, 179: 167-181. doi: 10.1016/j.quascirev.2017.10.017 |
[22] | Li Y, Wei D, Tian H, et al. 3D structural model of an out-of-sequence earthquake in China: Implication for the reactivation of positive inversion structures along the northern Tianshan fold-and-thrust belt[J]. Tectonics, 2018, 37(12): 4359-4376. doi: 10.1029/2018TC005075 |
[23] | 邓起东, 冯先岳, 张培震, 等. 天山活动构造[M]. 北京: 地震出版社, 2000. |
[24] | 卢华复, 王胜利, 贾东, 等. 天山中段南麓的第四纪褶皱作用[J]. 科学通报, 2002, 47(21): 1675-1679. doi: 10.3321/j.issn:0023-074X.2002.21.015 |
[25] | Thompson S C, Weldon R J, Rubin C M, et al. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia[J]. Journal of Geophysical Research, 2002, 107(B9): 2203. |
[26] | 陈杰, Scharer K M, Burbank D W, 等. 西南天山明尧勒背斜的第四纪滑脱褶皱作用[J]. 地震地质, 2005, 27(4): 513-529. doi: 10.3969/j.issn.0253-4967.2005.04.001 |
[27] | Scharer K M, Burbank D W, Chen J, et al. Kinematic models of fluvial terraces over active detachment folds: constraints on the growth mechanism of the Kashi-Atushi fold system, Chinese Tian Shan[J]. Geol. Soc. Am. Bull., 2006, 1(18): 1006-1021. |
[28] | Chen Y G, Lai K Y, Lee Y H, et al. Coseismic fold scarps and their kinematic behavior in the 1999 Chi-Chi earthquake, Taiwan[J]. Journal of Geophysical Research, 2007, 112: B03S02. |
[29] | Hubert-Ferrari A, Suppe J, Gonzalez-Mieres R, et al. Mechanisms of active folding of the landscape (southern Tianshan, China)[J]. Journal of Geophysical Research, 2007, 112: B03S09. |
[30] | 李涛, 陈杰, 肖伟鹏. 滑脱褶皱陡坎的变形特征和运动学模型: 以帕米尔-南天山前陆地区明尧勒背斜为例[J]. 地震地质, 2014, 36(3): 677-691. doi: 10.3969/j.issn.0253-4967.2014.03.011 |
[31] | 张玲, 杨晓平, 黄伟亮, 等. 褶皱陡坎中相关断层在缩短量计算中的作用——以东秋里塔格背斜为例[J]. 地震地质, 2015, 37(3): 697-708. doi: 10.3969/j.issn.0253-4967.2015.03.003 |
[32] | 杨纪林. 新疆北天山江南庙断层陡坎及其形成机制[J]. 内陆地震, 2000, 14(2): 128-131. |
[33] | Hu G M, Chen J, Zhang W H, et al. Out-of-sequence backthrusting since the Middle Pleistocene revealed by the Jiangnanmiao thrust fault along the northern Tian Shan, China[J]. Tectonics, https://doi.org/10.1029/2020TC006662.2021. doi: 10.1029/2020TC006662.2021 |
[34] | 吴传勇, 沈军, 李军, 等. 乌鲁木齐西山断层系的新构造变形特征与机制[J]. 地震学报, 2009, 31(1): 42-49. |
[35] | 吴传勇, 沈军, 史杰, 等. 乌鲁木齐王家沟断层组地表变形特征及强变形带宽度[J]. 地震地质, 2011, 33(1): 56-66. |
[36] | 陈立春. 北天山乌鲁木齐转换区构造系晚第四纪活动性[D]. 中国地震局地质研究所博士学位论文, 2011. |
Schematic 3D diagram of a tectonic wedge
Geological cross section of the first row (Changji-Qishan piedmont fold belt) in the North Tianshan Foreland-and-Thrust Belt (FTB)
Geological map of South Anjihai anticline
The backthrust scarp formed at the surface by Kasha backthrust fault
The distribution of terraces, backthrust scarps and fold scarps in the northern limb of South Anjihai anticline
The geological profile of backthrust fault scarp and fold scarp formed in the northern limb of South Anjihai anticline.