2024 Vol. 43, No. 12
Article Contents

LI Pengfei. 2024. Timing and origin of the Kazakhstan Orocline in Central Asia: A preliminary synthesis. Geological Bulletin of China, 43(12): 2151-2161. doi: 10.12097/gbc.2024.10.002
Citation: LI Pengfei. 2024. Timing and origin of the Kazakhstan Orocline in Central Asia: A preliminary synthesis. Geological Bulletin of China, 43(12): 2151-2161. doi: 10.12097/gbc.2024.10.002

Timing and origin of the Kazakhstan Orocline in Central Asia: A preliminary synthesis

  • The orocline, as an orogenic−scale structure, records key information of the orogenic evolution in 4D, and has a fundamental impact on the magmatic, structural, sedimentary evolution of orogenic belts. However, the geodynamic origin of oroclinal bending remains controversial. This paper focuses on the Kazakhstan Orocline in the western Central Asian Orogenic Belt, which is an ideal candidate for studying the mechanism of oroclinal bending in accretionary orogens given its continuous record of plate subduction. The paper reviews available geological and paleomagnetic data around the Kazakhstan Orocline, which allows to conclude that major phase of bending during the Late Devonian to Early Carboniferous was likely driven by along−strike variation in trench migration, similarly as the formation of arcuate subduction systems around the Pacific margin. A later stage of bending during the Late Carboniferous to Permian might be associated with the amalgamation of the Siberian, Tarim and Baltic cratons. To further understand the origin of the Kazakhstan Orocline would benefit from structural constraints around the hinge of the Kazakhstan Orocline, as well as 4D reconstruction of the Junggar subduction system along two limbs of the orocline (West Tianshan and West Junggar in NW China) and around the hinge of the orocline (Balkhash area in Kazakhstan).

  • 加载中
  • [1] Abrajevitch A, Van der Voo R, Levashova N M, et al. 2007. Paleomagnetic constraints on the paleogeography and oroclinal bending of the Devonian volcanic arc in Kazakhstan[J]. Tectonophysics, 441: 67−84. doi: 10.1016/j.tecto.2007.04.008

    CrossRef Google Scholar

    [2] Abrajevitch A, Van der Voo R, Bazhenov M L, et al. 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia[J]. Tectonophysics, 455: 61−76. doi: 10.1016/j.tecto.2008.05.006

    CrossRef Google Scholar

    [3] Badarch G, Dickson Cunningham W, Windley B F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 21: 87−110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [4] Bazhenov M L, Levashova, N M, Degtyarev K E, et al. 2012. Unraveling the early–middle Paleozoic paleogeography of Kazakhstan on the basis of Ordovician and Devonian paleomagnetic results[J]. Gondwana Research, 22: 974−991. doi: 10.1016/j.gr.2012.02.023

    CrossRef Google Scholar

    [5] Capitanio F A, Faccenna C, Zlotnik S, et al. 2011. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline[J]. Nature, 480: 83−86. doi: 10.1038/nature10596

    CrossRef Google Scholar

    [6] Carey S W. 1955. The orocline concept in geotectonics[J]. Papers and Proceedings of the Royal Society of Tasmania, 89: 255−288.

    Google Scholar

    [7] Chen X H, Chen Z L, Bai Y F, et al. 2016. Late Paleozoic concentrated mineralization of Balkhash−Junggar metallogenic belt in the western part of the Central Asian Metallogenic Domain[J]. Journal of Earth Sciences and Environment, 38: 285−305 (in Chinese with English abstract).

    Google Scholar

    [8] Choulet F, Faure M, Cluzel D, et al. 2016. Toward a unified model of Altaids geodynamics: Insight from the Palaeozoic polycyclic evolution of West Junggar (NW China)[J]. Science China Earth Sciences, 59: 25−57. doi: 10.1007/s11430-015-5158-7

    CrossRef Google Scholar

    [9] Edel J B, Schulmann K, Hanžl P, et al. 2014. Palaeomagnetic and structural constraints on 90° anticlockwise rotation in SW Mongolia during the Permo–Triassic: Implications for Altaid oroclinal bending. Preliminary palaeomagnetic results[J]. Journal of Asian Earth Sciences, 94: 157−171. doi: 10.1016/j.jseaes.2014.07.039

    CrossRef Google Scholar

    [10] Guo R, Li S, Suo Y, et al. 2017. Indentation of North China Block into Greater South China Block and Indosinian Orocline[J]. Earth Science Frontiers, 24: 171−184 (in Chinese with English abstract).

    Google Scholar

    [11] Gutiérrez−Alonso G, Fernández−Suárez J, Weil A, et al. 2008. Self−subduction of the Pangaean global plate[J]. Nature Geoscience, 1: 549−553. doi: 10.1038/ngeo250

    CrossRef Google Scholar

    [12] Gutiérrez−Alonso G, Murphy J B, Fernández−Suárez J, et al. 2011. Lithospheric delamination in the core of Pangea: Sm−Nd insights from the Iberian mantle[J]. Geology, 39: 155−158.

    Google Scholar

    [13] He Z, Wang B, Ni X, et al. 2021. Structural and kinematic evolution of strike−slip shear zones around and in the Central Tianshan: insights for eastward tectonic wedging in the southwest Central Asian Orogenic Belt[J]. Journal of Structural Geology, 2021: 104279.

    Google Scholar

    [14] Hu W, Li P, Yuan C, et al. 2023. Structural and geochronological constraints on the collision between the Chinese Altai and the West Junggar in Central Asia: Implication for deformation response and geodynamic evolution of arc−arc collision in 4D[J]. Tectonics, 42: e2023TC007770. doi: 10.1029/2023TC007770

    CrossRef Google Scholar

    [15] Huang H M, Li P F, Hu W W, et al. 2021. Early Paleozoic amalgamation of the Yili Block (Chinese West Tianshan): Insight from detrital zircon U−Pb geochronology and Hf isotopes[J]. Geotectonica et Metallogenia, 45: 786−804 (in Chinese with English abstract).

    Google Scholar

    [16] Huang H, Wang T, Tong Y, et al. 2020. Rejuvenation of ancient micro−continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth−Science Reviews, 208: 103255. doi: 10.1016/j.earscirev.2020.103255

    CrossRef Google Scholar

    [17] Johnston S T. 2001. The great Alaskan terrane wreck: Reconciliation of paleomagnetic and geological data in the northern Cordillera[J]. Earth and Planetary Science Letters, 193: 259−272. doi: 10.1016/S0012-821X(01)00516-7

    CrossRef Google Scholar

    [18] Johnston S T. 2008. The Cordilleran Ribbon Continent of North America[J]. Annual of Review of Earth and Planetary Sciences, 36: 495−530. doi: 10.1146/annurev.earth.36.031207.124331

    CrossRef Google Scholar

    [19] Johnston S T, Weil A B, Gutiérrez−Alonso G. 2013. Oroclines: Thick and thin[J]. Geological Society of America Bulletin, 125: 643−663. doi: 10.1130/B30765.1

    CrossRef Google Scholar

    [20] Kamp P J J. 1987. Age and origin of the New Zealand Orocline in relation to Alpine Fault movement[J]. Journal of Geological Society (London), 144: 641−652. doi: 10.1144/gsjgs.144.4.0641

    CrossRef Google Scholar

    [21] Laurent−Charvet S, Charvet J, Monié P, et al. 2003. Late Paleozoic strike‐slip shear zones in eastern Central Asia (NW China): new structural and geochronological data[J]. Tectonics, 22, doi: 10.1029/2001TC901047.

    Google Scholar

    [22] Lehmann J, Schulmann K, Lexa O, et al. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 310: 575−628. doi: 10.2475/07.2010.02

    CrossRef Google Scholar

    [23] Levashova N M, Degtyarev K, Bazhenov M. 2012. Oroclinal bending of the Middle and Late Paleozoic volcanic belts in Kazakhstan: Paleomagnetic evidence and geological implications[J]. Geotectonics, 46: 285−302. doi: 10.1134/S0016852112030041

    CrossRef Google Scholar

    [24] Levashova N M, Mikolaichuk A V, McCausland P J A, et al. 2007. Devonian paleomagnetism of the North Tien Shan: Implications for the middle−Late Paleozoic paleogeography of Eurasia[J]. Earth and Planetary Science Letters, 257: 104−120. doi: 10.1016/j.jpgl.2007.02.025

    CrossRef Google Scholar

    [25] Levashova N M, Van der Voo R, Abrajevitch A V, et al. 2009. Paleomagnetism of mid−Paleozoic subduction−related volcanics from the Chingiz Range in NE Kazakhstan: The evolving paleogeography of the amalgamating Eurasian composite continent[J]. Geological Society of America Bulletin, 121: 555−573. doi: 10.1130/B26354.1

    CrossRef Google Scholar

    [26] Li J, Dong S, Yin A, et al. 2015a. Mesozoic tectonic evolution of the Daba Shan Thrust Belt in the southern Qinling orogen, central China: Constraints from surface geology and reflection seismology[J]. Tectonics, 34. doi:10.1002/2014TC003813.

    Google Scholar

    [27] Li P, Rosenbaum G. 2014. Does the Manning Orocline exist? New structural evidence from the inner hinge of the Manning Orocline (eastern Australia)[J]. Gondwana Research, 25: 1599−1613. doi: 10.1016/j.gr.2013.06.010

    CrossRef Google Scholar

    [28] Li P, Rosenbaum G, Donchak P J T. 2012. Structural evolution of the Texas Orocline, eastern Australia[J]. Gondwana Research, 22: 279−289. doi: 10.1016/j.gr.2011.09.009

    CrossRef Google Scholar

    [29] Li P, Rosenbaum G, Vasconcelos P. 2014. Chronological constraints on the Permian geodynamic evolution of eastern Australia[J]. Tectonophysics, 617: 20−30. doi: 10.1016/j.tecto.2014.01.013

    CrossRef Google Scholar

    [30] Li P, Sun M, Narantsetseg T, et al. 2022. First structural observation around the hinge of the Mongolian Orocline (Central Asia): Implications for the geodynamics of oroclinal bending and the evolution of the Mongol−Okhotsk Ocean[J]. GSA Bulletin. 134: 1994–2006.

    Google Scholar

    [31] Li P, Sun M, Rosenbaum G, et al. 2015b. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt[J]. Journal of Structural Geology, 80: 142−156. doi: 10.1016/j.jsg.2015.08.008

    CrossRef Google Scholar

    [32] Li P, Sun M, Rosenbaum G, et al. 2017a. Late Paleozoic closure of the Ob−Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt[J]. Geological Society of America Bulletin, 129: 547−569. doi: 10.1130/B31541.1

    CrossRef Google Scholar

    [33] Li P, Sun M, Rosenbaum G, et al. 2018. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 153: 42−56. doi: 10.1016/j.jseaes.2017.07.029

    CrossRef Google Scholar

    [34] Li P, Sun M, Rosenbaum G, et al. 2020. Tectonic evolution of the Chinese Tianshan Orogen from subduction to arc−continent collision: Insight from polyphase deformation along the Gangou section, Central Asia[J]. Geological Society of America Bulletin, 132: 2529−2552. doi: 10.1130/B35353.1

    CrossRef Google Scholar

    [35] Li S, Zhao S, Liu X, et al. 2017b. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75.

    Google Scholar

    [36] Li Z X, Fang D J, Liu G. 1996. Oroclinal bending and block rotation in South China since Mesozoic: geological and paleomagnetic evidence[J]. Chinese Science Bulletin, 41: 446−450 (in Chinese). doi: 10.1360/csb1996-41-5-446

    CrossRef Google Scholar

    [37] Liu Y, Li W, Feng Z, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [38] Liu Y, Li W, Ma Y, et al. 2021. An orocline in the eastern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 221: 103808. doi: 10.1016/j.earscirev.2021.103808

    CrossRef Google Scholar

    [39] Liu Y, Xiao W, Ma Y, et al. 2023. Oroclines in the Central Asian Orogenic Belt[J]. National Science Review, 10: nwac243. doi: 10.1093/nsr/nwac243

    CrossRef Google Scholar

    [40] Macedo J, Marshak S. 1999. Controls on the geometry of fold−thrust belt salients[J]. Bulletin of the Geological Society of America, 111: 1808−1822. doi: 10.1130/0016-7606(1999)111<1808:COTGOF>2.3.CO;2

    CrossRef Google Scholar

    [41] Marshak S. 1988. Kinematics of orocline and arc formation in thin−skinned orogens[J]. Tectonics, 7: 73−86. doi: 10.1029/TC007i001p00073

    CrossRef Google Scholar

    [42] Moresi L, Betts P G, Miller M S, et al. 2014. Dynamics of continental accretion[J]. Nature, 508: 245−248. doi: 10.1038/nature13033

    CrossRef Google Scholar

    [43] Mu D, Li S, Wang Q, et al. 2018. Early Paleozoic Orocline in the Central China Orogen[J]. Gondwana Research, 63: 85−104. doi: 10.1016/j.gr.2018.04.019

    CrossRef Google Scholar

    [44] Pastor−Galán D, Gutiérrez−Alonso G, Mulchrone K F, et al. 2012. Conical folding in the core of an orocline. A geometric analysis from the Cantabrian Arc (Variscan Belt of NW Iberia)[J]. Journal of Structural Geology, 39: 210−223. doi: 10.1016/j.jsg.2012.02.010

    CrossRef Google Scholar

    [45] Rosenbaum G. 2014. Geodynamics of oroclinal bending: insights from the Mediterranean[J]. Journal of Geodynamics, 82: 5−15. doi: 10.1016/j.jog.2014.05.002

    CrossRef Google Scholar

    [46] Rosenbaum G, Lister G S. 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides[J]. Tectonics, 23: TC1013, doi:1010.1029/2003TC001518.

    Google Scholar

    [47] Schellart W P. 2017. Andean mountain building and magmatic arc migration driven by subduction−induced whole mantle flow[J]. Nature Communications, 8, doi: 10.1038/s41467−017−01847−z.

    Google Scholar

    [48] Schellart W P, Freeman J, Stegman D R, et al. 2007. Evolution and diversity of subduction zones controlled by slab width[J]. Nature, 446: 308−311. doi: 10.1038/nature05615

    CrossRef Google Scholar

    [49] Şengör A M C, Natal'in B, Sunal G, et al. 2018. The tectonics of the Altaids: Crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130 Ma ago[J]. Annual Review of Earth and Planetary Sciences, 46: 439−494. doi: 10.1146/annurev-earth-060313-054826

    CrossRef Google Scholar

    [50] Şengör A M C, Natal'in B A. 1996. Turkic−type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences, 24: 263−337. doi: 10.1146/annurev.earth.24.1.263

    CrossRef Google Scholar

    [51] Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [52] Shaw J, Johnston S T, Gutiérrez−Alonso G, et al. 2012. Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications[J]. Earth and Planetary Science Letters, 329–330: 60–70.

    Google Scholar

    [53] Shen P, Zhou T, Yuan F, et al. 2015. Main deposit types, mineral systems, and metallogenic belt connections in the Circum−Balkhash−West Junggar metallogenic province[J]. Acta Petrologica Sinica, 31: 285−303 (in Chinese with English abstract).

    Google Scholar

    [54] Shi W, Zhang Y, Dong S, et al. 2012. Intra−continental Dabashan orocline, southwestern Qinling, Central China[J]. Journal of Asian Earth Sciences, 46: 20−38. doi: 10.1016/j.jseaes.2011.10.005

    CrossRef Google Scholar

    [55] Shi Y, Lu H, Jia D, et al. 1996. Origin and evolution of tectonics in Central Asia[J]. Geological Journal of Universities, 2: 134−145 (in Chinese with English abstract).

    Google Scholar

    [56] Shu L, Zhu W, Wang B, et al. 2013. The formation and evolution of ancient blocks in Xinjiang[J]. Geology in China, 40: 43−60 (in Chinese with English abstract).

    Google Scholar

    [57] Sun M, Cai K, Sun M, et al. 2020. Devonian arc−related granitoids in the Northwestern Chinese Tianshan, Central Asian Orogenic Belt: Implications for the bending of the Kazakhstan Orocline[J]. International Geology Review, doi: 10.1080/00206814.2020.1737975.

    Google Scholar

    [58] Tang G J, Wang Q, Wyman D A, et al. 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu–Dabate area, northwestern Tianshan (west China): evidence for a tectonic transition from arc to post−collisional setting[J]. LITHOS, 119: 393−411. doi: 10.1016/j.lithos.2010.07.010

    CrossRef Google Scholar

    [59] Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10: 611−616.

    Google Scholar

    [60] Van der Voo R. 2004. Paleomagnetism, oroclines, and growth of the continental crust[J]. GSA Today, 14: 4−9.

    Google Scholar

    [61] Wang B, Chen Y, Zhan S, et al. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 263: 288−308. doi: 10.1016/j.jpgl.2007.08.037

    CrossRef Google Scholar

    [62] Wang K, Cai K, Sun M, et al. 2024. Paleozoic episodic magmatism in Western Tianshan: Insight into assembling the Northeastern Pangea[J]. Geochemistry, Geophysics, Geosystems, 25: e2023GC011329.

    Google Scholar

    [63] Wang R, Xu Z, Santosh M, et al. 2019. Formation of Dabashan arcuate structures: Constraints from Mesozoic basement deformation in South Qinling Orogen, China[J]. Journal of Structural Geology, 118: 135−149. doi: 10.1016/j.jsg.2018.10.014

    CrossRef Google Scholar

    [64] Wang T, Tong Y, Xiao W, et al. 2022. Rollback, scissor−like closure of the Mongol−Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data[J]. National Science Review, 9: nwab210. doi: 10.1093/nsr/nwab210

    CrossRef Google Scholar

    [65] Wang T, Zhang J, Li S, et al. 2022. Distinctive spatial−temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences from identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontiers, 29: 28−44 (in Chinese with English abstract).

    Google Scholar

    [66] Wang X, Cai K, Sun M, et al. 2020. Evolution of Late Paleozoic Magmatic Arc in the Yili Block, NW China: Implications for Oroclinal Bending in the Western Central Asian Orogenic Belt[J]. Tectonics, 39: e2019TC005822. doi: 10.1029/2019TC005822

    CrossRef Google Scholar

    [67] Weil A B, Gutiérrez−Alonso G, Johnston S T, et al. 2013. Kinematic constraints on buckling a lithospheric−scale orocline along the northern margin of Gondwana: A geologic synthesis[J]. Tectonophysics, 582: 25−49. doi: 10.1016/j.tecto.2012.10.006

    CrossRef Google Scholar

    [68] Weil A B, Sussman A J. 2004. Classifying curved orogens based on timing relationships between structural development and vertical−axis rotations[C]//Sussman A J, Weil A B. Orogenic curvature: integrating paleomagnetic and structural analyses. Geological Society of America Special Paper: 1–15.

    Google Scholar

    [69] Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [70] Xiao W, Han C, Yuan C, et al. 2010a. Transitions among Mariana−, Japan−, Cordillera− and Alaska−type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis[J]. Geological Society, London, Special Publications, 338: 35–53.

    Google Scholar

    [71] Xiao W, Huang B, Han C, et al. 2010b. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18: 253−273. doi: 10.1016/j.gr.2010.01.007

    CrossRef Google Scholar

    [72] Xiao W, Song D, Windley B F. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49: 1512−1545 (in Chinese with English abstract).

    Google Scholar

    [73] Xiao W, Windley B, Sun S, et al. 2015. A tale of amalgamation of three collage systems in the Permian–Middle Triassic in Central−East Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43.

    Google Scholar

    [74] Xiao W, Windley B F, Han C, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [75] Yang G. 2020. Kazakhstan Orocline bending in response to seamounts subduction[J]. Geological Journal, 55: 3464−3475. doi: 10.1002/gj.3614

    CrossRef Google Scholar

    [76] Yang T N, Wang Y, Li J Y, et al. 2007. Vertical and horizontal strain partitioning of the Central Tianshan (NW China): Evidence from structures and 40Ar/39Ar geochronology[J]. Journal of Structural Geology, 29: 1605−1621. doi: 10.1016/j.jsg.2007.08.002

    CrossRef Google Scholar

    [77] Yi Z, Huang B, Xiao W, et al. 2015. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids[J]. Gondwana Research, 27: 862−877. doi: 10.1016/j.gr.2013.11.006

    CrossRef Google Scholar

    [78] Zhang H, Tan X, Han Y. 2007. Cretaceous synfolding remagnetization components revealing tectonic rotation of the middle Yangtze fold belt[J]. Chinese Science Bulletin, 52: 2837−2846. doi: 10.1007/s11434-007-0437-0

    CrossRef Google Scholar

    [79] Zhang J, Qu J, Zhang B, et al. 2022. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic[J]. American Journal of Science, 322: 851−897. doi: 10.2475/07.2022.01

    CrossRef Google Scholar

    [80] Zhou J, Chen Z. 2023. Assembly processes in the eastern Northern Orogenic Belt and implications for the spatiotemporal transition of major tectonic domains in Northeast Asia[J]. Science China Earth Sciences, 66: 2648−2652. doi: 10.1007/s11430-023-1192-4

    CrossRef Google Scholar

    [81] 陈宣华, 陈正乐, 白彦飞, 等. 2016. 中亚成矿域西部巴尔喀什−准噶尔成矿带晚古生代成矿作用大爆发[J]. 地球科学与环境学报, 38: 285−305. doi: 10.3969/j.issn.1672-6561.2016.03.001

    CrossRef Google Scholar

    [82] 郭润华, 李三忠, 索艳慧, 等. 2017. 华北地块揳入大华南地块和印支期弯山构造[J]. 地学前缘, 24: 171−184.

    Google Scholar

    [83] 黄惠明, 李鹏飞, 胡万万, 等. 2021. 西天山伊犁地块早古生代拼贴: 来自碎屑锆石U−Pb年代学和Hf同位素的制约[J]. 大地构造与成矿学, 45: 786−804.

    Google Scholar

    [84] 李正祥, 方大钧, 楼刚. 1996. 华南中生代以来弯山构造的发育和地块相对旋转: 地质和古地磁证据[J]. 科学通报, 41: 446−450.

    Google Scholar

    [85] 申萍, 周涛发, 袁峰, 等. 2015. 环巴尔喀什-西准噶尔成矿省矿床类型、成矿系统和跨境成矿带对接[J]. 岩石学报, 31: 285−303.

    Google Scholar

    [86] 施央申, 卢华复, 贾东, 等. 1996. 中亚大陆古生代构造形成及演化[J]. 高校地质学报, 2: 134−145.

    Google Scholar

    [87] 舒良树, 朱文斌, 王博, 等. 2013. 新疆古块体的形成与演化[J]. 中国地质, 40: 43−60.

    Google Scholar

    [88] 王涛, 张建军, 李舢, 等. 2022. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 29: 28−44.

    Google Scholar

    [89] 肖文交, 宋东方, Windley B F, 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49: 1512−1545.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(224) PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint