Citation: | CHENG Xianyu, ZHANG Tianfu, CHENG Yinhang, LIU Xing, HU Peng, WU Zhiwei, WU Zhiyu. Element geochemical characteristics of the Middle—Late Jurassic microclastic rock in the Easthern Junggar Basin: implications for tracing sediment sources and paleoenvironment estoration[J]. Geological Bulletin of China, 2022, 41(11): 1950-1966. doi: 10.12097/j.issn.1671-2552.2022.11.005 |
The sand body at the bottom of the Middle Jurassic Toutunhe Formation from the Kamusite area in the eastern margin of the Junggar Basin is an important sandstone-type uranium ore bearing horizon. In this paper, thirty-three microclastic rock samples collected from the Middle-Late Jurassic Xishanyao, Toutunhe, Qigu and Kalazha Formations in the eastern margin of Junggar Basin were analyzed for REEs and trace elements by means of ICP-MS. The oxidation-reduction conditions of Xishanyao, Toutunhe, Qigu and Kalazha Formations and tectonic setting of their provenances and paleoclimate change are discussed to understand their implication for uranium mineralization. It is found that the relative B contents, Sr/Ba, B/Ga, U/Th, V/(V+Ni), V/Cr, Ni/Co ratios and other geochemical indices suggest that the the Xishanyao, Toutunhe, Qigu and Kalazha Formations were deposited in the fresh oxygenated water. The Fe2+/Fe3+ ratios indicate that the Xishanyao Formation characterized by the appearance of coal seam represent reduced environment, while the red bed in the upper Toutunhe Formation and Qigu Formation indicate a strong oxidation environment. From Xishanyao to Kalazar period, the Sr/Cu, FeO/MnO, Al2O3/MgO ratios indicate that the paleoclimate and paleoenvironment experienced variations from warm-humid to alternated dry-wet, semi-arid and arid.The top of the Xishanyao Formation and the bottom of the Toutunhe Formation are the key periods of dry-wet transformation. The CIA and ICV indexes show that the upper Toutunhe Formation, Qigu Formation and Kalazha Formation have relatively stable provenance. During the Xishanyao and early Toutunhe period, the tectonic activity around the Junggar Basin increased. The discrimination diagram of sedimentary tectonic environment shows that the provenances of the Xishanyao, Toutunhe, Qigu and Kalazar Formations in this study area were dominantly composed by felsic igneous rocks in the upper crust, with certain amount of continental tholeiite. The tectonic background was continental island arc, with part of the provenance hinted the tectonic background of continental margin. In summary, the paleoclimate and oxygenated paleowater transformation from Xishanyao period to Toutunhe period was crucial for large-scale sandstone-type uranium mineralization in this area.
[1] | 张朝军, 何登发, 吴晓智, 等. 准噶尔多旋回叠合盆地的形成于演化[J]. 石油地质, 2006, 1: 47-58. |
[2] | 高志勇, 韩国猛, 朱如凯, 等. 准噶尔盆地南缘古近纪—新近纪前陆盆地沉积格局与演变[J]. 古地理学报, 2009, 11(5): 491-502. |
[3] | 杨烨, 许强, 何中波. 准噶尔盆地顶山地区古近系乌伦古河组物源分析[J]. 矿床地质, 2014, 33(Supp): 645-646. doi: 10.16111/j.0258-7106.2014.s1.325 |
[4] | 焦养泉, 吴立群, 彭云彪, 等. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析[J]. 地学前缘, 2015, 22(1): 189-205. |
[5] | Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals[J]. Paleoceanography, 2004, 19: 1010-1029. |
[6] | Tribovillard N, Averbush O, Devlecschouwer X, et al. Deep-water anoxia over the Frasnian-Famennian boundary(La Serce, France): a tectonically-induced oceanic anoxic event[J]. Terra Nova, 2004, 16: 288-295. doi: 10.1111/j.1365-3121.2004.00562.x |
[7] | Werne J P, Lyons T W, Hollander D J, et al. Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constrains on organic sulfur formation[J]. Chem. Geol., 2003, 195: 159-179. doi: 10.1016/S0009-2541(02)00393-5 |
[8] | Lyons T W, Werne J P, Hollander D J, et al. Contrasting sulfur geochemistry and Fe/A1 and Mo/A1 ratios across the 1ast oxic-to-anoxic transition in the Cariaco Basin, Venezuela[J]. Chem. Geol., 2003, 195: 131-157. doi: 10.1016/S0009-2541(02)00392-3 |
[9] | Riboulleau A, Baudin F, Deeoninck J F, et al. Depositional conditions and organic matter preservation pathways in an epicontinental environment: the Upper Jurassic Kashpir Oil Shales(Volga Basin, Russia)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 197: 171-197. doi: 10.1016/S0031-0182(03)00460-7 |
[10] | Sageman B B, Murphy A E, Werne J P, et al. Atale of shales: the relative roles of production, decomposition, and d ilution in the accumulation of organic-rich strata, Middle Upper Devonian, Appalach ian Basin[J]. Chem. Geol., 2003, 195: 229-273. doi: 10.1016/S0009-2541(02)00397-2 |
[11] | Rimmer S M, Thompson J A, Goodnight S A, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215: 125-154. doi: 10.1016/S0031-0182(04)00466-3 |
[12] | Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chem. Geol., 2004, 206: 289-318. doi: 10.1016/j.chemgeo.2003.12.009 |
[13] | 张天福, 孙立新, 张云, 等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 2016, 90(12): 3454-3472. doi: 10.3969/j.issn.0001-5717.2016.12.013 |
[14] | 冯晓曦, 滕雪明, 何友宇, 等. 初步探讨鄂尔多斯盆地东胜铀矿田成矿作用研究若干问题[J]. 地质调查与研究, 2019, 42(2): 96-108. doi: 10.3969/j.issn.1672-4135.2019.02.003 |
[15] | 林晓慧, 詹兆文, 邹艳荣, 等. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J]. 地球化学, 2019, 48(1): 67-78. doi: 10.19700/j.0379-1726.2019.01.006 |
[16] | 李锦轶, 肖序常. 对新疆获地壳结构与构造演化几个问题的简要评述[J]. 地质科学, 1999, 34(4): 405-419. doi: 10.3321/j.issn:0563-5020.1999.04.001 |
[17] | 张天福, 张云, 苗培森, 等. 鄂尔多斯盆地西缘中晚侏罗世地层化学蚀变指数(CIA)研究及其意义[J]. 地质调查与研究, 2006, 41(4): 258-262. |
[18] | 何登发, 周路, 唐勇. 准噶尔盆地中侏罗统西山窑组与头屯河组间不整合面特征及其油气勘探意义[J]. 古地理学报, 2007, 9(4): 387-396. doi: 10.3969/j.issn.1671-1505.2007.04.005 |
[19] | 李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017 |
[20] | 梁云海, 李文铅, 李卫东. 新疆准噶尔造山带多旋回开合构造特征[J]. 地质通报, 2004, 23(3): 279-285. doi: 10.3969/j.issn.1671-2552.2004.03.016 |
[21] | Walker C T, Price N B. Departure curves for computing paleosalinity from boron in illites and shales[J]. AAPG, 1963, 92: 837-841. |
[22] | Couch E L. Calculation of Paleosalinites from boron and clay mineral data[J]. AAPG, 1971, 55(10): 1829-1837. |
[23] | 邓宏文, 钱凯. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社, 1993. |
[24] | Francois R. The study on the regulation of the concentrations of some trace metals(Rb, Sr, Zn, Cu, V, Cr, Ni, Mn, and Mo) in Saanich inlet sediments, British Columbia, Canada[J]. Marine Geology, 1988, 83: 285-308. doi: 10.1016/0025-3227(88)90063-1 |
[25] | Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174: 341-354. doi: 10.1016/S0025-3227(00)00159-6 |
[26] | Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chem. Geol., 2006, 232: 12-32. doi: 10.1016/j.chemgeo.2006.02.012 |
[27] | 熊国庆, 王剑, 胡仁发. 贵州梵净山地区震旦系微量元素特征及沉积环境[J]. 地球学报, 2008, 29(1): 51-60. doi: 10.3321/j.issn:1006-3021.2008.01.007 |
[28] | Hatch J R. Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the upper pennsylvanian(Missourian) stark shale member of the dennis limestone, Wabaunsee County, Kansas, U.S. A[J]. Chem. Geol., 1992, 99(1/3): 65-82. |
[29] | Schefler K, Buehmann D, Schwark L. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies——Response to climate evolution and sedimentary environment[J]. Palaeo, 2006, 240(6): 184-203. |
[30] | Jones B, Manning D A C. Comparion of geochemical indices used for the interpretation of palae oredox conditions in ancient mudstones[J]. Chem. Geol., 1994, 111(1/4): 111-129. |
[31] | Lermanm A. Lakes: Chemistry, Geology, Physics[M]. Berlin: Springer-Verlag, 1978. |
[32] | Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[33] | 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石, 2005, 25(1): 67-73. |
[34] | 朱筱敏, 张义娜, 杨俊生, 等. 准噶尔盆地侏罗系辫状河三角洲沉积特征[J]. 石油与天然气地质, 2008, 29(2): 244-251. |
[35] | Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985. |
[36] | Haskin M A, Frey F A. Dispersed and not-so-rare earths[J]. Science, 1966, 152: 299-314. |
[37] | Cullers R L, Basu A, Suttner L J. Geochemical signature of provenancein sand —size mineral in soil and stream near the tabacco root batholith, Montana, USA[J]. Chemi. Geol., 1988, 70: 335-348. |
[38] | Mclennan S M, Taylor S R. Sedimentary rocks and crustal evolution revisited: tectonnic setting and secular trends[J]. J. Geo1., 1991, 99: 1-21. |
[39] | Floyd P A, Leveridge B E. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: framework mode and geo-chemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542. |
[40] | Bhatia M R. Plate tectonics and geochemical composition of sandstone[J]. J. Geol., 1983, 91(6): 611-627. |
[41] | Shao L, Stattegger K, Garbe S C. Sandstone petrology and geochem istry of the Turpan Basin(NW China): implications for the tectonic evolution of a continental basin[J]. Journa1 of Sedimentary Research, 2001, 71(1): 37- 49. |
[42] | 方世虎, 郭召杰, 宋岩, 等. 准噶尔盆地南缘侏罗纪沉积相演化与盆地格局[J]. 古地理学报, 2005, 7(3): 347-356. |
[43] | 鲍志东, 刘凌, 张冬玲, 等. 准噶尔盆地侏罗系沉积体系纲要[J]. 沉积学报, 2005, 23(2): 194-202. |
[44] | 龚清. 准噶尔盆地南缘和东源地区侏罗系沉积特征及构造背景[D]. 中国地质大学硕士学位论文, 2015. |
[45] | 程先钰, 李以科, 董满华, 等. 阿拉善右旗特拜金矿赋矿地层时代厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1565-1577. |
[46] | 孟贵祥, 邓霞, 祁光, 等. 新疆东准噶尔成矿带浅覆盖区地质填图效果——以杜热一带浅覆盖区基岩地质填图为例[J]. 地质通报, 2022, 41(2/3): 374-387. |
[47] | 蔡洪明, 王蓉, 刘桂萍, 等. 东天山晚泥盆世二长花岗岩的发现及其对阿奇山-雅满苏带构造演化的制约[J]. 地质通报, 2022, 41: 1184-1190. |
[48] | 金若时, 滕雪明. 中国北方砂岩型铀矿大规模成矿作用[J]. 华北地质, 2022, 45(1): 43-57. |
[49] | 毕君辉, 葛文春, 周红英, 等. 黑龙江省东北部勤得利—街津口地区基性侵入岩的锆石U-Pb年龄及其地质意义[J]. 华北地质, 2021, 44(1): 1-3. |
Geological map(a) and tectonic division(b) of the study area
The column of ZKU05 drilling lithology in Kamuste area, eastern margin of the Junggar Basin
Sampling location and geochemical indicates of trace elements ratios of microclastic rocks from the Xishanyao、Toutunhe、Qigu and Kalazha Formations in the eastern margin of Junggar Basin
Variable trend map of ICV, CIA and δCe for the Xishanyao, Toutunhe, Qigu and Kalazha Formations in the eastern margin of Junggar Basin
Chondrite and NASC normalized REE patterns of the Xishanyao, Toutunhe, Qigu and Kalazha Formations in the eastern margin of Junggar Basin
Tectonic setting discrimination diagrams of the Xishanyao, Toutunhe, Qigu and Kalazha Formations in the eastern margin of Junggar Basin