Citation: | LI Pengfei. 2024. Timing and origin of the Kazakhstan Orocline in Central Asia: A preliminary synthesis. Geological Bulletin of China, 43(12): 2151-2161. doi: 10.12097/gbc.2024.10.002 |
The orocline, as an orogenic−scale structure, records key information of the orogenic evolution in 4D, and has a fundamental impact on the magmatic, structural, sedimentary evolution of orogenic belts. However, the geodynamic origin of oroclinal bending remains controversial. This paper focuses on the Kazakhstan Orocline in the western Central Asian Orogenic Belt, which is an ideal candidate for studying the mechanism of oroclinal bending in accretionary orogens given its continuous record of plate subduction. The paper reviews available geological and paleomagnetic data around the Kazakhstan Orocline, which allows to conclude that major phase of bending during the Late Devonian to Early Carboniferous was likely driven by along−strike variation in trench migration, similarly as the formation of arcuate subduction systems around the Pacific margin. A later stage of bending during the Late Carboniferous to Permian might be associated with the amalgamation of the Siberian, Tarim and Baltic cratons. To further understand the origin of the Kazakhstan Orocline would benefit from structural constraints around the hinge of the Kazakhstan Orocline, as well as 4D reconstruction of the Junggar subduction system along two limbs of the orocline (West Tianshan and West Junggar in NW China) and around the hinge of the orocline (Balkhash area in Kazakhstan).
[1] | Abrajevitch A, Van der Voo R, Levashova N M, et al. 2007. Paleomagnetic constraints on the paleogeography and oroclinal bending of the Devonian volcanic arc in Kazakhstan[J]. Tectonophysics, 441: 67−84. doi: 10.1016/j.tecto.2007.04.008 |
[2] | Abrajevitch A, Van der Voo R, Bazhenov M L, et al. 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia[J]. Tectonophysics, 455: 61−76. doi: 10.1016/j.tecto.2008.05.006 |
[3] | Badarch G, Dickson Cunningham W, Windley B F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 21: 87−110. doi: 10.1016/S1367-9120(02)00017-2 |
[4] | Bazhenov M L, Levashova, N M, Degtyarev K E, et al. 2012. Unraveling the early–middle Paleozoic paleogeography of Kazakhstan on the basis of Ordovician and Devonian paleomagnetic results[J]. Gondwana Research, 22: 974−991. doi: 10.1016/j.gr.2012.02.023 |
[5] | Capitanio F A, Faccenna C, Zlotnik S, et al. 2011. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline[J]. Nature, 480: 83−86. doi: 10.1038/nature10596 |
[6] | Carey S W. 1955. The orocline concept in geotectonics[J]. Papers and Proceedings of the Royal Society of Tasmania, 89: 255−288. |
[7] | Chen X H, Chen Z L, Bai Y F, et al. 2016. Late Paleozoic concentrated mineralization of Balkhash−Junggar metallogenic belt in the western part of the Central Asian Metallogenic Domain[J]. Journal of Earth Sciences and Environment, 38: 285−305 (in Chinese with English abstract). |
[8] | Choulet F, Faure M, Cluzel D, et al. 2016. Toward a unified model of Altaids geodynamics: Insight from the Palaeozoic polycyclic evolution of West Junggar (NW China)[J]. Science China Earth Sciences, 59: 25−57. doi: 10.1007/s11430-015-5158-7 |
[9] | Edel J B, Schulmann K, Hanžl P, et al. 2014. Palaeomagnetic and structural constraints on 90° anticlockwise rotation in SW Mongolia during the Permo–Triassic: Implications for Altaid oroclinal bending. Preliminary palaeomagnetic results[J]. Journal of Asian Earth Sciences, 94: 157−171. doi: 10.1016/j.jseaes.2014.07.039 |
[10] | Guo R, Li S, Suo Y, et al. 2017. Indentation of North China Block into Greater South China Block and Indosinian Orocline[J]. Earth Science Frontiers, 24: 171−184 (in Chinese with English abstract). |
[11] | Gutiérrez−Alonso G, Fernández−Suárez J, Weil A, et al. 2008. Self−subduction of the Pangaean global plate[J]. Nature Geoscience, 1: 549−553. doi: 10.1038/ngeo250 |
[12] | Gutiérrez−Alonso G, Murphy J B, Fernández−Suárez J, et al. 2011. Lithospheric delamination in the core of Pangea: Sm−Nd insights from the Iberian mantle[J]. Geology, 39: 155−158. |
[13] | He Z, Wang B, Ni X, et al. 2021. Structural and kinematic evolution of strike−slip shear zones around and in the Central Tianshan: insights for eastward tectonic wedging in the southwest Central Asian Orogenic Belt[J]. Journal of Structural Geology, 2021: 104279. |
[14] | Hu W, Li P, Yuan C, et al. 2023. Structural and geochronological constraints on the collision between the Chinese Altai and the West Junggar in Central Asia: Implication for deformation response and geodynamic evolution of arc−arc collision in 4D[J]. Tectonics, 42: e2023TC007770. doi: 10.1029/2023TC007770 |
[15] | Huang H M, Li P F, Hu W W, et al. 2021. Early Paleozoic amalgamation of the Yili Block (Chinese West Tianshan): Insight from detrital zircon U−Pb geochronology and Hf isotopes[J]. Geotectonica et Metallogenia, 45: 786−804 (in Chinese with English abstract). |
[16] | Huang H, Wang T, Tong Y, et al. 2020. Rejuvenation of ancient micro−continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth−Science Reviews, 208: 103255. doi: 10.1016/j.earscirev.2020.103255 |
[17] | Johnston S T. 2001. The great Alaskan terrane wreck: Reconciliation of paleomagnetic and geological data in the northern Cordillera[J]. Earth and Planetary Science Letters, 193: 259−272. doi: 10.1016/S0012-821X(01)00516-7 |
[18] | Johnston S T. 2008. The Cordilleran Ribbon Continent of North America[J]. Annual of Review of Earth and Planetary Sciences, 36: 495−530. doi: 10.1146/annurev.earth.36.031207.124331 |
[19] | Johnston S T, Weil A B, Gutiérrez−Alonso G. 2013. Oroclines: Thick and thin[J]. Geological Society of America Bulletin, 125: 643−663. doi: 10.1130/B30765.1 |
[20] | Kamp P J J. 1987. Age and origin of the New Zealand Orocline in relation to Alpine Fault movement[J]. Journal of Geological Society (London), 144: 641−652. doi: 10.1144/gsjgs.144.4.0641 |
[21] | Laurent−Charvet S, Charvet J, Monié P, et al. 2003. Late Paleozoic strike‐slip shear zones in eastern Central Asia (NW China): new structural and geochronological data[J]. Tectonics, 22, doi: 10.1029/2001TC901047. |
[22] | Lehmann J, Schulmann K, Lexa O, et al. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 310: 575−628. doi: 10.2475/07.2010.02 |
[23] | Levashova N M, Degtyarev K, Bazhenov M. 2012. Oroclinal bending of the Middle and Late Paleozoic volcanic belts in Kazakhstan: Paleomagnetic evidence and geological implications[J]. Geotectonics, 46: 285−302. doi: 10.1134/S0016852112030041 |
[24] | Levashova N M, Mikolaichuk A V, McCausland P J A, et al. 2007. Devonian paleomagnetism of the North Tien Shan: Implications for the middle−Late Paleozoic paleogeography of Eurasia[J]. Earth and Planetary Science Letters, 257: 104−120. doi: 10.1016/j.jpgl.2007.02.025 |
[25] | Levashova N M, Van der Voo R, Abrajevitch A V, et al. 2009. Paleomagnetism of mid−Paleozoic subduction−related volcanics from the Chingiz Range in NE Kazakhstan: The evolving paleogeography of the amalgamating Eurasian composite continent[J]. Geological Society of America Bulletin, 121: 555−573. doi: 10.1130/B26354.1 |
[26] | Li J, Dong S, Yin A, et al. 2015a. Mesozoic tectonic evolution of the Daba Shan Thrust Belt in the southern Qinling orogen, central China: Constraints from surface geology and reflection seismology[J]. Tectonics, 34. doi:10.1002/2014TC003813. |
[27] | Li P, Rosenbaum G. 2014. Does the Manning Orocline exist? New structural evidence from the inner hinge of the Manning Orocline (eastern Australia)[J]. Gondwana Research, 25: 1599−1613. doi: 10.1016/j.gr.2013.06.010 |
[28] | Li P, Rosenbaum G, Donchak P J T. 2012. Structural evolution of the Texas Orocline, eastern Australia[J]. Gondwana Research, 22: 279−289. doi: 10.1016/j.gr.2011.09.009 |
[29] | Li P, Rosenbaum G, Vasconcelos P. 2014. Chronological constraints on the Permian geodynamic evolution of eastern Australia[J]. Tectonophysics, 617: 20−30. doi: 10.1016/j.tecto.2014.01.013 |
[30] | Li P, Sun M, Narantsetseg T, et al. 2022. First structural observation around the hinge of the Mongolian Orocline (Central Asia): Implications for the geodynamics of oroclinal bending and the evolution of the Mongol−Okhotsk Ocean[J]. GSA Bulletin. 134: 1994–2006. |
[31] | Li P, Sun M, Rosenbaum G, et al. 2015b. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt[J]. Journal of Structural Geology, 80: 142−156. doi: 10.1016/j.jsg.2015.08.008 |
[32] | Li P, Sun M, Rosenbaum G, et al. 2017a. Late Paleozoic closure of the Ob−Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt[J]. Geological Society of America Bulletin, 129: 547−569. doi: 10.1130/B31541.1 |
[33] | Li P, Sun M, Rosenbaum G, et al. 2018. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 153: 42−56. doi: 10.1016/j.jseaes.2017.07.029 |
[34] | Li P, Sun M, Rosenbaum G, et al. 2020. Tectonic evolution of the Chinese Tianshan Orogen from subduction to arc−continent collision: Insight from polyphase deformation along the Gangou section, Central Asia[J]. Geological Society of America Bulletin, 132: 2529−2552. doi: 10.1130/B35353.1 |
[35] | Li S, Zhao S, Liu X, et al. 2017b. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. |
[36] | Li Z X, Fang D J, Liu G. 1996. Oroclinal bending and block rotation in South China since Mesozoic: geological and paleomagnetic evidence[J]. Chinese Science Bulletin, 41: 446−450 (in Chinese). doi: 10.1360/csb1996-41-5-446 |
[37] | Liu Y, Li W, Feng Z, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013 |
[38] | Liu Y, Li W, Ma Y, et al. 2021. An orocline in the eastern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 221: 103808. doi: 10.1016/j.earscirev.2021.103808 |
[39] | Liu Y, Xiao W, Ma Y, et al. 2023. Oroclines in the Central Asian Orogenic Belt[J]. National Science Review, 10: nwac243. doi: 10.1093/nsr/nwac243 |
[40] | Macedo J, Marshak S. 1999. Controls on the geometry of fold−thrust belt salients[J]. Bulletin of the Geological Society of America, 111: 1808−1822. doi: 10.1130/0016-7606(1999)111<1808:COTGOF>2.3.CO;2 |
[41] | Marshak S. 1988. Kinematics of orocline and arc formation in thin−skinned orogens[J]. Tectonics, 7: 73−86. doi: 10.1029/TC007i001p00073 |
[42] | Moresi L, Betts P G, Miller M S, et al. 2014. Dynamics of continental accretion[J]. Nature, 508: 245−248. doi: 10.1038/nature13033 |
[43] | Mu D, Li S, Wang Q, et al. 2018. Early Paleozoic Orocline in the Central China Orogen[J]. Gondwana Research, 63: 85−104. doi: 10.1016/j.gr.2018.04.019 |
[44] | Pastor−Galán D, Gutiérrez−Alonso G, Mulchrone K F, et al. 2012. Conical folding in the core of an orocline. A geometric analysis from the Cantabrian Arc (Variscan Belt of NW Iberia)[J]. Journal of Structural Geology, 39: 210−223. doi: 10.1016/j.jsg.2012.02.010 |
[45] | Rosenbaum G. 2014. Geodynamics of oroclinal bending: insights from the Mediterranean[J]. Journal of Geodynamics, 82: 5−15. doi: 10.1016/j.jog.2014.05.002 |
[46] | Rosenbaum G, Lister G S. 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides[J]. Tectonics, 23: TC1013, doi:1010.1029/2003TC001518. |
[47] | Schellart W P. 2017. Andean mountain building and magmatic arc migration driven by subduction−induced whole mantle flow[J]. Nature Communications, 8, doi: 10.1038/s41467−017−01847−z. |
[48] | Schellart W P, Freeman J, Stegman D R, et al. 2007. Evolution and diversity of subduction zones controlled by slab width[J]. Nature, 446: 308−311. doi: 10.1038/nature05615 |
[49] | Şengör A M C, Natal'in B, Sunal G, et al. 2018. The tectonics of the Altaids: Crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130 Ma ago[J]. Annual Review of Earth and Planetary Sciences, 46: 439−494. doi: 10.1146/annurev-earth-060313-054826 |
[50] | Şengör A M C, Natal'in B A. 1996. Turkic−type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences, 24: 263−337. doi: 10.1146/annurev.earth.24.1.263 |
[51] | Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0 |
[52] | Shaw J, Johnston S T, Gutiérrez−Alonso G, et al. 2012. Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications[J]. Earth and Planetary Science Letters, 329–330: 60–70. |
[53] | Shen P, Zhou T, Yuan F, et al. 2015. Main deposit types, mineral systems, and metallogenic belt connections in the Circum−Balkhash−West Junggar metallogenic province[J]. Acta Petrologica Sinica, 31: 285−303 (in Chinese with English abstract). |
[54] | Shi W, Zhang Y, Dong S, et al. 2012. Intra−continental Dabashan orocline, southwestern Qinling, Central China[J]. Journal of Asian Earth Sciences, 46: 20−38. doi: 10.1016/j.jseaes.2011.10.005 |
[55] | Shi Y, Lu H, Jia D, et al. 1996. Origin and evolution of tectonics in Central Asia[J]. Geological Journal of Universities, 2: 134−145 (in Chinese with English abstract). |
[56] | Shu L, Zhu W, Wang B, et al. 2013. The formation and evolution of ancient blocks in Xinjiang[J]. Geology in China, 40: 43−60 (in Chinese with English abstract). |
[57] | Sun M, Cai K, Sun M, et al. 2020. Devonian arc−related granitoids in the Northwestern Chinese Tianshan, Central Asian Orogenic Belt: Implications for the bending of the Kazakhstan Orocline[J]. International Geology Review, doi: 10.1080/00206814.2020.1737975. |
[58] | Tang G J, Wang Q, Wyman D A, et al. 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu–Dabate area, northwestern Tianshan (west China): evidence for a tectonic transition from arc to post−collisional setting[J]. LITHOS, 119: 393−411. doi: 10.1016/j.lithos.2010.07.010 |
[59] | Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10: 611−616. |
[60] | Van der Voo R. 2004. Paleomagnetism, oroclines, and growth of the continental crust[J]. GSA Today, 14: 4−9. |
[61] | Wang B, Chen Y, Zhan S, et al. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J]. Earth and Planetary Science Letters, 263: 288−308. doi: 10.1016/j.jpgl.2007.08.037 |
[62] | Wang K, Cai K, Sun M, et al. 2024. Paleozoic episodic magmatism in Western Tianshan: Insight into assembling the Northeastern Pangea[J]. Geochemistry, Geophysics, Geosystems, 25: e2023GC011329. |
[63] | Wang R, Xu Z, Santosh M, et al. 2019. Formation of Dabashan arcuate structures: Constraints from Mesozoic basement deformation in South Qinling Orogen, China[J]. Journal of Structural Geology, 118: 135−149. doi: 10.1016/j.jsg.2018.10.014 |
[64] | Wang T, Tong Y, Xiao W, et al. 2022. Rollback, scissor−like closure of the Mongol−Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data[J]. National Science Review, 9: nwab210. doi: 10.1093/nsr/nwab210 |
[65] | Wang T, Zhang J, Li S, et al. 2022. Distinctive spatial−temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences from identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontiers, 29: 28−44 (in Chinese with English abstract). |
[66] | Wang X, Cai K, Sun M, et al. 2020. Evolution of Late Paleozoic Magmatic Arc in the Yili Block, NW China: Implications for Oroclinal Bending in the Western Central Asian Orogenic Belt[J]. Tectonics, 39: e2019TC005822. doi: 10.1029/2019TC005822 |
[67] | Weil A B, Gutiérrez−Alonso G, Johnston S T, et al. 2013. Kinematic constraints on buckling a lithospheric−scale orocline along the northern margin of Gondwana: A geologic synthesis[J]. Tectonophysics, 582: 25−49. doi: 10.1016/j.tecto.2012.10.006 |
[68] | Weil A B, Sussman A J. 2004. Classifying curved orogens based on timing relationships between structural development and vertical−axis rotations[C]//Sussman A J, Weil A B. Orogenic curvature: integrating paleomagnetic and structural analyses. Geological Society of America Special Paper: 1–15. |
[69] | Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022 |
[70] | Xiao W, Han C, Yuan C, et al. 2010a. Transitions among Mariana−, Japan−, Cordillera− and Alaska−type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis[J]. Geological Society, London, Special Publications, 338: 35–53. |
[71] | Xiao W, Huang B, Han C, et al. 2010b. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18: 253−273. doi: 10.1016/j.gr.2010.01.007 |
[72] | Xiao W, Song D, Windley B F. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49: 1512−1545 (in Chinese with English abstract). |
[73] | Xiao W, Windley B, Sun S, et al. 2015. A tale of amalgamation of three collage systems in the Permian–Middle Triassic in Central−East Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43. |
[74] | Xiao W, Windley B F, Han C, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020 |
[75] | Yang G. 2020. Kazakhstan Orocline bending in response to seamounts subduction[J]. Geological Journal, 55: 3464−3475. doi: 10.1002/gj.3614 |
[76] | Yang T N, Wang Y, Li J Y, et al. 2007. Vertical and horizontal strain partitioning of the Central Tianshan (NW China): Evidence from structures and 40Ar/39Ar geochronology[J]. Journal of Structural Geology, 29: 1605−1621. doi: 10.1016/j.jsg.2007.08.002 |
[77] | Yi Z, Huang B, Xiao W, et al. 2015. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids[J]. Gondwana Research, 27: 862−877. doi: 10.1016/j.gr.2013.11.006 |
[78] | Zhang H, Tan X, Han Y. 2007. Cretaceous synfolding remagnetization components revealing tectonic rotation of the middle Yangtze fold belt[J]. Chinese Science Bulletin, 52: 2837−2846. doi: 10.1007/s11434-007-0437-0 |
[79] | Zhang J, Qu J, Zhang B, et al. 2022. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic[J]. American Journal of Science, 322: 851−897. doi: 10.2475/07.2022.01 |
[80] | Zhou J, Chen Z. 2023. Assembly processes in the eastern Northern Orogenic Belt and implications for the spatiotemporal transition of major tectonic domains in Northeast Asia[J]. Science China Earth Sciences, 66: 2648−2652. doi: 10.1007/s11430-023-1192-4 |
[81] | 陈宣华, 陈正乐, 白彦飞, 等. 2016. 中亚成矿域西部巴尔喀什−准噶尔成矿带晚古生代成矿作用大爆发[J]. 地球科学与环境学报, 38: 285−305. doi: 10.3969/j.issn.1672-6561.2016.03.001 |
[82] | 郭润华, 李三忠, 索艳慧, 等. 2017. 华北地块揳入大华南地块和印支期弯山构造[J]. 地学前缘, 24: 171−184. |
[83] | 黄惠明, 李鹏飞, 胡万万, 等. 2021. 西天山伊犁地块早古生代拼贴: 来自碎屑锆石U−Pb年代学和Hf同位素的制约[J]. 大地构造与成矿学, 45: 786−804. |
[84] | 李正祥, 方大钧, 楼刚. 1996. 华南中生代以来弯山构造的发育和地块相对旋转: 地质和古地磁证据[J]. 科学通报, 41: 446−450. |
[85] | 申萍, 周涛发, 袁峰, 等. 2015. 环巴尔喀什-西准噶尔成矿省矿床类型、成矿系统和跨境成矿带对接[J]. 岩石学报, 31: 285−303. |
[86] | 施央申, 卢华复, 贾东, 等. 1996. 中亚大陆古生代构造形成及演化[J]. 高校地质学报, 2: 134−145. |
[87] | 舒良树, 朱文斌, 王博, 等. 2013. 新疆古块体的形成与演化[J]. 中国地质, 40: 43−60. |
[88] | 王涛, 张建军, 李舢, 等. 2022. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 29: 28−44. |
[89] | 肖文交, 宋东方, Windley B F, 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49: 1512−1545. |
Geological map (a) and tectonic map (b) of the western Central Asian Orogenic Belt
Reconstruction map of the western Central Asian Orogenic Belt in the Early Paleozoic to Devonian
The compilation of paleomagnetic data around the Kazakhstan Orocline (a) and the reconstruction of the Devonian Volcanic Belt (DVB) prior to oroclinal bending (b)
Conceptual models for the origin of the Kazakhstan Orocline
Various tectonic models for oroclinal bending