2022 Vol. 41, No. 4
Article Contents

TAO Mingrong, LU Yigan, FANG Ke, ZHOU Qiming, CHEN Qingyun. Characteristics of zircon U-Pb-Hf isotopes for the Gartasksitao porphyritic rocks and constraints on ridge subduction, Xinjiang[J]. Geological Bulletin of China, 2022, 41(4): 611-625. doi: 10.12097/j.issn.1671-2552.2022.04.007
Citation: TAO Mingrong, LU Yigan, FANG Ke, ZHOU Qiming, CHEN Qingyun. Characteristics of zircon U-Pb-Hf isotopes for the Gartasksitao porphyritic rocks and constraints on ridge subduction, Xinjiang[J]. Geological Bulletin of China, 2022, 41(4): 611-625. doi: 10.12097/j.issn.1671-2552.2022.04.007

Characteristics of zircon U-Pb-Hf isotopes for the Gartasksitao porphyritic rocks and constraints on ridge subduction, Xinjiang

More Information
  • The Gartasksitao porphyry copper deposit is located in the western part of the porphyry metallogenic belt in West Junggar.The LA-ICP-MS zircon U-Pb age, geochemistry, and Hf isotopic compositions of the granodiorite porphyry for this deposit have been analyzed.The results show that the zircon U-Pb age of the granodiorite porphyry is 299.2 ± 5.3 Ma, formed between the Late Carboniferous and the Early Permian.The samples have high SiO2, Al2O3, Na2O, and low K2O, high Mg# and Sr, low Y, Yb, indicating affinity with the adakitic feature.Trace elements are characterized by enrichment of Cs-Ba-U LILEs and LREEs, depletion of in Ti-Nb-Ta and HREEs, and rarely Eu anomaly.The 176Hf/ 177Hf ratios are high, with positive εHf (t) values (+10.1~+15.6, Avg.+12.8) and young TDM2 (307.4 ~ 687.1 Ma), indicating that the granodiorite porphyry was derived from a depleted mantle source.It could be suggested that the porphyry was formed by the oceanic ridge subduction, accompanied by considerable Cu and Au mineralization, which indicates that the Gartasksitao porphyry copper deposit has promising prospecting potential.

  • 加载中
  • [1] 肖文交, 舒良树, 高俊, 等. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 2008, (1): 4-8.

    Google Scholar

    [2] 高俊, 申萍, 徐兴旺, 等. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 2019, 93(1): 24-71.

    Google Scholar

    [3] Richards J. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533. doi: 10.2113/gsecongeo.98.8.1515

    CrossRef Google Scholar

    [4] Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818. doi: 10.2113/gsecongeo.100.5.801

    CrossRef Google Scholar

    [5] 申萍, 潘鸿迪, Eleonora S. 中亚成矿域斑岩铜矿床基本特征[J]. 岩石学报, 2015, (2): 315-332.

    Google Scholar

    [6] 芮宗瑶. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社, 1984.

    Google Scholar

    [7] 秦克章, 郭正林, 唐冬梅, 等. 准噶尔西北缘吐尔库班套阿拉斯加型镁铁-超镁铁岩体的发现及意义[J]. 岩石学报, 2018, 34(7): 1897-1913.

    Google Scholar

    [8] 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086.

    Google Scholar

    [9] 宋会侠, 刘玉琳, 屈文俊. 新疆包古图斑岩铜矿矿床地质特征[J]. 岩石学报, 2007, (8): 1981-1988.

    Google Scholar

    [10] 董连慧, 徐兴旺, 屈迅, 等. 新疆北部斑岩铜矿成矿规律及找矿方向[J]. 矿床地质, 2006, 25(S1): 293-296.

    Google Scholar

    [11] Shen P, Pan H, Hattori K, et al. Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: Geodynamic settings, magmatic sources, and genetic models[J]. Gondwana Research, 2018, 58: 161-194. doi: 10.1016/j.gr.2018.01.010

    CrossRef Google Scholar

    [12] Seltmann R, Porter T M, Pirajno F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review[J]. Journal of Asian Earth Sciences, 2014, 79(B): 810-841.

    Google Scholar

    [13] 何国琦, 朱永峰, 中国新疆及其邻区地质矿产对比研究[J]. 中国地质, 2006, 33(3): 451-460.

    Google Scholar

    [14] 朱永峰, 王涛, 徐新. 新疆及邻区地质与矿产研究进展[J]. 中亚型造山与成矿国际学术研讨会, 2007.

    Google Scholar

    [15] 尹继光, 陈文, 肖文交, 等. 西准噶尔包古图Ⅰ号岩体的锆石U-Pb年代学和地球化学特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1754-1768.

    Google Scholar

    [16] 申萍, 沈远超, 刘铁兵, 等. 新疆包古图斑岩型铜钼矿床容矿岩石及蚀变特征[J]. 岩石学报, 2009, (4): 777-792.

    Google Scholar

    [17] Cao M, Qin K, Li G, et al. Baogutu: An example of reduced porphyry Cu deposit in western Junggar[J]. Ore Geology Reviews, 2014, 56: 159-180. doi: 10.1016/j.oregeorev.2013.08.014

    CrossRef Google Scholar

    [18] 沈远超, 金成伟. 西准噶尔地区岩浆活动与金矿化作用[M]. 北京: 科学出版社, 1993.

    Google Scholar

    [19] Coleman R G. Continental growth of northwest China[J]. Tectonics, 1989, 8(3): 621-635. doi: 10.1029/TC008i003p00621

    CrossRef Google Scholar

    [20] 肖序常. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992.

    Google Scholar

    [21] 朱永峰, 徐新. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 2006, 22(12): 2833-2842.

    Google Scholar

    [22] 陈博, 朱永峰. 新疆达拉布特蛇绿混杂岩中辉长岩岩石学、微量元素地球化学和锆石U-Pb年代学研究[J]. 岩石学报, 2011, 27(6): 1746-1758.

    Google Scholar

    [23] Zheng R G, Zhao L, Yang Y Q. Geochronology, geochemistry and tectonic implications of a new ophiolitic mélange in the northern West Junggar, NW China[J]. Gondwana Research, 2019, 74: 237-250. doi: 10.1016/j.gr.2019.01.008

    CrossRef Google Scholar

    [24] 朱永峰, 何国琦, 安芳. 中亚成矿域核心地区地质演化与成矿规律[J]. 地质通报, 2007, 26(9): 1167-1177.

    Google Scholar

    [25] Shen P, Shen Y, Pan H, et al. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2012, 49: 99-115. doi: 10.1016/j.jseaes.2011.11.025

    CrossRef Google Scholar

    [26] 唐功建, 王强, 赵振华, 等. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造, 铜金成矿意义[J]. 地球科学, 2009, 34(1): 56-74.

    Google Scholar

    [27] 董连慧, 徐兴旺, 屈迅, 等. 初论环准噶尔斑岩铜矿带的地质构造背景与形成机制[J]. 岩石学报, 2009, 25(4): 713-737.

    Google Scholar

    [28] 申萍, 董连慧, 冯京, 等. 新疆斑岩型铜矿床分布、时代及成矿特点[J]. 新疆地质, 2010, (4): 358-364.

    Google Scholar

    [29] 刘玉琳, 郭丽爽, 宋会侠, 等. 新疆西准噶尔包古图斑岩铜矿年代学研究[J]. 中国科学: 地球科学, 2009, (10): 1466-1472.

    Google Scholar

    [30] 申萍, 周涛发, 袁峰, 等. 环巴尔喀什-西准噶尔成矿省矿床类型、成矿系统和跨境成矿带对接[J]. 岩石学报, 2015, 31(2): 285-303.

    Google Scholar

    [31] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43.

    Google Scholar

    [32] Gu H O, Sun H, Wang F Y, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223-1232. doi: 10.1039/C9JA00024K

    CrossRef Google Scholar

    [33] Li X H, Long W G, Li Q L, et al. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 117-134. doi: 10.1111/j.1751-908X.2010.00036.x

    CrossRef Google Scholar

    [34] Sláma J, Košler J, Condon D J, et al. Plešovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1): 1-35.

    Google Scholar

    [35] Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(36): 4647-4654. doi: 10.1007/s11434-013-5932-x

    CrossRef Google Scholar

    [36] Scherer E, Munker C, Mezger K. Early Differentiation of the Crust-Mantle System: a Hf Isotope Perspective[J]. AGUFM, 2001, 001: V52B-10.

    Google Scholar

    [37] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [38] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [39] Richards J P, Kerrich R. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis[J]. Economic Geology, 2007, 102(4): 537-576. doi: 10.2113/gsecongeo.102.4.537

    CrossRef Google Scholar

    [40] Defant M J, Drummond M S. Drummond. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [41] Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 581-593.

    Google Scholar

    [42] 侯增谦, 高永丰, 孟祥金, 等. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制[J]. 岩石学报, 2004, (2): 239-248.

    Google Scholar

    [43] Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219(1/3): 177-189.

    Google Scholar

    [44] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [45] Thiéblemont D, Stein G, Lescuyer J L. Epithermal and porphyry deposits: the adakite connection[J]. Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science, 1997, 325: 103-109.

    Google Scholar

    [46] 李智佩, 白建科, 茹艳娇, 等, 新疆昭苏县北高铝玄武岩时代、岩石学和地球化学特征——西天山早石炭世汇聚板块构造的标志[J]. 地质通报, 2021, 40(6): 864-879.

    Google Scholar

    [47] 卢鹏, 童英, 孟秋熠, 等, 东准噶尔北缘乌伦古地区晚二叠世A型花岗质岩墙成因及构造背景[J]. 地质通报, 2021, 40(1): 58-70.

    Google Scholar

    [48] Liu S A, Li S, He Y, et al. Geochemical contrasts between early Cretaceous ore-bearing andore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu-Au mineralization[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7160-7178. doi: 10.1016/j.gca.2010.09.003

    CrossRef Google Scholar

    [49] Liu X J, Zhang Z G, Xu J F, et al. The youngest Permian Ocean in Central Asian Orogenic Belt: Evidence from Geochronology and Geochemistry of Bingdaban Ophiolitic Mélange in Central Tianshan, northwestern China[J]. Geological Journal, 2020, 55: 2062-2079. doi: 10.1002/gj.3698

    CrossRef Google Scholar

    [50] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24.

    Google Scholar

    [51] Castillo P R. 埃达克岩成因回顾[J]. 科学通报, 2006, 51(6): 617-627.

    Google Scholar

    [52] Tang G J, Wang Q, Wyman D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China) [J]. Chemical Geology, 2010, 277(3/4): 281-300.

    Google Scholar

    [53] Wang B, Chen Y, Zhan S, et al. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 2007, 263(3/4): 288-308.

    Google Scholar

    [54] Song D F, Xiao W J, Windley B F, et al. Closure of the Paleo-Asian Ocean in the Middle-Late Triassic (Ladinian-Carnian): Evidence From Provenance Analysis of Retroarc Sediments[J]. Geophysical Research Letters, 2021, 48(14): 094276.

    Google Scholar

    [55] Song D F, Xiao W J, Collins A, et al. Late Carboniferous-early Permian arc magmatism in the south-western Alxa Tectonic Belt (NW China): Constraints on the late Palaeozoic subduction history of the Palaeo-Asian Ocean[J]. Geological Journal, 2019, 54: 1046-1063. doi: 10.1002/gj.3348

    CrossRef Google Scholar

    [56] Xiong X L. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite[J]. Geology, 2006, 34(11): 945-948. doi: 10.1130/G22711A.1

    CrossRef Google Scholar

    [57] Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J]. Earth and Planetary Science Letters, 1998, 163(1/4) 361-379.

    Google Scholar

    [58] Geng H Y, Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction?[J]. Chemical Geology, 2009, 266(3/4): 364-389.

    Google Scholar

    [59] 孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 40(2): 127-137.

    Google Scholar

    [60] 张连昌, 万博, 焦学军, 等. 西准包古图含铜斑岩的埃达克岩特征及其地质意义[J]. 中国地质, 2006, 33(3): 626-631.

    Google Scholar

    [61] 陈艺超, 肖文交, 周仁杰, 等. 新疆西准噶尔早二叠世别斯托别岩浆杂岩岩石学、地球化学、年代学研究: 洋脊俯冲的产物?[C]//2019年中国地球科学联合学术年会, 2019.

    Google Scholar

    [62] 刘希军, 许继峰, 侯青叶, 等. 新疆东准噶尔克拉麦里蛇绿岩地球化学: 洋脊俯冲的产物[J]. 岩石学报, 2007, 23(7): 1591-1602.

    Google Scholar

    [63] Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J]. Nature, 2001, 409(6819): 500-504. doi: 10.1038/35054039

    CrossRef Google Scholar

    [64] Sajona F G, Maury R C. Maury, Association of adakites with gold and copper mineralization in the Philippines[J]. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 1998, 326(1): 27-34.

    Google Scholar

    [65] Richards J P. Discussion on "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism" by Oyarzun et al. (Mineralium Deposita 36: 794-798, 2001) [J]. Mineralium Deposita, 2002, 37(8): 788-790. doi: 10.1007/s00126-002-0284-5

    CrossRef Google Scholar

    [66] 张旗, 秦克章, 王元龙, 等. 加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面[J]. 岩石学报, 2004, 20(2): 195-204.

    Google Scholar

    [67] Sun W D, Huang R F, Li H, et al. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 2015, 65: 97-131.

    Google Scholar

    [68] Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 2002, 30(10): 915-918. doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2

    CrossRef Google Scholar

    [69] 熊小林, 蔡志勇, 牛贺才, 等. 东天山晚古生代埃达克岩成因及铜金成矿意义[J]. 岩石学报, 2005, 21(3): 967-976.

    Google Scholar

    [70] Wei S N, Zhu Y F, Jiang J Y, et al. Magmatic oxidation state of the Baogutu porphyry copper deposit in the west Junggar of China: Implication for ore-formation[J]. Ore Geology Reviews, 2019, 106: 351-368. doi: 10.1016/j.oregeorev.2019.02.018

    CrossRef Google Scholar

    [71] 王强, 赵振华, 资峰, 等. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义[J]. 岩石学报, 2006, 22(1): 11-30.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(5)

Article Metrics

Article views(1776) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint