2022 Vol. 41, No. 11
Article Contents

YAO Yuan, CHEN Jie, LI Tao, QIN Jintang, DI Ning, ZHANG Weiheng. Newly discovered backthrust fault and related active fold scarp in the first piedmont anticline belt of the foreland thrust belt of the North Tianshan[J]. Geological Bulletin of China, 2022, 41(11): 1942-1949. doi: 10.12097/j.issn.1671-2552.2022.11.004
Citation: YAO Yuan, CHEN Jie, LI Tao, QIN Jintang, DI Ning, ZHANG Weiheng. Newly discovered backthrust fault and related active fold scarp in the first piedmont anticline belt of the foreland thrust belt of the North Tianshan[J]. Geological Bulletin of China, 2022, 41(11): 1942-1949. doi: 10.12097/j.issn.1671-2552.2022.11.004

Newly discovered backthrust fault and related active fold scarp in the first piedmont anticline belt of the foreland thrust belt of the North Tianshan

More Information
  • The tectonic wedge is an important seismogenic structure in the active compression area.The foreland thrust belts of the North Tianshan developed a complex extruded tectonic wedge and formed 3~4 groups of fold belts on the surface.It was generally believed that the first group of piedmont anticline belt in the southern part had ceased to be active since the Quaternary.In the field investigation, we found that there were two nearly parallel Late Quaternary active back thrusts (Kasha backthrust fault, KBT) arranged southward in the first piedmont anticline belt, the monocline area on the north wing of South Anjihai anticline.It had faulted the Late Quaternary landform on both sides of the Anjihai river and formed a series of southward thrust fault scarps.The gray-green mudstones of the Anjihaihe Formation (E2-3a) thrust southward along the KBT bedding onto the brick-red sandstones of the Shawan Formation (E3-N1s), it causing repeated exposure of the strata.On the west of the Anjihai river, the KBT plane on the south side is shovel-shaped along the bedding to form a fault bend.The continuous activity of the fault caused the simultaneous bending of the upper terrace and the base surface, forming a slanting fault-bending fold scarp.The terraces on the south side of the fold scarp are relatively thin, and they have obvious thickening to the north.They have the characteristics of growing strata, indicating that KBT has continuous activities during the terrace accumulation process.The discovery of the Kasha backthrust fault scarp and active fold scarp indicate that the South Anjihai anticline has been active since the Late Quaternary.These backthrust faults and related fold structures provide a window for us to study the activity of tectonic wedges in the southern margin of Junggar, and provide a reliable and convenient way to further define the deformation mechanism, rate and growth history of the active tectonic wedge.

  • 加载中
  • [1] Stockmeyer J M, Shaw J H, Guan S. Seismic Hazards of Multisegment Thrust-Fault Ruptures: Insights from the 1906 Mw 7.4-8.2 Manas, China, Earthquake[J]. Seismological Research Letters, 2014, 85(4): 801-808. doi: 10.1785/0220140026

    CrossRef Google Scholar

    [2] Guzofski A, Shaw J H, Lin G Q, et al. Seismically active wedge structure beneath the Coalinga anticline, San Joaquin basin, California[J]. Journal of Geophysical Research Atmospheres, 2007, 112(B3): B03S05.

    Google Scholar

    [3] Li T, Chen J, Fang L H, et al. The 2015 Mw6.4 Pishan earthquake: Seismic hazards of an active blind wedge thrust system at the Western Kunlun range front, Northwest Tibetan Plateau[J]. Seismological Research Letters, 2016, 87(3): 601-608. doi: 10.1785/0220150205

    CrossRef Google Scholar

    [4] Sun J, Shen Z K, Li T, et al. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China Earthquake from Sentinel-1A radar interferometry[J]. Tectonophysics, 2016, 683: 77-85. doi: 10.1016/j.tecto.2016.05.051

    CrossRef Google Scholar

    [5] VonHagke C, Malz A. Triangle zones-Geometry, kinematics, mechanics, and the need for appreciation of uncertainties[J]. Earth-Science Reviews, 2018, 177: 24-42. doi: 10.1016/j.earscirev.2017.11.003

    CrossRef Google Scholar

    [6] Medwedeff D A. Geometry and kinematics of an active, laterally propagating wedge-thrust, Wheeler Ridge, California[C]//Mitra S, Fisher G W. Structural Geology of Fold and Thrust Belts. Johns Hopkins University Press, 1992.

    Google Scholar

    [7] Medwedeff D A. Structural analysis and tectonic significance of Late-Tertiary and Quaternary, Compressive-Growth Folding[D]. San Joaquin Valley, California: Ph. D. thesis, Princeton University, 1988: 1-184.

    Google Scholar

    [8] Shaw J, Connors H C, Suppe J. Seismic Interpretation of Contractional Fault-Related Folds[J]. An AAPG Seismic Atlas, Studies in Geology, 2005: 53.

    Google Scholar

    [9] Taborda A, Spratt D. Structural style in the Peel region[C]//Butler R, McCaffrey B, Torvela T. Mobil057-79-44: Peel Plateau; Northwest Territories. Virtual Seismic Atlas. http://www.seismicatlas.org/entity?id=5cba926c-3cbf-4de8-8861-18f3335aaede.2008.

    Google Scholar

    [10] Ortner H, Aichholzer S, Zerlauth M, et al. Geometry, amount, and sequence of thrusting in the subalpine Molasse of western Austria and southern Germany, European Alps[J]. Tectonics, 2015, 34: 1-30. doi: 10.1002/2014TC003550

    CrossRef Google Scholar

    [11] Schuller V, Frisch W, Herzog U. Critical taperbehaviour and out-of-sequence thrusting on orogenic wedges-an example of the eastern Alpine Molasse Basin[J]. Terra Nova, 2015, 27: 231-237. doi: 10.1111/ter.12152

    CrossRef Google Scholar

    [12] 管树巍, 张朝军, 何登发, 等. 前陆冲断带复杂构造解析与建模——以准噶尔盆地南缘第一排背斜带为例[J]. 地质学报, 2006, 80(8): 1131-1140. doi: 10.3321/j.issn:0001-5717.2006.08.005

    CrossRef Google Scholar

    [13] 管树巍, 李本亮, 何登发, 等. 复杂构造解析中的几何学方法与应用[J]. 地球科学, 2007, 42(4): 722-739.

    Google Scholar

    [14] 管树巍, 李本亮, 何登发, 等. 构造模形体的识别与勘探——以准噶尔盆地南缘为例[J]. 地学前缘, 2009, 16(3): 129-137. doi: 10.3321/j.issn:1005-2321.2009.03.009

    CrossRef Google Scholar

    [15] 管树巍, 陈竹新, 方世虎. 准噶尔盆地南缘油气勘探的3个潜在领域——来自构造模型的论证[J]. 石油勘探与开发, 2012, 39(1): 37-44.

    Google Scholar

    [16] 管树巍, 何登发, 雷勇良, 等. 中国中西部前陆冲断带运动学分类、模型与勘探领域[J]. 石油勘探与开发, 2013, 40(1): 66-78.

    Google Scholar

    [17] 李本亮, 管树巍, 陈竹新, 等. 断层相关褶皱理论与应用——以准噶尔盆地南缘地质构造为例[M]. 北京: 石油工业出版社, 2010.

    Google Scholar

    [18] 李本亮, 管树巍, 陈竹新, 等. 楔形构造在山前冲断构造位移量消减中的作用——以准噶尔盆地南缘为例[J]. 地质学报, 2012, 86(6): 890-897. doi: 10.3969/j.issn.0001-5717.2012.06.004

    CrossRef Google Scholar

    [19] Qiu J H, Rao G, Wang X, et al. Effects of fault slip distribution on the geometry and kinematics of the southern Junggar fold-and-thrust belt, northern Tian Shan[J]. Tectonophysics, 2019, 772: 1-14

    Google Scholar

    [20] Guan S W, Stockmeyer J M, Shaw J H, et al. Structural inversion, imbricate wedging, and out-of-sequence thrusting in the southern Junggar fold-and-thrust belt, northern Tian Shan, China[J]. The American Association of Petroleum Geologists, 2016, 100(9): 1443-1468. doi: 10.1306/04041615023

    CrossRef Google Scholar

    [21] Lu H H, Cheng L, Wang Z, et al. Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland[J]. Quaternary Sciences Review, 2018, 179: 167-181. doi: 10.1016/j.quascirev.2017.10.017

    CrossRef Google Scholar

    [22] Li Y, Wei D, Tian H, et al. 3D structural model of an out-of-sequence earthquake in China: Implication for the reactivation of positive inversion structures along the northern Tianshan fold-and-thrust belt[J]. Tectonics, 2018, 37(12): 4359-4376. doi: 10.1029/2018TC005075

    CrossRef Google Scholar

    [23] 邓起东, 冯先岳, 张培震, 等. 天山活动构造[M]. 北京: 地震出版社, 2000.

    Google Scholar

    [24] 卢华复, 王胜利, 贾东, 等. 天山中段南麓的第四纪褶皱作用[J]. 科学通报, 2002, 47(21): 1675-1679. doi: 10.3321/j.issn:0023-074X.2002.21.015

    CrossRef Google Scholar

    [25] Thompson S C, Weldon R J, Rubin C M, et al. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia[J]. Journal of Geophysical Research, 2002, 107(B9): 2203.

    Google Scholar

    [26] 陈杰, Scharer K M, Burbank D W, 等. 西南天山明尧勒背斜的第四纪滑脱褶皱作用[J]. 地震地质, 2005, 27(4): 513-529. doi: 10.3969/j.issn.0253-4967.2005.04.001

    CrossRef Google Scholar

    [27] Scharer K M, Burbank D W, Chen J, et al. Kinematic models of fluvial terraces over active detachment folds: constraints on the growth mechanism of the Kashi-Atushi fold system, Chinese Tian Shan[J]. Geol. Soc. Am. Bull., 2006, 1(18): 1006-1021.

    Google Scholar

    [28] Chen Y G, Lai K Y, Lee Y H, et al. Coseismic fold scarps and their kinematic behavior in the 1999 Chi-Chi earthquake, Taiwan[J]. Journal of Geophysical Research, 2007, 112: B03S02.

    Google Scholar

    [29] Hubert-Ferrari A, Suppe J, Gonzalez-Mieres R, et al. Mechanisms of active folding of the landscape (southern Tianshan, China)[J]. Journal of Geophysical Research, 2007, 112: B03S09.

    Google Scholar

    [30] 李涛, 陈杰, 肖伟鹏. 滑脱褶皱陡坎的变形特征和运动学模型: 以帕米尔-南天山前陆地区明尧勒背斜为例[J]. 地震地质, 2014, 36(3): 677-691. doi: 10.3969/j.issn.0253-4967.2014.03.011

    CrossRef Google Scholar

    [31] 张玲, 杨晓平, 黄伟亮, 等. 褶皱陡坎中相关断层在缩短量计算中的作用——以东秋里塔格背斜为例[J]. 地震地质, 2015, 37(3): 697-708. doi: 10.3969/j.issn.0253-4967.2015.03.003

    CrossRef Google Scholar

    [32] 杨纪林. 新疆北天山江南庙断层陡坎及其形成机制[J]. 内陆地震, 2000, 14(2): 128-131.

    Google Scholar

    [33] Hu G M, Chen J, Zhang W H, et al. Out-of-sequence backthrusting since the Middle Pleistocene revealed by the Jiangnanmiao thrust fault along the northern Tian Shan, China[J]. Tectonics, https://doi.org/10.1029/2020TC006662.2021. doi: 10.1029/2020TC006662.2021

    CrossRef Google Scholar

    [34] 吴传勇, 沈军, 李军, 等. 乌鲁木齐西山断层系的新构造变形特征与机制[J]. 地震学报, 2009, 31(1): 42-49.

    Google Scholar

    [35] 吴传勇, 沈军, 史杰, 等. 乌鲁木齐王家沟断层组地表变形特征及强变形带宽度[J]. 地震地质, 2011, 33(1): 56-66.

    Google Scholar

    [36] 陈立春. 北天山乌鲁木齐转换区构造系晚第四纪活动性[D]. 中国地震局地质研究所博士学位论文, 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(2169) PDF downloads(51) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint