2022 Vol. 41, No. 4
Article Contents

XU Wentan, ZHANG Xuehui, ZHANG Binbin, LYU Jinsong, SUN Jiandong, ZHANG Yong, WU Bin. Genesis of highly fractionated S-type granites: Evidence from zircon U-Pb age, Hf isotopes and geochemistry of Fuquanshan pluton, Northeastern Jiangxi Province[J]. Geological Bulletin of China, 2022, 41(4): 577-589. doi: 10.12097/j.issn.1671-2552.2022.04.005
Citation: XU Wentan, ZHANG Xuehui, ZHANG Binbin, LYU Jinsong, SUN Jiandong, ZHANG Yong, WU Bin. Genesis of highly fractionated S-type granites: Evidence from zircon U-Pb age, Hf isotopes and geochemistry of Fuquanshan pluton, Northeastern Jiangxi Province[J]. Geological Bulletin of China, 2022, 41(4): 577-589. doi: 10.12097/j.issn.1671-2552.2022.04.005

Genesis of highly fractionated S-type granites: Evidence from zircon U-Pb age, Hf isotopes and geochemistry of Fuquanshan pluton, Northeastern Jiangxi Province

More Information
  • Fuquanshan pluton is located in the Wannian-Dexing metallogenic belt within Qinzhou-Hangzhou belt, and it is also an important part of regional large volume of granitic magma.In this paper, we studied the geochronology, Hf isotopes and geochemistry of Fuquanshan pluton.Zircon LA-ICP-MS U-Pb dating yield the age of around 130 Ma, suggesting this pluton emplaced at Early Cretaceous.The geochemistry features of these rocks are rich in Si, Al, alkali and have low content of REE, implying they belong to high potassium calc alkaline series and peraluminous rocks (A/CNK>1.1).Combined with the characteristics of obvious negative Eu anomaly, high content of Rb, low content of Sr and Ba, low ratios of Nb/Ta (5.14~5.52) and Zr/Hf (31.22~39.09), depletion of high field strength elements (Nb, Ga, Y), we propose this pluton is highly fractionation S-type granite.Futhermore, the εHf(t) values of zircons range from -5.47 to -1.51 with tDM2 values from 1255 Ma to 1668 Ma, implying the magma source is Mesoproterozoic lower-crust metasedimentary rocks.Comprehensive analysis shows that the Fuquanshan granite has the same tectonic setting as contemporary A-type granite in the region, and they generated by partial melting of Mesoproterozoic lower-crust metasedimentary induced by upwelling of asthenosphere in an extensional environment resulted from subduction of the paleo-Pacific plate to South China.

  • 加载中
  • [1] 余心起, 吴淦国, 张达, 等. 中国东南部中生代构造体制转换作用研究进展[J]. 自然科学进展, 2005, 15(10) : 1167-1174. doi: 10.3321/j.issn:1002-008X.2005.10.003

    CrossRef Google Scholar

    [2] 毛景文, 谢桂青, 李晓峰, 等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2006, 11(1) : 45-55.

    Google Scholar

    [3] 胡瑞忠, 毕献武, 彭建堂, 等. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J]. 矿床地质, 2007, 26(2) : 139-152. doi: 10.3969/j.issn.0258-7106.2007.02.001

    CrossRef Google Scholar

    [4] Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2) : 179-182. doi: 10.1130/G23193A.1

    CrossRef Google Scholar

    [5] 毛景文, 谢桂青, 郭春丽, 等. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 2008, 14(4) : 510-526. doi: 10.3969/j.issn.1006-7493.2008.04.005

    CrossRef Google Scholar

    [6] 华仁民, 李光来, 张文兰, 等. 华南钨和锡大规模成矿作用的差异及其原因初探[J]. 矿床地质, 2010.29(1) : 9-23. doi: 10.3969/j.issn.0258-7106.2010.01.003

    CrossRef Google Scholar

    [7] 毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5) : 636-658.

    Google Scholar

    [8] 陈毓川, 王登红. 华南地区中生代岩浆作用的四大问题[J]. 大地构造与成矿学, 2012, 36(3) : 315-321. doi: 10.3969/j.issn.1001-1552.2012.03.002

    CrossRef Google Scholar

    [9] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7) : 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [10] 赵希林, 刘凯, 毛建仁, 等. 华南燕山期早期晚阶段两类花岗质岩体与成矿作用: 以赣南—闽西南地区为例[J]. 中国地质, 2012, 39(4) : 871-886. doi: 10.3969/j.issn.1000-3657.2012.04.003

    CrossRef Google Scholar

    [11] 陈毓川, 王登红, 徐志刚, 等. 华南区域成矿和中生代岩浆成矿规律概要[J]. 大地构造与成矿学, 2014, 38(2) : 219-229.

    Google Scholar

    [12] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10) : 1553-1582.

    Google Scholar

    [13] 吕劲松, 张雪辉, 孙建东, 等. 钦杭成矿带东段燕山期中酸性岩浆活动时空演化与成矿规律[J]. 岩石学报, 2017, 33(11) : 3635-3658.

    Google Scholar

    [14] 王广先, 刘战庆, 刘善宝, 等. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究[J]. 岩矿测试, 2015, 34(5) : 592-599.

    Google Scholar

    [15] 褚平利, 段政, 廖圣兵, 等. 江西大湖塘中生代花岗岩的成因与构造指示意义: 年代学、矿物化学、地球化学与Lu-Hf同位素制约[J]. 地质学报, 2019, 93(7) : 1687-1707. doi: 10.3969/j.issn.0001-5717.2019.07.010

    CrossRef Google Scholar

    [16] 陈国华, 万浩章, 舒良树, 等. 江西景德镇朱溪铜钨多金属矿床地质特征与控矿条件分析[J]. 岩石学报, 2012, 28(12) : 3901-3914.

    Google Scholar

    [17] Zhou J, Jiang Y H, Xing G F, et al. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 2013, 53(11) : 1359-1383.

    Google Scholar

    [18] 郭博然, 刘树文, 杨朋涛, 等. 江西卧龙谷花岗岩与铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约[J]. 地质通报, 2013, 32(7) : 1035-1046. doi: 10.3969/j.issn.1671-2552.2013.07.009

    CrossRef Google Scholar

    [19] 白玉岭, 王宗起, 王涛, 等. 赣东北地区瑶里花岗岩年代学、地球化学特征及其岩石成因[J]. 矿物岩石学杂志, 2015, 34(1) : 35-50.

    Google Scholar

    [20] 刘经纬, 陈军胜, 陈斌. 赣东北高分异花岗斑岩的成因及其对钨矿化的意义[J]. 矿物岩石地球化学通报, 2016, 35(6) : 1156-1180. doi: 10.3969/j.issn.1007-2802.2016.06.008

    CrossRef Google Scholar

    [21] 刘战庆, 刘善宝, 裴荣富, 等. 赣东北地区珍珠山花岗岩脉地球化学、锆石U-Pb定年及Hf同位素组成研究[J]. 大地构造与成矿学, 2016, 40(4) : 808-825.

    Google Scholar

    [22] Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: in situ zircon Hf -O isotopic constraints[J]. Science in China Series D: Earth Sciences, 2009, 52(9) : 1262-1278. doi: 10.1007/s11430-009-0117-9

    CrossRef Google Scholar

    [23] 刘善宝, 王成辉, 刘战庆, 等. 赣东北塔前-赋春成矿带岩浆岩时代限定与序列划分及其意义[J]. 岩矿测试, 2014, 33(4) : 598-611. doi: 10.3969/j.issn.0254-5357.2014.04.023

    CrossRef Google Scholar

    [24] 吴新华, 楼法生, 刘春根, 等. 赣东北万年地区万年群的建立及其意义[J]. 地质通报, 2005, 24(9) : 819-825. doi: 10.3969/j.issn.1671-2552.2005.09.006

    CrossRef Google Scholar

    [25] 杨明桂, 刘亚光, 黄志忠, 等. 江西新元古代地层的划分及其与邻区对比[J]. 中国地质, 2012, 39(1) : 43-53. doi: 10.3969/j.issn.1000-3657.2012.01.005

    CrossRef Google Scholar

    [26] 张斌斌. 江西德兴福泉山岩体成矿潜力分析[D]. 成都理工大学硕士学位论文, 2019.

    Google Scholar

    [27] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of the major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [28] Ludwig K R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, 2003: 1-39.

    Google Scholar

    [29] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer Las-ablation quadrupote and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1/2) : 100-118.

    Google Scholar

    [30] Hoskin P W, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1) : 27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [31] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Annual Reviews of Earth and Planetary Sciences, 1994, (3/4) : 215-244.

    Google Scholar

    [32] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1) : 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [33] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5) : 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [34] Bouseily A M E, Sokkary A A E. The relation between Rb, Ba and Sr in granitic rocks[J]. Chemical Geology, 1975, 16(3) : 207-219. doi: 10.1016/0009-2541(75)90029-7

    CrossRef Google Scholar

    [35] Sun S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Magmatism in the ocean basins. Geological Society of London Special Publication, 1989, 42(1) : 313-345.

    Google Scholar

    [36] Chiaradia M, Schaltegger U, Spikings R A. Time scales of mineral systems Advances in understanding over the past decade[J]. Society of Economic Geologists, 2014: 37-58.

    Google Scholar

    [37] Lee J K W, Williams I S, Ellis D J. U and Th diffusion in natural zircon[J]. Nature, 1997, 390: 159-161. doi: 10.1038/36554

    CrossRef Google Scholar

    [38] Chappell B W, White A. Two contrasting granite types[J]. Pacific Geology, 1974, 8(2) : 173-174.

    Google Scholar

    [39] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6) : 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [40] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11(7) : 468.

    Google Scholar

    [41] Whalen J B, Currie K L, Chappell B W. A type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4) : 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [42] 王强, 赵振华, 简平, 等. 华南腹地白垩纪A型花岗岩类或碱性侵入岩年代学及其对华南晚中生代构造演化的制约[J]. 岩石学报, 2005, 21(3) : 795-808.

    Google Scholar

    [43] 张旗. A型花岗岩的标志和判别——兼答汪洋等对"A"型花岗岩的实质是什么"的质疑[J]. 岩石矿物学杂志, 2013, 32(2) : 267-274. doi: 10.3969/j.issn.1000-6524.2013.02.014

    CrossRef Google Scholar

    [44] 王强, 赵振华, 熊小林. 桐柏-大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, 19(4) : 297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002

    CrossRef Google Scholar

    [45] 舒徐洁, 陈志洪, 朱延辉, 等. 赣南兴国东固高分异花岗岩成因及地质意义[J]. 地质论评, 2018, 64(1) : 108-126.

    Google Scholar

    [46] Watson E B, Harrison T M. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2) : 295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [47] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    [48] Patino Douce A E, Johnston A D. Phase equilibria and melting productivity in the politic system: Implication for the origin of peraluminous granitoids and aluminous guanulites[J]. Contributions to Mineralogy and Petrology, 1991, 107: 202-218. doi: 10.1007/BF00310707

    CrossRef Google Scholar

    [49] Barbarin B. Genesis of the two main type of peraluminous granitoids[J]. Geology, 1996, 24: 295-298.

    Google Scholar

    [50] Wang X L, Zhou J C, Wan Y S, et al. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon[J]. Earth and Planetary Science Letters, 2013, 366: 71-82. doi: 10.1016/j.epsl.2013.02.011

    CrossRef Google Scholar

    [51] Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4) : 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [52] Harris N B, Pearce J A, Tindle A G. Geochemical characteristics of collision zone magmatism[J]. Geological Society, London, Special Publications, 1986, 19(1) : 67-81. doi: 10.1144/GSL.SP.1986.019.01.04

    CrossRef Google Scholar

    [53] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11) : 2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [54] 张旗, 冉皞, 李承东. A型花岗岩的实质是什么[J]. 岩石矿物学杂志, 2012, 31(4) : 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    CrossRef Google Scholar

    [55] 邓晋福, 刘翠, 冯艳芳, 等. 关于火成岩常用图解的正确使用: 讨论与建议[J]. 地质论评, 2015, 61(4) : 717-734.

    Google Scholar

    [56] Collins W J, Richards S W. Geodynamics significance of S-type granites in circum-Pacific orogens[J]. Geology, 2008, 36(7) : 559-562. doi: 10.1130/G24658A.1

    CrossRef Google Scholar

    [57] 阳华杰, 刘亮, 刘佳. 华南中生代大花岗岩省成岩成矿作用研究进展与展望[J]. 矿物学报, 2017, 37(6) : 791-800.

    Google Scholar

    [58] 余振东, 项新葵, 谭荣, 等. 赣北大湖塘平苗矿段白云母花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5) : 1505-1517.

    Google Scholar

    [59] 项新葵, 尹青青, 孙克克, 等. 江南造山带中段大湖塘同构造花岗斑岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素的制约[J]. 岩石矿物学杂志, 2015, 34(5) : 581-600. doi: 10.3969/j.issn.1000-6524.2015.05.001

    CrossRef Google Scholar

    [60] Jiang Y H, Zhao P, Zhou Q, et al. Petrogenesis and tectonic implications of Early Cretaceous S- and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos, 2011, 121: 55-73. doi: 10.1016/j.lithos.2010.10.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(2404) PDF downloads(124) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint