2022 Vol. 41, No. 4
Article Contents

LI Guangjie, CHEN Yongqing, SHANG Zhi. Discovery of Early Palaeozoic peraluminous granites the Qingshuihe area of Yunnan Province and constraints on the influence of lithospheric mantle delamination in the Baoshan block[J]. Geological Bulletin of China, 2022, 41(4): 590-610. doi: 10.12097/j.issn.1671-2552.2022.04.006
Citation: LI Guangjie, CHEN Yongqing, SHANG Zhi. Discovery of Early Palaeozoic peraluminous granites the Qingshuihe area of Yunnan Province and constraints on the influence of lithospheric mantle delamination in the Baoshan block[J]. Geological Bulletin of China, 2022, 41(4): 590-610. doi: 10.12097/j.issn.1671-2552.2022.04.006

Discovery of Early Palaeozoic peraluminous granites the Qingshuihe area of Yunnan Province and constraints on the influence of lithospheric mantle delamination in the Baoshan block

More Information
  • The petrogenesis of the Early Palaeozoic peraluminous granites in the Baoshan block remains controversial.This study applied the comprehensive methods of zircon SHRIMP U-Pb dating, Sr-Nd-Pb isotopic and bulk-rock analyses to probe the genesis and magma source of the granites from the Qingshuihe area in the Baoshan block.The results show that the Qingshuihe granites are consist of two-mica granite and biotite granite.The ages of two-mica granite and biotite granite are 473~462 Ma and 479 Ma, respectively.These rocks belonging to the peraluminous S-type granite(A/CNK > 1.1)have high SiO2 (67.48%~74.03%)content.The values of(Na2O+K2O)-Ca2O range from 4.47% to 6.46%, exhibiting calc-alkaline characteristics.The two-mica granite and biotite granite have similar chondrite-normalized REE patterns and primitive mantle normalized trace element patterns, such as enriched in LILEs(e.g., Rb, K)and Pb, and depleted in HFSEs, with negative Eu anomalies(δEu=0.31~0.54).The geochemical signatures and Sr-Nd-Pb isotopes indicate that the Qingshuihe granites were derived from anatexis of ancient metasedimentary rocks with small amount of mantle components.The Qingshuihe granites are geochemically comparable to the Shuangmaidi granites and both of them were formed in a post-orogene setting where the thickened lithospheric mantle detached due to the amalgamation of exotic microcontinents onto the East Gondwana margin.

  • 加载中
  • [1] Deng J, Wang Q, Li G, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26(2): 419-437. doi: 10.1016/j.gr.2013.08.002

    CrossRef Google Scholar

    [2] Deng J, Wang Q, Li G, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299. doi: 10.1016/j.earscirev.2014.05.015

    CrossRef Google Scholar

    [3] 莫宣学. 三江中南段火山岩-蛇绿岩与成矿[M]. 北京: 地质出版社, 1998.

    Google Scholar

    [4] 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998.

    Google Scholar

    [5] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [6] 林仕良, 丛峰, 高永娟, 等. 滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS错石U-Pb年龄[J]. 地质通报, 2012, 31(2/3): 258-263.

    Google Scholar

    [7] Miller C, Thni M, Frank W, et al. The Early Palaeozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138(3): 237-251. doi: 10.1017/S0016756801005283

    CrossRef Google Scholar

    [8] 潘桂棠, 土立全, 张万平, 等. 青藏高原及邻区大地构造图及说明书(1: 150万)[M]. 北京: 地质出版社, 2013.

    Google Scholar

    [9] 董美玲, 董国臣, 莫宣学, 等. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J]. 岩石学报, 2012, 28(5): 1453-1464.

    Google Scholar

    [10] 蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2123-2140.

    Google Scholar

    [11] Li G J, Wang Q F, Huang Y H, et al. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block: Implications for the early Paleozoic tectonic evolution along East Gondwana[J]. Lithos, 2016, 245: 76-92. doi: 10.1016/j.lithos.2015.10.012

    CrossRef Google Scholar

    [12] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    [13] Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out?[J]Science, 1991, 252(5011): 1409-1412. doi: 10.1126/science.252.5011.1409

    CrossRef Google Scholar

    [14] DeCelles P G, Gehrels G E, Quade J, et al. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal[J]. Science, 2000, 288(5465): 497-499. doi: 10.1126/science.288.5465.497

    CrossRef Google Scholar

    [15] Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82(3/4): 217-256.

    Google Scholar

    [16] Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007.255(1/2): 70-84.

    Google Scholar

    [17] Wang Y J, Xing X W, Cawood P A, et al. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana[J]. Lithos, 2013, 182/183: 67-85. doi: 10.1016/j.lithos.2013.09.010

    CrossRef Google Scholar

    [18] Li G J, Wang Q F, Huang Y H, et al. Discovery of Hadean-Mesoarchean crustal materials in the northern Sibumasu block and its significance for Gondwana reconstruction[J]. Precambrian Research, 2015, 271: 118-137. doi: 10.1016/j.precamres.2015.10.003

    CrossRef Google Scholar

    [19] Zhao S W, Lai S C, Gao L, et al. Evolution of the Proto-Tethys in the Baoshan block along the East Gondwana margin: constraints from early Palaeozoic magmatism[J]. International Geology Review, 2016, 59(1): 1-15.

    Google Scholar

    [20] 陈吉琛. 滇西花岗岩类形成的构造环境及岩石特征[J]. 云南地质, 1989, (Z1): 205-212.

    Google Scholar

    [21] 陈吉琛. 滇西花岗岩类Pb, Sr同位素组成特征及其基底时代和性质[J]. 地质科学, 1991, (2): 174-183.

    Google Scholar

    [22] 李文昌. 西南"三江"多岛弧盆碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010.

    Google Scholar

    [23] Chen F, Li X H, Wang X L, et al. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1179-1194. doi: 10.1007/s00531-006-0146-y

    CrossRef Google Scholar

    [24] 董美玲. 滇西保山地块早古生代花岗岩类的地球化学、年代学及其构造意义[D]. 中国地质大学(北京)硕士学位论文, 2013.

    Google Scholar

    [25] 陈吉琛. 滇西花岗岩类时代划分及同位素年龄值选用的讨论[J]. 云南地质, 1987, (2): 3-15.

    Google Scholar

    [26] Lin T H, Lo C H, Chung S L, et al. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis[J]. Journal of Asian Earth Sciences, 2009, 34(5): 674-685. doi: 10.1016/j.jseaes.2008.10.009

    CrossRef Google Scholar

    [27] 邓军, 王长明, 李龚健. 三江特提斯叠加成矿作用样式及过程[J]. 岩石学报, 2012, 28(5): 1349-1361.

    Google Scholar

    [28] 刘琦胜, 叶培盛, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(2/3): 250-257.

    Google Scholar

    [29] 金世昌, 庄凤良. 龙陵—潞西地区花岗岩矿物中熔融包裹体研究[J]. 昆明理工学报, 1988, 13(5): 1-15.

    Google Scholar

    [30] 李庆, 云南镇康木厂花岗岩锆石定年, 地球化学, 构造环境与找矿意义[D]. 中国地质大学(北京)硕士学位论文, 2016.

    Google Scholar

    [31] 黄静宁, 陈永清, Zhai X M, 等. 滇西保山地块双脉地晚始新世过铝质花岗岩: 锆石SHRIMP U-Pb定年、地球化学和成因[J]. 中国科学: 地球科学, 2011, 54(4): 452-467.

    Google Scholar

    [32] Wang X, Metcalfe I, Jian P, et al. The Jinshajiang-Ailaoshan Suture Zone, China: tectonostratigraphy, age and evolution[J]. Journal of Asian Earth Sciences, 2000, 18(6): 675-690. doi: 10.1016/S1367-9120(00)00039-0

    CrossRef Google Scholar

    [33] Heppe K, Helmcke D, Wemmer K, et al. The Lancang River Zone of south western Yunnan. China: A questionable location for the active continental margin of Paleotethys[J]. Journal of Asian Earth Sciences, 2007, 30: 706-720. doi: 10.1016/j.jseaes.2007.04.002

    CrossRef Google Scholar

    [34] 刘俊来, 王安建, 曹殿华, 等. 三江造山带后碰撞断裂构造带的结构与演化: 以新生代剑川——兰坪盆地为例[J]. 高校地质学报, 2004, 10(4): 488-499.

    Google Scholar

    [35] Wang Y J, Fan W M, Zhang Y H, et al. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chong shan shear systems, western Yunnan. China: Implications for early Oligocene tectonic extrusion of SE Asia[J]. Tectonophysics, 2006, 418(3/4): 235-254.

    Google Scholar

    [36] 吕伯西, 王增, 张能德. 三江地区花岗岩类及其成矿专属性[M]. 北京: 地质出版社, 1993: 1-328.

    Google Scholar

    [37] 何志魁, 苏兰, 等. 保山市清水河铜铅锌多金属矿外围找矿新思路[J]. 云南地质, 2010, 29(3): 307-310.

    Google Scholar

    [38] Gao S, Liu X M, Yuan H L, et al. Analysis of forty-two major and trace elements of USGS and NIST SRM glasses by LAICPMS[J]. Geostand Newsl., 2002, 22: 181-195.

    Google Scholar

    [39] Zhang H, Shan G, Zhong Z, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China[J]. Chemical Geology, 2002, 186(3): 281-299.

    Google Scholar

    [40] Liu D, Ping J, Kröner A, et al. Dating of prograde metamorphic events deciphered from episodiczircon growth in rocks of the Dabie-Sulu UHP complex, China[J]. Earth & Planetary Science Letters, 2006, 250(3): 650-666.

    Google Scholar

    [41] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [42] Ludwig K R. Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003.

    Google Scholar

    [43] 马泽良, 蔡志慧, 戚学祥, 等. 保山地体新元古代—早古生代沉积岩碎屑锆石年代学及其构造意义[J]. 地质通报, 2019, 38(4): 547-561.

    Google Scholar

    [44] Song Y T, Su L, Dong J L, et al. Detrital zircons from Late Paleozoic to Triassic sedimentary rocks of the Gongshan-Baoshan Block, SE Tibet: implications for episodic crustal growth of Eastern Gondwana[J]. Journal of Asian Earth Sciences, 2020, 188: 1-10.

    Google Scholar

    [45] Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [46] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [47] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[J]. Rare Earth Elements Geochemistry, 1984: 63-114.

    Google Scholar

    [48] Sun S S, McDonough W F. Chemical andisotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society of London, Special Publications, 1989, 42: 313-345.

    Google Scholar

    [49] Zhao S W, Lai S C, Qin J F, et al. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau: Constraints from granitic gneisses and granitoid intrusions[J]. Gondwana Research, 2016, 35(1): 238-256.

    Google Scholar

    [50] Zartman R E, Doe B R. Plumbotectonics-the Model[J]. Tectonophysics, 1981, 75(1/2): 135-162.

    Google Scholar

    [51] Zhu D C, Mo X X, Wang L Q, et al. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes[J]. Science China Earth Sciences, 2009, 52(9): 1223-1239. doi: 10.1007/s11430-009-0132-x

    CrossRef Google Scholar

    [52] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [53] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61(1/2): 1-18.

    Google Scholar

    [54] Miller C F. Are strongly peraluminous magmas derived from pelitic sedimentary sources?[J]. Journal of Geology, 1985, 93(6): 673-689. doi: 10.1086/628995

    CrossRef Google Scholar

    [55] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44.

    Google Scholar

    [56] Beard J S, Abirz R J, Lofgren G E. Experimental melting of crustal xenoliths from Kilbourne Hole, New Mexico and implications for the contamination and genesis of magmas[J]. Contributions to Mineralogy and Petrology, 1993, 115(1): 88-102. doi: 10.1007/BF00712981

    CrossRef Google Scholar

    [57] Patiňo Douce A E, Beard J S. Dehydration-melting of biotite gneiss and quartz am-phibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36(3): 707-738. doi: 10.1093/petrology/36.3.707

    CrossRef Google Scholar

    [58] SpringerW, Seck H A. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas[J]. Contributions to Mineralogy and Petrology, 1997, 127(1/2): 30-45.

    Google Scholar

    [59] Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1/2): 1-26.

    Google Scholar

    [60] Patiňo Douce A E, Johnston A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107(2): 202-218. doi: 10.1007/BF00310707

    CrossRef Google Scholar

    [61] Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges(France)and northern Schwarzwald(Germany)[J]. Lithos, 2000, 50(1/3): 51-73.

    Google Scholar

    [62] 李再会, 林仕良, 丛峰, 谢韬, 邹光富. 滇西高黎贡山群变质岩的锆石年龄及其构造意义[J]. 岩石学报, 2012, 28(5): 1529-1541.

    Google Scholar

    [63] Song S G, Ji J Q, Wei C J, et al. Early Paleozoic granite in Nujiang River of Northwest Yunnan in southwestern China and its tectonic implications[J]. Chinese Science Bulletin, 2007, 52(17): 2404-2406.

    Google Scholar

    [64] Argles T W, Prince C L, Foster G L, et al. New garnets for old? Cautionary tales from young mountain belts[J]. Earth and Planetary Science Letters, 1999, 172(3/4): 301-309.

    Google Scholar

    [65] Gehrels G E, DeCelles P G, Martin A, et al. Initiation of the Himalayan Orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 2003, 13(9): 4-9. doi: 10.1130/1052-5173(2003)13<4:IOTHOA>2.0.CO;2

    CrossRef Google Scholar

    [66] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonismin the Kathmandu thrust sheet, central Nepal Himalaya[J]. Geological Society of America Bulletin, 2006, 118(1/2): 185-198.

    Google Scholar

    [67] 许志琴, 杨经绥, 梁凤华, 等. 喜马拉雅地体的泛非—早古生代造山事件年龄记录[J]. 岩石学报, 2005, 21(1): 1-12.

    Google Scholar

    [68] 李才, 吴彦旺, 王明, 等. 青藏高原泛非—早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非造山不整合的发现[J]. 地质通报, 2010, 29(12): 1733-1736.

    Google Scholar

    [69] Garzanti E, Casnedi R, Jadoul F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986, 48(3/4): 237-265.

    Google Scholar

    [70] Myrow P M, Thompson K R, Hughes N C, et al. Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-centralIndia[J]. Geological Society of America Bulletin, 2006, 118(3/4): 491-510.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1970) PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint