2024 Vol. 43, No. 12
Article Contents

SONG Dongfang, XIAO Wenjiao, ZENG Hao, MAO Qigui, AO Songjian. 2024. Accretionary orogenic processes of the Beishan orogenic belt. Geological Bulletin of China, 43(12): 2131-2150. doi: 10.12097/gbc.2024.09.040
Citation: SONG Dongfang, XIAO Wenjiao, ZENG Hao, MAO Qigui, AO Songjian. 2024. Accretionary orogenic processes of the Beishan orogenic belt. Geological Bulletin of China, 43(12): 2131-2150. doi: 10.12097/gbc.2024.09.040

Accretionary orogenic processes of the Beishan orogenic belt

  • The Beishan orogenic belt is located in the middle of the southern margin of the Central Asian orogenic belt, and is at the key tectonic position of the east−west tectonic connection. In recent years, the tectonic evolution of Beishan has become a research focus, and important progress has been made in the aspects of orogenic basement, magmatism, ophiolitic mélanges, sedimentation, and deformation. This paper focuses on recent advances and summarizes the basic characteristics of each tectonic unit of Beishan, particularly the spatial−temporal distribution of magmatism and ophiolitic mélanges, and discusses the accretionary processes of Beishan. The Precambrian magmatic records are scattered Mesoproterozoic (Ca. 1.4 Ga) and Neoproterozoic (Ca. 0.9~0.8 Ga) gneissic granitoids, and there is no large−scale Precambrian basement in Beishan. Continuous magmatism developed from Early Paleozoic to Early Mesozoic across Beishan. The ophiolitic mélanges changed from Cambrian–Ordovician in the middle to Carboniferous–Permian in the north and south, and the final suture zone is located in the Liuyuan–Houhongquan area in southern Beishan. The ages of mafic rocks and the youngest sedimentary matrix jointly define the age for terminal accretion as the Middle–Late Triassic. Beishan was located at the margin of supercontinent from the Mesoproterozoic, and then experienced long−term accretion in Neoproterozoic and Paleozoic, and terminated accretionary orogeny and shifted to intracontinental evolution in Triassic. The accretion of mantle−derived arc magmatism and growth of accretionary wedges are of great significance to continental growth during the long−lived accretionary orogenesis.

  • 加载中
  • [1] Ao S, Xiao W, Windley B F, et al. 2016. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U–Pb and 40Ar/39Ar geochronology[J]. Gondwana Research, 30: 224−235. doi: 10.1016/j.gr.2015.03.004

    CrossRef Google Scholar

    [2] Ao S J, Xiao W J, Han C M, et al. 2012. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids[J]. Geological Magazine, 149(4): 606−625. doi: 10.1017/S0016756811000884

    CrossRef Google Scholar

    [3] Ao S J, Xiao W J , Han C M, et al. 2010. Geochronology and geochemistry of Early Permian mafic−ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 18(2/3): 466−478.

    Google Scholar

    [4] Bai R, Hu J, Zhao F, et al. 2022a. Zircon U–Pb ages and Hf isotopic characteristics and their geological significances of Syenogranite in the Shuangjianshan gold deposit in the Beishan orogenic belt, Gansu Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 274−286 (in Chinese with English abstract).

    Google Scholar

    [5] Bai R, Hu J, Zhao F, et al. 2022b. Genesis and tectonic magmatic evolution of Carboniferous granites in the Hongliuhecao−Yuejinshan area of Beishan orogenic belt[J]. Acta Petrologica Sinica, 38(3): 713−742 (in Chinese with English abstract).

    Google Scholar

    [6] Brander L, Söderlund U. 2007. Mesoproterozoic (1.47~1.44 Ga) orogenic magmatism in Fennoscandia; Baddeleyite U–Pb dating of a suite of massif−type anorthosite in S. Sweden[J]. International Journal of Earth Sciences, 98(3): 499−516.

    Google Scholar

    [7] Chen C, Pan Z, Xiu D, et al. 2017. Analysis on sedimentary period, depositional environment, and provenance tectonic setting of Hongliuyuan Formation in Beishan area[J]. Acta sedimentologica Sinica, 35(3): 470−479 (in Chinese with English abstract).

    Google Scholar

    [8] Chen Z, Yu Y, Bo H, 2020. Geochemical characteristics and geological significance of the Ordovician volcanic rocks in Ejinaqi, Inner Mongolia[J]. Earth Science, 45(2): 503−518 (in Chinese with English abstract).

    Google Scholar

    [9] Cleven N, Lin S, Guilmette C, et al. 2015. Petrogenesis and implications for tectonic setting of Cambrian suprasubduction−zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China[J]. Journal of Asian Earth Sciences, 113, Part 1: 369−390.

    Google Scholar

    [10] Du Q, Wu S, Zhang Y, et al. 2023. Zircon U−Pb ages and geochemistry of volcanic rocks from the Baishan Formation in the Yuanbaoshan−Xirehada area in Beishan orogenic collage, Inner Mongolia, NW China, and implications for the subduction history of the Paleo−Asian Ocean[J]. Geological Bulletin of China, 42(11): 1875−1893 (in Chinese with English abstract).

    Google Scholar

    [11] Feng J, Zhang W, Wu T, et al. 2012. Geochronology and geochemistry of granite pluton in the north of Qiaowan, Beishan Mountain, Gansu province, China, and its geological significance[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(1): 61−70 (in Chinese with English abstract).

    Google Scholar

    [12] Gao J, Zhu M T, Wang X S, et al. 2019. Large−scale porphyry−type mineralization in the central asian metallogenic domain: tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 93(1): 24−71 (in Chinese with English abstract).

    Google Scholar

    [13] Gillespie J, Glorie S, Xiao W, et al. 2017. Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: Insights from low−temperature thermochronology[J]. Gondwana Research, 43: 107−122. doi: 10.1016/j.gr.2015.10.004

    CrossRef Google Scholar

    [14] Gong Q, Liu M, Li H, et al. 2002. The type and basic characteristics of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 35(3): 28−34 (in Chinese with English abstract).

    Google Scholar

    [15] Guan G, Zheng X, Xiao Y, et al. 2022. U−Pb zircon age and petrogeochemical characteristics of the Devonian volcanic rocks in the northern Queershan Group, Hongshishan, Gansu Province[J]. Mineral Exploration, 13(12): 1747−1760 (in Chinese with English abstract).

    Google Scholar

    [16] Guo Q, Xiao W, Hou Q, et al. 2014. Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt[J]. Lithos, 184/187: 361−378.

    Google Scholar

    [17] Guo Q, Xiao W, Windley B F, et al. 2012. Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids[J]. Journal of Asian Earth Sciences, 49: 54−68.

    Google Scholar

    [18] Guo Q Q, Chung S L, Xiao W J, et al. 2017. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd–Sr–Hf isotopic constraints[J]. Lithos, 278/281: 84−96. doi: 10.1016/j.lithos.2017.01.017

    CrossRef Google Scholar

    [19] Guo Z, Shi H, Zhang Z, et al. 2006. The tectonic evolution of the south Tianshan paleo−oceanic crust inferred from the spreading structures and Ar−Ar dating of the Hongliuhe ophiolite, NW China[J]. Acta Petrologica Sinica, 22(1): 95−102 (in Chinese with English abstract).

    Google Scholar

    [20] He S, Zhou H, Ren B, et al. 2005. Crustal evolution of Palaeozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology, 38(3): 6−15 (in Chinese with English abstract).

    Google Scholar

    [21] He Z Y, Klemd R, Yan L L, et al. 2018a. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: evidence from oxygen and hafnium isotopes in zircon[J]. Scientific Reports, 8(1): 5054. doi: 10.1038/s41598-018-23393-4

    CrossRef Google Scholar

    [22] He Z Y, Klemd R, Yan L L, et al. 2018b. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 185: 1−14. doi: 10.1016/j.earscirev.2018.05.012

    CrossRef Google Scholar

    [23] He Z Y, Sun L, Mao L, et al. 2015. Zircon U−Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin, 60(4): 389−399 (in Chinese with English abstract). doi: 10.1360/N972014-00898

    CrossRef Google Scholar

    [24] He Z Y, Zong K, Jiang H, et al. 2014. Early Paleozoic tectonic evolution of the southern Beishan orogenic colage: Insights from the granitoids[J]. Acta Petrologica Sinica, 30(8): 2324−2338 (in Chinese with English abstract).

    Google Scholar

    [25] Hou Q Y, Wang Z, Liu J B, et al. 2012. Geochemistry characteristics and SHRIMP dating of Yueyashan ophiolite in Beishan Orogen[J]. Geoscience, 26(5): 1008−1018 (in Chinese with English abstract).

    Google Scholar

    [26] Hu X, Yang J, Deng W, et al. 2024. The formation age, origin and tectonic environment of gneissic granite in Xiaohuangshan, Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 43(6): 1059−1071 (in Chinese with English abstract).

    Google Scholar

    [27] Hu X, Yang Z, Kang W, et al. 2023. Zircon U−Pb age, geochemical characteristics and its geological significance of the Qianhongquan monzonite in Beishan area, Gansu Province[J]. Mineralogy and Petrology, 43(4): 49−59 (in Chinese with English abstract).

    Google Scholar

    [28] Hu X, Zhao G, Hu X, et al. 2015. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia[J]. Geological Bulletin of China, 34(2/3): 425−436 (in Chinese with English abstract).

    Google Scholar

    [29] Huang B, Wang G, Bu T, et al. 2021. Petrogenesis and tectonic significance of the Silurian granites in Yemadaquan area, Beishan, Gansu Province[J]. Earth Science, 46(11): 3993−4005 (in Chinese with English abstract).

    Google Scholar

    [30] Huang Z, Jin X. 2006. Geochemistry features and tectonic setting of the Hongshishan ophiolite in Gansu Province[J]. Chinese Journal of Geology, 41(4): 601−611 (in Chinese with English abstract).

    Google Scholar

    [31] Huo N, Guo Q, Chen Y, et al. 2022. Provenance and tectonic setting of the Gudongjing Group in Beishan Orogen[J]. Acta Petrologica Sinica, 38(4): 1253−1279 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.04.17

    CrossRef Google Scholar

    [32] Jahn B M, Wu F Y, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions−Royal Society of Edinburgh, 91(1/2): 181−194.

    Google Scholar

    [33] Jia Y Q, Zhao Z X, Xu H, et al. 2016. Zircon LA−ICP−MS U−Pb dating of and tectonic setting of rhyolites from Baishan Formation in Fengleishan area of the Beishan orogenic belt[J]. Geology in China, 43(1): 91−98 (in Chinese with English abstract).

    Google Scholar

    [34] Jiang H, He Z, Zong K, et al. 2013. Zircon U−Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt[J]. Acta Petrologica Sinica, 29(11): 3949−3967 (in Chinese with English abstract).

    Google Scholar

    [35] Li C, Wang Q, Liu X, et al. 1984. Tectonic evolution of Asia[J]. Bulletin of the Chinese Academy of Geological Sciences, 10: 3−11 (in Chinese with English abstract).

    Google Scholar

    [36] Li J, Xiao X, Tang Y, et al. 1992. Metal deposits and plate tectonics in northern Xinjiang[J]. Xinjiang Geology, 10(2): 138−146 (in Chinese with English abstract).

    Google Scholar

    [37] Li M, Ren B, Duan X, et al. 2020. Petrogenesis of Triassic granites in Xiaohongshan area, Beishan orogenic belt: Constraints from zircon U−Pb ages and Hf isotopes[J]. Geological Bulletin of China, 39(9): 1422−1435 (in Chinese with English abstract).

    Google Scholar

    [38] Li M, Xin H, Ren B, et al. 2019. Petrogenesis and tectonic significance of the Late Palaeozoic granitoids in Hazhu Area, Inner Mongolia[J]. Earth Science, 44(1): 328−343 (in Chinese with English abstract).

    Google Scholar

    [39] Li S. 2013. Triassic granitoids in Beishan−Inner Mongolia, China and its tectonic implications[D]. Doctoral Dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    Google Scholar

    [40] Li S, Wang T, Wilde S A, et al. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J]. Lithos, 134/135: 123−145.

    Google Scholar

    [41] Li S, Wang T, Tong Y, et al. 2009. Identification of the Early Devonian Shuangfengshan A−type granites in Liuyuan area of Beishan and its implications to tectonic evolution[J]. Acta Petrologica et Mineralogica, 28(5): 407−422 (in Chinese with English abstract).

    Google Scholar

    [42] Li S, Wang T, Tong Y, et al. 2011. Zircon U−Pb age, origin and its tectonic significances of Huitongshan Devonian K−feldspar granites from Beishan orogen, NW China[J]. Acta Petrologica Sinica, 27(10): 3055−3070 (in Chinese with English abstract).

    Google Scholar

    [43] Li S, Wilde S A, Wang T. 2013. Early Permian post−collisional high−K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 179: 99−119. doi: 10.1016/j.lithos.2013.08.002

    CrossRef Google Scholar

    [44] Li X, Yu J, Wang G, et al. 2012. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance[J]. Geological Bulletin of China, 31(12): 2025−2031 (in Chinese with English abstract).

    Google Scholar

    [45] Li X M, Yu J Y, Wang G Q, et al. 2011. LA−ICP−MS zircon U−Pb dating of Devonian Sangejing formation and Dundunshan group in Hongliuyuan, Beishan area, Gansu Province[J]. Geological Bulletin of China, 30(10): 1501−1507 (in Chinese with English abstract).

    Google Scholar

    [46] Li X F, Zhang C L, Li L, et al. 2015. Formation age, geochemical characteristics of the Mingshujing pluton in Beishan area of Gansu Province and its geological significance[J]. Acta Petrologica Sinica, 31(9): 2521−2538 (in Chinese with English abstract).

    Google Scholar

    [47] Liu G, Zhang Z, Dong H, et al. 2021. Geochemical and geochronological characteristics and geological significance of early Carboniferous monzogranite in Biaoshandong area, Beishan District, Inner Mongolia[J]. Mineralogy and Petrology, 41(4): 32−43 (in Chinese with English abstract).

    Google Scholar

    [48] Liu Q, Zhao G, Sun M, et al. 2015. Ages and tectonic implications of Neoproterozoic ortho− and paragneisses in the Beishan Orogenic Belt, China[J]. Precambrian Research, 266: 551−578. doi: 10.1016/j.precamres.2015.05.022

    CrossRef Google Scholar

    [49] Lv X, Yu X, Du Z, et al. 2022. Late Devonian magmatic event in the South Beishan orogenic belt, Gansu: Constraints from zircon U−Pb chronology, geochemistry and Sr−Nd−Hf isotopes[J]. Acta Petrologica Sinica, 38(3): 693−712 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.03.07

    CrossRef Google Scholar

    [50] Mao Q, Xiao W, Ao S, et al. 2023. Final Amalgamation Processes of the Southern Altaids: Insights from the Triassic Houhongquan Ophiolitic Mélange in the Beishan Orogen (NW China)[J]. Lithosphere, 2023(1): 1988410.

    Google Scholar

    [51] Mao Q G, Xiao W J, Windley B F, et al. 2012. The Liuyuan complex in the Beishan, NW China: A Carboniferous–Permian ophiolitic fore−arc sliver in the southern Altaids[J]. Geological Magazine, 149(03): 483−506. doi: 10.1017/S0016756811000811

    CrossRef Google Scholar

    [52] Meng L, Guan Y, Qi L, et al. 1995. Gravity field and deep crustal structure in Golmud−Ejinqi geoscience transection and nearby area[J]. Acta Geophysica Sinica, 38: 36−45 (in Chinese with English abstract).

    Google Scholar

    [53] Meng Q, Xu C, Zhang Z, et al. 2021. The geochemical, chronological characteristics and geological significance of the Arminwusu Gongpoquan Formation metavolcanic rocks in Beishan area, Inner Mongolia[J]. Mineralogy and Petrology, 41(1): 67−79 (in Chinese with English abstract).

    Google Scholar

    [54] Niu W, Xin H, Duan L, et al. 2019. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia−New understanding based on the geological map of Qinghegou Sheet (1∶50000)[J]. Geology in China, 46(5): 977−994 (in Chinese with English abstract).

    Google Scholar

    [55] Niu W, Xin H, Duan L, et al. 2020. Geochemical characteristics, zircon U−Pb age of SSZ ophiolite in the Baiheshan area of the Beishan orogenic belt, Inner Mongolia, and its indication for the evolution of the Paleo−Asian Ocean[J]. Geological Bulletin of China, 39(9): 1317−1329 (in Chinese with English abstract).

    Google Scholar

    [56] Niu Y, Lu J, Liu C, et al. 2018. Geochronology and distribution of the Upper Carboniferous–Lower Permian Ganquan Formation in the Beishan Region, northwestern China and its tectonic implication[J]. Geological Review, 64(4): 1131−1148 (in Chinese with English abstract).

    Google Scholar

    [57] Niu Y, Song B, Zhou J, et al. 2020. Lithofacies and chronology of volcano−sedimentary sequence in the southern Beishan Region, Central Asian Orogenic Belt and its paleogeographical implication[J]. Acta Geologica Sinica, 94(2): 615−633 (in Chinese with English abstract).

    Google Scholar

    [58] Pan J, Guo Z, Liu C, et al. 2008. Geochronology, geochemistry and tectonic implications of Permian basalts in Hongliuhe area on the border between Xinjiang and Gansu[J]. Acta Petrologica Sinica, 24(4): 793−802 (in Chinese with English abstract).

    Google Scholar

    [59] Pan Z, Wang S, Zhang L, et al. 2021. Early Silurian magma evolution in the Eastern Beishan Orogenic Belt—Geochemical and chronological constraints from the Jidong granodiorite[J]. Journal of Hebei GEO University, 44(6): 1−10 (in Chinese with English abstract).

    Google Scholar

    [60] Qu J F, Xiao W J, Windley B F, et al. 2011. Ordovician eclogites from the Chinese Beishan: implications for the tectonic evolution of the southern Altaids[J]. Journal of Metamorphic Geology, 29(8): 803−820.

    Google Scholar

    [61] Ren B, He S, Yao W, et al. 2001. Rb−Sr isotope age of Niujuanzi ophiolite and its tectonic significance in Beishan district, Gansu[J]. Northwestern Geology, 34(2): 21−27 (in Chinese with English abstract).

    Google Scholar

    [62] Ren B, Ren Y, Niu W, et al. 2019. Zircon U−Pb ages and Hf isotope characteristics of the volcanic rocks from Queershan Group in the Hazhudongshan area of Beishan, Inner Mongolia and their geological significance[J]. Earth Science, 44(1): 298−311 (in Chinese with English abstract).

    Google Scholar

    [63] Ren Y, Ren B, Niu W, et al. 2019. Carboniferous volcanics from the Baishan formation in the Hazhu area, Inner Mongolia: implications for the late Paleozoic active continental margin magmatism in the northern Beishan[J]. Earth Science, 44(1): 312−327 (in Chinese with English abstract).

    Google Scholar

    [64] Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [65] Şengör A M C, Sunal G, Natal'in B A, et al. 2022. The Altaids: A review of twenty−five years of knowledge accumulation[J]. Earth−Science Reviews, 228: 104013.

    Google Scholar

    [66] Shi Y, Zhang W, Kröner A, et al. 2018. Cambrian ophiolite complexes in the Beishan area, China, southern margin of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 153: 193−205. doi: 10.1016/j.jseaes.2017.05.021

    CrossRef Google Scholar

    [67] Song D, Xiao W, Ao S, et al. 2024. Contemporaneous closure of the Paleo−Asian Ocean in the Middle−Late Triassic: A synthesis of new evidence and tectonic implications for the final assembly of Pangea[J]. Earth−Science Reviews, 253: 104771.

    Google Scholar

    [68] Song D, Xiao W, Han C, et al. 2013a. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U–Pb and Hf isotopic data of high−grade complexes[J]. Precambrian Research, 227: 368−388.

    Google Scholar

    [69] Song D, Xiao W, Han C, et al. 2013b. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids[J]. International Geology Review, 55(14): 1705−1727. doi: 10.1080/00206814.2013.792515

    CrossRef Google Scholar

    [70] Song D, Xiao W, Han C, et al. 2018. Accretionary processes of the central segment of Beishan: Constraints from structural deformation and 40Ar−39Ar geochronology[J]. Acta Petrologica Sinica, 34(7): 2087−2098 (in Chinese with English abstract).

    Google Scholar

    [71] Song D, Xiao W, Han C, et al. 2014. Polyphase deformation of a Paleozoic forearc–arc complex in the Beishan orogen, NW China[J]. Tectonophysics, 632: 224−243.

    Google Scholar

    [72] Song D, Xiao W, Han C, et al. 2013c. Provenance of metasedimentary rocks from the Beishan orogenic collage, southern Altaids: Constraints from detrital zircon U–Pb and Hf isotopic data[J]. Gondwana Research, 24(3/4): 1127−1151. doi: 10.1016/j.gr.2013.02.002

    CrossRef Google Scholar

    [73] Song D, Xiao W, Windley B F, et al. 2015. A Paleozoic Japan−type subduction−accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 224/225: 195−213.

    Google Scholar

    [74] Song D, Xiao W, Windley B F, et al. 2016. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt[J]. Tectonophysics, 688: 135−147. doi: 10.1016/j.tecto.2016.09.012

    CrossRef Google Scholar

    [75] Song T, Wang J, Lin H, et al. 2008. The geological features of ophiolites of Xiaohuangshan in Beishan area, Inner Mongolia[J]. Northwestern Geology, 41(3): 55−63 (in Chinese with English abstract).

    Google Scholar

    [76] Sun H, Lv Z, Yu X, et al. 2020. Early Mesozoic tectonic evolution of Beishan Orogenic Belt: Constraints from chronology and geochemistry of the Late Triassic diabase dyke in Liuyuan area, Gansu Province[J]. Acta Petrologica Sinica, 36(6): 1755−1768 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.07

    CrossRef Google Scholar

    [77] Sun X, Wang H, Li T, et al. 2021. LA−ICP−MS zircon U−Pb ages of the granodiorites from Shuangfengshan in Beishan Mountain, Gansu Province, and its tectonic significance[J]. Acta Petrologica et Mineralogica, 40(2): 171−184 (in Chinese with English abstract).

    Google Scholar

    [78] Tang W, Xu L, Fei G, et al. 2024. Study of geochronology, geochemical characteristics and geological implications of quartz diorite in Mingshui area, Beishan, Gansu Province[J]. Mineralogy and Petrology, 44(2): 30−46 (in Chinese with English abstract).

    Google Scholar

    [79] Tian Z, Xiao W, Shan Y, et al. 2013. Mega−fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo−Triassic termination of the Altaids[J]. Journal of Structural Geology, 52: 119−135.

    Google Scholar

    [80] Tian Z, Xiao W, Sun J, et al. 2015. Triassic deformation of Permian Early Triassic arc−related sediments in the Beishan (NW China): Last pulse of the accretionary orogenesis in the southernmost Altaids[J]. Tectonophysics, 662(Supplement C): 363−384.

    Google Scholar

    [81] Tian Z, Xiao W, Windley B F, et al. 2014. Structure, age, and tectonic development of the Huoshishan–Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids[J]. Gondwana Research, 25(2): 820−841. doi: 10.1016/j.gr.2013.05.006

    CrossRef Google Scholar

    [82] Tian Z, Xiao W, Windley B F, et al. 2017. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan–Tianshan orogenic collages (NW China)[J]. International Journal of Earth Sciences, 106: 2319−2342.

    Google Scholar

    [83] Ulmius J, Andersson J, Möller C. 2015. Hallandian 1.45Ga high−temperature metamorphism in Baltica: P–T evolution and SIMS U–Pb zircon ages of aluminous gneisses, SW Sweden[J]. Precambrian Research, 265: 10−39. doi: 10.1016/j.precamres.2015.04.004

    CrossRef Google Scholar

    [84] Wang E, Wu L, Zhai X, et al. 2022. Geochronology, Petrogenesis and Tectonic Implications of Huaniushan Diorite Porphyrite from the Gansu Beishan Area in the Southern Central Asian Orogenic Belt[J]. Earth Science, 47(9): 3285−3300 (in Chinese with English abstract).

    Google Scholar

    [85] Wang E, Zhai X, Chen W, et al. 2024. Discovery of Neoproterozoic magmatic rocks relating to the Paleo−Asian Ocean open in Beishan area[J]. Geological Bulletin of China, in press (in Chinese with English abstract).

    Google Scholar

    [86] Wang F, Luo M, He Z, et al. 2024a. Mid−Cretaceous Accelerated Cooling of the Beishan Orogen, NW China: Evidence from Apatite Fission Track Thermochronology[J]. Lithosphere, 2023(Special 14): liohosphere-2023-239.

    Google Scholar

    [87] Wang F, Wei Z, Zhang G, et al. 2004. New Silurian stratigraphic data in Hongshishan area, northern Beishan, Gansu Province[J]. Geological Bulletin of China, 23(11): 1162−1163 (in Chinese).

    Google Scholar

    [88] Wang G, Li X, Xu X, et al. 2014. Ziron U−Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 30(6): 1685−1694 (in Chinese with English abstract).

    Google Scholar

    [89] Wang G, Li X, Xu X, et al. 2021. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 40(1): 71−81 (in Chinese with English abstract).

    Google Scholar

    [90] Wang H, Guo F, Zhao H, et al. 2020. Determination of Silurian intrusive rocks in Mazongshan area, Beishan, Gansu and its tectonic significance[J]. Gansu Geology, 29(3−4): 13−21 (in Chinese with English abstract).

    Google Scholar

    [91] Wang L, Yang J, Xie C, et al. 2007. The discovery and geological significance of an early Paleozoic ophiolite melange belt in the Huoshishan part of Beishan Mountain, Gansu Province, China[J]. Geoscience, 21(3): 451−456 (in Chinese with English abstract).

    Google Scholar

    [92] Wang S, Zhang K, Song B, et al. 2018a. Detrital Zircon U−Pb Geochronology from Greywackes in the Niujuanzi Ophiolitic Mélange, Beishan Area, NW China: Provenance and Tectonic Implications[J]. Journal of Earth Science, 29(1): 103−113. doi: 10.1007/s12583-018-0824-2

    CrossRef Google Scholar

    [93] Wang S, Zhang K, Song B, et al. 2017a. Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage[J]. International Journal of Earth Sciences, 2017: 1−21.

    Google Scholar

    [94] Wang X, Yuan C, Zhang Y, et al. 2018b. S−type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition[J]. Journal of Asian Earth Sciences, 153: 206−222. doi: 10.1016/j.jseaes.2017.07.037

    CrossRef Google Scholar

    [95] Wang Y, Luo Z, Santosh M, et al. 2017b. The Liuyuan Volcanic Belt in NW China revisited: evidence for Permian rifting associated with the assembly of continental blocks in the Central Asian Orogenic Belt[J]. Geological Magazine, 154(2): 265−285. doi: 10.1017/S0016756815001077

    CrossRef Google Scholar

    [96] Wang Z, Zhang J, Wu C, et al. 2024b. A uniform basement: Implications for the tectonics of Beishan Orogenic Belt in the southern Central Asian Orogenic Belt[J]. Precambrian Research, 404: 107340.

    Google Scholar

    [97] Wei X, Gong Q, Liang H, et al. 2000. Metamorphic−deformation and evolutionary characteristics of Pre−Changcheng Dunhuang terrain occuring on Mazongshan upwelling area[J]. Acta Geologica Gansu, 9(1): 36−43 (in Chinese with English abstract).

    Google Scholar

    [98] Wei X, Gong Q, Liang M, et al. 1999. Characteristics and tectonic environment of early Proterozoic volcanic rocks in Cahulehade area, Beishan[J]. Acta Geologica Gansu, 8(2): 23−27 (in Chinese with English abstract).

    Google Scholar

    [99] Wei Y, Yan T, Yang W, et al. 2020. The establishment of Late Paleozoic stratigraphic framework in the northern belt of Beishan orogenic belt of Inner Mongolia[J]. Geological Bulletin of China, 39(9): 1367−1388 (in Chinese with English abstract).

    Google Scholar

    [100] Wu P, Wang G, Li X, et al. 2012. The age of Niujuanzi ophiolite in Beishan area of Gansu Province and its geological significance[J]. Geological Bulletin of China, 31(12): 2032−2037 (in Chinese with English abstract).

    Google Scholar

    [101] Xiao W, Shu L, Gao J, et al. 2008. Continental dynamics of the central Asian orogenic belt and its metallogeny[J]. Xinjiang Geology, 26(1): 4−8 (in Chinese with English abstract).

    Google Scholar

    [102] Xiao W, Windley B F, Han C, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [103] Xiao W, Windley B F, Sun S, et al. 2015. A Tale of Amalgamation of Three Permo−Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 43(1): 477−507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [104] Xiao W J, Mao Q G, Windley B F, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553−1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [105] Xie J, Di P, Yang J, et al. 2018. LA−ICP−MS zircon U−Pb age, geochemistry and tectonic implications of metamorphic dacite from Huanjiushan group in Beishan area, Gansu, China[J]. Northwest Geology, 51(1): 54−64 (in Chinese with English abstract).

    Google Scholar

    [106] Xin H, Niu W, Tian J, et al. 2020. Spatio−temporal structure of Beishan orogenic belt and evolution of Paleo−Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 39(9): 1297−1316 (in Chinese with English abstract).

    Google Scholar

    [107] Xu W, Xu X, Niu Y, et al. 2019. Geochronology and petrogenesis of the Permian marine basalt in the southern Beishan region and their tectonic implications[J]. Acta Geologica Sinica, 93(8): 1928−1953 (in Chinese with English abstract).

    Google Scholar

    [108] Yan T, Xin H, Wei Y, et al. 2020. A new thinking on the process of ocean−continent transition in Beishan orogenic belt of Inner Mongolia: Evidence from the Devonian arc granite in the south of Dahong Mountain[J]. Geological Bulletin of China, 39(9): 1341−1366 (in Chinese with English abstract).

    Google Scholar

    [109] Yang H, Li Y, Zhao G, et al. 2010. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology, 43(1): 26−36 (in Chinese with English abstract).

    Google Scholar

    [110] Yang J, 2017. Geochemical characteristics and tectonic significance of the Early Paleozoic−Early Mesozoic granite in Huaniushan area, Beishan, Lanzhou University (in Chinese with English abstract).

    Google Scholar

    [111] Yang W, Yan T, Zhang Y, et al. 2020. Zircon U−Pb age and geochemistry of TTG rocks in Xiaohongshan area of the Beishan orogenic belt, Inner Mongolia, and their constraints on the properties of the Baihe Mountain tectonic belt[J]. Geological Bulletin of China, 39(9): 1404−1421 (in Chinese with English abstract).

    Google Scholar

    [112] Yang Z, Zhao J, Jiang D, et al. 2021. Chronological and geochemical characteristics of the porphyritic granodiorite in the Qiahongquan area, Beishan region, Gansu Province, China and their tectonic significances[J]. Bulletin of Mineralogy, 40(1): 228−241 (in Chinese with English abstract).

    Google Scholar

    [113] Yang Z, Zhao Q, Zhang J, et al. 2022. Chronological and Geochemical Characteristics of the Heishantou Quartz−monzodiorite in the Beishan Area, Gansu Province, China, and Their Geological Significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1165−1177 (in Chinese with English abstract).

    Google Scholar

    [114] Yang Z X, Ding S H, Zhang J, et al. 2021. The discovery of Early Devonian adakites in Beishan orogenic belt and its geological significance[J]. Acta Petrologica Et Mineralogica, 40(2): 185−201 (in Chinese with English abstract).

    Google Scholar

    [115] Ye X, Zong K, Zhang Z, et al. 2013. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance[J]. Geological Bulletin of China, 32(2/3): 307−317 (in Chinese with English abstract).

    Google Scholar

    [116] Yu F S, Li J B, Wang T. 2006. The U−Pb isotopic age of zircon from Hongliuhe ophiolites in east Tianshan mountains, northwest China[J]. Acta Geoscientia Sinica, 27(3): 213−216 (in Chinese with English abstract).

    Google Scholar

    [117] Yu J, Guo L, Li J, et al. 2016. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China[J]. Lithos, 256/257: 250−268.

    Google Scholar

    [118] Yu J, Ji B, Guo L, et al. 2018. Geological characteristics and age determination of the Palaeoproterozoic Gudongjing Group complex in the Beishan Mountain, Gansu Province[J]. Geological Bulletin of China, 37(4): 704−715 (in Chinese with English abstract).

    Google Scholar

    [119] Yu J, Li X, Wang G, et al. 2012. Zircon U−Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu−Inner Mongolia border area and their significance[J]. Geological Bulletin of China, 31(12): 2038−2045 (in Chinese with English abstract).

    Google Scholar

    [120] Yuan Y, Zong K, Cawood P A, et al. 2019. Implication of Mesoproterozoic (~1.4 Ga) magmatism within microcontinents along the southern Central Asian Orogenic Belt[J]. Precambrian Research, 327: 314−326. doi: 10.1016/j.precamres.2019.03.014

    CrossRef Google Scholar

    [121] Yuan Y, Zong K, He Z, et al. 2015. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt[J]. Precambrian Research, 266: 409−424. doi: 10.1016/j.precamres.2015.05.034

    CrossRef Google Scholar

    [122] Zhang G, Xin H, Duan L, et al. 2020a. Geochemical characteristics and tectonic implications of the end Early Permian high magnesium gabbro from northern Beishan orogenic belt, Inner Mongolia[J]. Earth Sci, 47(9): 3258−3269 (in Chinese with English abstract).

    Google Scholar

    [123] Zhang J, Cunningham D. 2012a. Kilometer−scale refolded folds caused by strike−slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31(3): TC3009.

    Google Scholar

    [124] Zhang W, Feng J, Zheng R, et al. 2011. LA−ICP MS zircon U−Pb ages of the granites from the south of Yin'aoxia and their tectonic significances[J]. Acta Petrologica Sinica, 27(6): 1649−1661 (in Chinese with English abstract).

    Google Scholar

    [125] Zhang W, Pease V, Meng Q, et al. 2015a. Timing, petrogenesis, and setting of granites from the southern Beishan late Palaeozoic granitic belt, Northwest China and implications for their tectonic evolution[J]. International Geology Review, 57(16): 1975−1991. doi: 10.1080/00206814.2015.1045944

    CrossRef Google Scholar

    [126] Zhang W, Pease V, Meng Q, et al. 2017. Recognition of a Devonian‐early Mississippian plutonic belt in the eastern Beishan area, Northwest China, and its tectonic implications[J]. Geological Journal, 53(3): 803−819.

    Google Scholar

    [127] Zhang W, Pease V, Wu T, et al. 2012b. Discovery of an adakite−like pluton near Dongqiyishan (Beishan, NW China) — Its age and tectonic significance[J]. Lithos, 142/143: 148−160.

    Google Scholar

    [128] Zhang W, Wu T R, He Y K, et al. 2010. LA−ICP−MS zircon U−Pb ages of Xijianquanzi alkali−rich potassium−high granites in Beishan, Gansu Province, and their tectonic significance[J]. Acta petrologica et mineralogica, 29(6): 719−731 (in Chinese with English abstract).

    Google Scholar

    [129] Zhang W, Wu T, Zheng R, et al. 2012c. Post−collisional Southeastern Beishan granites: Geochemistry, geochronology, Sr–Nd–Hf isotopes and their implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 58: 51−63. doi: 10.1016/j.jseaes.2012.07.004

    CrossRef Google Scholar

    [130] Zhang Y, Dostal J, Zhao Z, et al. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust–mantle interaction[J]. Gondwana Research, 20(4): 816−830. doi: 10.1016/j.gr.2011.03.008

    CrossRef Google Scholar

    [131] Zhang Y Y, Guo Z J, 2008. Accurate constraint on formation and emplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu Provinces and its tectonic implications[J]. Acta Petrologica Sinica, 24(4): 803−809 (in Chinese with English abstract).

    Google Scholar

    [132] Zhang Y, Yuan C, Sun M, et al. 2015b. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere–lithosphere interaction in response to slab break−off[J]. Lithos, 233: 174−192. doi: 10.1016/j.lithos.2015.04.001

    CrossRef Google Scholar

    [133] Zhang Z, Duan B, Meng Q, et al. 2017. LA−ICP−MS zircon U−Pb dating of amphibolites of the Beishan group in the Beishan area, Inner Mongolia and its geological significance[J]. Geology and Exploration, 53(6): 1129−1139 (in Chinese with English abstract).

    Google Scholar

    [134] Zhang Z, Xin H, Cheng H, et al. 2020b. The discovery of the Elegen ophiolite in Beishan orogenic belt, Inner Mongolia: Evidence for the east extension of the Hongshishan−Baiheshan ophiolite belt[J]. Geological Bulletin of China, 39(9): 1389−1403 (in Chinese with English abstract).

    Google Scholar

    [135] Zhao H, Liang J, Wang J, et al. 2020. Geochronology, geochemical characteristics and tectonic significance of the Shazaoyuan composite pluton in the southern Beishan Mountains, Gansu Province, China[J]. Acta Geologica Sinica, 94(2): 396−425 (in Chinese with English abstract).

    Google Scholar

    [136] Zhao Z, Guo Z, Wang Y, 2007. Geochronology, geochemical characteristics and tectonic implications of the granitoids from Liuyuan area, Beishan, Gansu province, northwest China[J]. Acta Petrologica Sinica, 23(8): 1847−1860 (in Chinese with English abstract).

    Google Scholar

    [137] Zheng R, Li J, Xiao W, et al. 2018. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 107(2): 729−755. doi: 10.1007/s00531-017-1525-2

    CrossRef Google Scholar

    [138] Zheng R, Li J, Zhang J, et al. 2020. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high−Mg diorite in the southern Beishan[J]. Lithos, 358−359: 105406. doi: 10.1016/j.lithos.2020.105406

    CrossRef Google Scholar

    [139] Zheng R, Wu T, Zhang W, et al. 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt[J]. Journal of Asian Earth Sciences, 62: 463−475.

    Google Scholar

    [140] Zheng R, Wu T, Zhang W, et al. 2012a. Geochemical characteristics and tectonic setting of the Yueyashan−Xichangjin ophiolite in the Beishan area[J]. Acta Geologica Sinica, 86(6): 961−971 (in Chinese with English abstract).

    Google Scholar

    [141] Zheng R, Wu T, Zhang W, et al. 2012b. Early Devonian tectono−magmatic events in the Middle Beishan, Gansu Province: evidence from chronology and geochemistry of Gongpoquan Granite[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(4): 603−616 (in Chinese with English abstract).

    Google Scholar

    [142] Zheng Y, Zhang Q, Wang Y, et al. 1996. Great Jurassic thrust sheets in Beishan (North Mountains)−−Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111−1126.

    Google Scholar

    [143] Zhou G, 1988. A discovery of the ophiolite suite on the northeastern margin of Talimu palaeo−continent in the Caledonian stage and its significance in tectonics[J]. Journal of Nanjing University (Natural Sciences Edition), 24(1): 39−54 (in Chinese with English abstract).

    Google Scholar

    [144] Zhou G, Chen X, Zhao J. 2001. The metamorphic rocks associated with the Shibanjing−Xiaohuangshan Ophiolite from the Inner Mongolia Autonomous Region and its evolution history[J]. Geological Journal of China Universities, 7(3): 329−344 (in Chinese with English abstract).

    Google Scholar

    [145] Zhu J, Lü X, Peng S, et al. 2015. LA−ICP−MS zircon U−Pb geochronology and geochemical characteristics of the quartz syenite porphyry in the Xiaoxigong gold deposit and their geological implications[J]. Geological Bulletin of China, 34(8): 1460−1469 (in Chinese with English abstract).

    Google Scholar

    [146] Zong K, Klemd R, Yuan Y, et al. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high−grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290: 32−48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

    [147] Zuo G, Liu C, Bai W, et al. 1995. Volcano−molasse geological structure and geochemical signature in Devonian period collision orogenic in Beishan, Gansu−Inner Mongolia[J]. Acta Geologica Gansu, 4(1): 35−43 (in Chinese with English abstract).

    Google Scholar

    [148] Zuo G, Liu Y, Liu C. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous region and Inner Mongolia Autonomous Region[J]. Acta Geologica Gansu, 12(1): 1−15 (in Chinese with English abstract).

    Google Scholar

    [149] Zuo G, Zhang S, He G, et al. 1990. Early Paleozoic plate tectonics in Beishan area[J]. Scientia Geologia Sinica, 25(4): 305−314 (in Chinese with English abstract).

    Google Scholar

    [150] 白荣龙, 虎金荣, 赵甫峰, 等. 2022a. 甘肃北山造山带双尖山金矿区正长花岗岩锆石U−Pb年龄和Hf同位素特征及地质意义[J]. 矿物岩石地球化学通报, 41(2): 274−286.

    Google Scholar

    [151] 白荣龙, 虎金荣, 赵甫峰, 等. 2022b. 北山造山带红柳河槽-跃进山地区石炭纪花岗岩成因及构造岩浆演化研究[J]. 岩石学报, 38(3): 713−742.

    Google Scholar

    [152] 陈超, 潘志龙, 修迪, 等. 2017. 北山地区红柳园组沉积时代、沉积环境及源区构造背景分析[J]. 沉积学报, 35(3): 470−479.

    Google Scholar

    [153] 陈智斌, 于洋, 薄海军, 2020. 内蒙古额济纳地区奥陶纪火山岩地球化学特征及其地质意义[J]. 地球科学, 45(2): 503−518.

    Google Scholar

    [154] 杜庆祥, 伍赛男, 张永, 等. 2023. 内蒙古北山造山带圆包山—希热哈达地区白山组火山岩锆石U−Pb年龄、地球化学特征及对古亚洲洋俯冲作用的启示[J]. 地质通报, 42(11): 1875−1893. doi: 10.12097/j.issn.1671-2552.2023.11.007

    CrossRef Google Scholar

    [155] 冯继承, 张文, 吴泰然, 等. 2012. 甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义[J]. 北京大学学报(自然科学版), 48(1): 61−70.

    Google Scholar

    [156] 甘肃省地质调查院. 2001. 中华人民共和国地质图: K47 C 003001(马鬃山幅): 1: 25万[R].

    Google Scholar

    [157] 甘肃省地质局第二区域地质测量队. 1969. 中华人民共和国地质图: K-47-XIX 牛圈子幅(1: 20万)[R].

    Google Scholar

    [158] 高俊, 朱明田, 王信水, 等. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 93(1): 24−71. doi: 10.3969/j.issn.0001-5717.2019.01.004

    CrossRef Google Scholar

    [159] 龚全胜, 刘明强, 李海林, 等. 2002. 甘肃北山造山带类型及基本特征[J]. 西北地质, 35(3): 28−34. doi: 10.3969/j.issn.1009-6248.2002.03.004

    CrossRef Google Scholar

    [160] 管诰, 郑小明, 肖昱, 等. 2022. 甘肃红石山北泥盆纪雀儿山群火山岩锆石U−Pb年龄及其岩石地球化学特征[J]. 矿产勘查, 13(12): 1747−1760.

    Google Scholar

    [161] 郭召杰, 史宏宇, 张志诚, 等. 2006. 新疆甘肃交界红柳河蛇绿岩中伸展构造与古洋盆演化过程[J]. 岩石学报, 22(1): 95−102.

    Google Scholar

    [162] 何世平, 周会武, 任秉琛, 等. 2005. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 38(3): 6−15. doi: 10.3969/j.issn.1009-6248.2005.03.002

    CrossRef Google Scholar

    [163] 贺振宇, 孙立新, 毛玲娟, 等. 2015. 北山造山带南部片麻岩和花岗闪长岩的锆石U−Pb定年和Hf同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 60(4): 389−399.

    Google Scholar

    [164] 贺振宇, 宗克清, 姜洪颖, 等. 2014. 北山造山带南部早古生代构造演化: 来自花岗岩的约束[J]. 岩石学报, 30(8): 2324−2338.

    Google Scholar

    [165] 侯青叶, 王忠, 刘金宝, 等. 2012. 北山月牙山蛇绿岩地球化学特征及SHRIMP定年[J]. 现代地质, 26(5): 1008−1018. doi: 10.3969/j.issn.1000-8527.2012.05.022

    CrossRef Google Scholar

    [166] 胡小春, 杨镇熙, 康维良, 等. 2023. 甘肃北山前红泉二长花岗岩地球化学特征、锆石U−Pb年龄及其地质意义[J]. 矿物岩石, 43(4): 49−59.

    Google Scholar

    [167] 胡新茁, 杨济远, 邓雯, 等. 2024. 内蒙古北山地区小黄山一带片麻状花岗岩形成时代、成因及构造环境[J]. 地质通报, 43(6): 1059−1071.

    Google Scholar

    [168] 胡新茁, 赵国春, 胡新悦, 等. 2015. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J]. 地质通报, 34(2/3): 425−436. doi: 10.3969/j.issn.1671-2552.2015.02.019

    CrossRef Google Scholar

    [169] 黄博涛, 王国强, 卜涛, 等. 2021. 甘肃北山野马大泉志留纪花岗岩的成因和构造意义[J]. 地球科学, 46(11): 3993−4005.

    Google Scholar

    [170] 黄增保, 金霞. 2006. 甘肃红石山蛇绿岩地球化学特征及构造环境[J]. 地质科学, 41(4): 601−611. doi: 10.3321/j.issn:0563-5020.2006.04.005

    CrossRef Google Scholar

    [171] 霍宁, 郭谦谦, 陈艺超, 等. 2022. 北山中部古硐井群物源区性质与构造意义[J]. 岩石学报, 38(4): 1253−1279. doi: 10.18654/1000-0569/2022.04.17

    CrossRef Google Scholar

    [172] 贾元琴, 赵志雄, 许海, 等. 2016. 北山风雷山地区白山组流纹岩LA−ICP−MS锆石U−Pb年龄及构造环境[J]. 中国地质, 43(1): 91−98. doi: 10.3969/j.issn.1000-3657.2016.01.006

    CrossRef Google Scholar

    [173] 姜洪颖, 贺振宇, 宗克清, 等. 2013. 北山造山带南缘北山杂岩的锆石U−Pb定年和Hf同位素研究[J]. 岩石学报, 29(11): 3949−3967.

    Google Scholar

    [174] 李春昱, 王荃, 刘雪亚, 汤耀庆. 1984. 亚洲大地构造的演化[J]. 中国地质科学院院报, 10: 3−11.

    Google Scholar

    [175] 李锦轶, 肖序常, 汤耀庆, 等. 1992. 新疆北部金属矿产与板块构造[J]. 新疆地质, 10(2): 138−146.

    Google Scholar

    [176] 李敏, 任邦方, 段霄龙, 等. 2020. 内蒙古北山造山带小红山地区三叠纪花岗岩成因——来自锆石U−Pb年龄和Hf同位素的约束[J]. 地质通报, 39(9): 1422−1435.

    Google Scholar

    [177] 李敏, 辛后田, 任邦方, 等. 2019. 内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J]. 地球科学, 44(1): 328−343.

    Google Scholar

    [178] 李舢. 2013. 北山—内蒙古地区三叠纪花岗岩及其构造意义[D]. 中国地质科学院博士学位论文.

    Google Scholar

    [179] 李舢, 王涛, 童英, 等. 2009. 北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义[J]. 岩石矿物学杂志, 28(5): 407−422. doi: 10.3969/j.issn.1000-6524.2009.05.001

    CrossRef Google Scholar

    [180] 李舢, 王涛, 童英, 等. 2011. 北山辉铜山泥盆纪钾长花岗岩锆石 U−Pb 年龄, 成因及构造意义[J]. 岩石学报, 27(10): 3055−3070.

    Google Scholar

    [181] 李向民, 余吉远, 王国强, 等. 2012. 甘肃北山地区芨芨台子蛇绿岩LA−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质通报, 31(12): 2025−2031. doi: 10.3969/j.issn.1671-2552.2012.12.011

    CrossRef Google Scholar

    [182] 李向民, 余吉远, 王国强, 等. 2011. 甘肃北山红柳园地区泥盆系三个井组和墩墩山群LA−ICP−MS锆石U−Pb测年及其意义[J]. 地质通报, 30(10): 1501−1507. doi: 10.3969/j.issn.1671-2552.2011.10.003

    CrossRef Google Scholar

    [183] 李小菲, 张成立, 李雷, 等. 2015. 甘肃北山明舒井岩体形成年龄、地球化学特征及其地质意义[J]. 岩石学报, 31(9): 2521−2538.

    Google Scholar

    [184] 刘广, 张正平, 董洪凯, 等. 2021. 内蒙古北山地区标山东一带早石炭世二长花岗岩地球化学、年代学特征及其地质意义[J]. 矿物岩石, 41(4): 32−43. doi: 10.3969/j.issn.1001-6872.2021.4.kwys202104004

    CrossRef Google Scholar

    [185] 吕鑫, 于晓飞, 杜泽忠, 等. 2022. 甘肃北山南带晚泥盆世岩浆事件: 锆石U−Pb年代学、地球化学和Sr−Nd−Hf同位素体系约束[J]. 岩石学报, 38(3): 693−712. doi: 10.18654/1000-0569/2022.03.07

    CrossRef Google Scholar

    [186] 孟令顺, 管烨, 齐立, 等. 1995. 格尔木-额济纳旗地学断面及其邻区重力场与深部地壳构造[J]. 地球物理学报, 38: 36−45. doi: 10.3321/j.issn:0001-5733.1995.z2.005

    CrossRef Google Scholar

    [187] 孟庆涛, 徐翠, 张正平, 等. 2021. 内蒙古北山地区阿民乌素公婆泉组变质火山岩年代学、地球化学特征及地质意义[J]. 矿物岩石, 41(1): 67−79.

    Google Scholar

    [188] 牛文超, 辛后田, 段连峰, 等. 2019. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 46(5): 977−994. doi: 10.12029/gc20190503

    CrossRef Google Scholar

    [189] 牛文超, 辛后田, 段连峰, 等. 2020. 内蒙古北山造山带百合山SSZ型蛇绿岩地球化学特征, 锆石U−Pb 年龄及其对古亚洲洋演化的指示[J]. 地质通报, 39(9): 1317−1329.

    Google Scholar

    [190] 牛亚卓, 卢进才, 刘池阳, 等. 2018. 甘肃北山地区上石炭统——下二叠统干泉组的时代、分布及其构造意义[J]. 地质论评, 64(4): 806−827.

    Google Scholar

    [191] 牛亚卓, 宋博, 周俊林, 等. 2020. 中亚造山带北山南部下泥盆统火山—沉积地层的岩相、时代及古地理意义[J]. 地质学报, 94(2): 615−633. doi: 10.3969/j.issn.0001-5717.2020.02.017

    CrossRef Google Scholar

    [192] 潘金花, 郭召杰, 刘畅, 等. 2008. 新甘交界红柳河地区二叠纪玄武岩年代学, 地球化学及构造意义[J]. 岩石学报, 24(4): 793−802.

    Google Scholar

    [193] 潘志龙, 王硕, 张立国, 等. 2021. 北山造山带东段早志留世岩浆演化特征——来自基东花岗闪长岩的地球化学和年代学约束[J]. 河北地质大学学报, 44(6): 1−10.

    Google Scholar

    [194] 任邦方, 任云伟, 牛文超, 等. 2019. 内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U−Pb年龄、Hf同位素特征及其地质意义[J]. 地球科学, 44(1): 298−311.

    Google Scholar

    [195] 任秉琛, 何世平, 姚文光, 等. 2001. 甘肃北山牛圈子蛇绿岩铷-锶同位素年龄及其大地构造意义[J]. 西北地质, 34(2): 21−27. doi: 10.3969/j.issn.1009-6248.2001.02.004

    CrossRef Google Scholar

    [196] 任云伟, 任邦方, 牛文超, 等. 2019. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物[J]. 地球科学, 44(1): 312−327.

    Google Scholar

    [197] 宋东方, 肖文交, 韩春明, 等. 2018. 北山中部增生造山过程: 构造变形和40Ar−39Ar年代学制约[J]. 岩石学报, 34(7): 2087−2098.

    Google Scholar

    [198] 宋泰忠, 王瑾, 林海, 等. 2008. 内蒙古北山地区小黄山蛇绿岩地质特征[J]. 西北地质, 41(3): 55−63. doi: 10.3969/j.issn.1009-6248.2008.03.005

    CrossRef Google Scholar

    [199] 孙海瑞, 吕志成, 于晓飞, 等. 2020. 甘肃柳园地区晚三叠世辉绿岩脉年代学和地球化学研究及其对北山造山带早中生代构造演化的指示[J]. 岩石学报, 36(6): 1755−1768. doi: 10.18654/1000-0569/2020.06.07

    CrossRef Google Scholar

    [200] 孙新春, 王怀涛, 李通国, 等. 2021. 甘肃北山双峰山花岗闪长岩锆石LA−ICP−MS定年及其构造意义[J]. 岩石矿物学杂志, 40(2): 171−184. doi: 10.3969/j.issn.1000-6524.2021.02.002

    CrossRef Google Scholar

    [201] 唐文轶, 徐磊, 费光春, 等. 2024. 甘肃省明水地区石英闪长岩年代学、地球化学特征及其地质意义[J]. 矿物岩石, 44(2): 30−46.

    Google Scholar

    [202] 王二腾, 翟新伟, 陈万峰, 等. 2024. 北山地区发现与古亚洲洋打开相关的新元古代岩浆岩[J/OL]. 地质通报, https://link.cnki.net/urlid/11.4648.P.20240229.1407.004.

    Google Scholar

    [203] 王二腾, 武磊, 翟新伟, 等. 2022. 中亚造山带南缘甘肃北山地区花牛山闪长玢岩地球化学特征及地质意义[J]. 地球科学, 47(9): 3285−3300. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209012

    CrossRef Google Scholar

    [204] 王方成, 魏志军, 张国英, 等. 2004. 甘肃北山北带红石山地区志留纪地层新资料[J]. 地质通报, 23(11): 1162−1163. doi: 10.3969/j.issn.1671-2552.2004.11.021

    CrossRef Google Scholar

    [205] 王国强, 李向民, 徐学义, 等. 2014. 甘肃北山红石山蛇绿岩锆石U−Pb年代学研究及地质意义[J]. 岩石学报, 30(6): 1685−1694.

    Google Scholar

    [206] 王国强, 李向民, 徐学义, 等. 2021. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 40(1): 71−81.

    Google Scholar

    [207] 王红杰, 郭峰, 赵海波, 等. 2020. 甘肃北山马鬃山地区志留纪侵入岩的厘定及其构造意义[J]. 甘肃地质, 29(3−4): 13−21.

    Google Scholar

    [208] 王立社, 杨建国, 谢春林, 等. 2007. 甘肃北山火石山地区早古生代蛇绿混杂岩的发现及其地质意义[J]. 现代地质, 21(3): 451−456. doi: 10.3969/j.issn.1000-8527.2007.03.003

    CrossRef Google Scholar

    [209] 卫彦升, 闫涛, 杨五宝, 等. 2020. 内蒙古北山造山带北带晚古生代地层时空格架的建立[J]. 地质通报, 39(9): 1367−1388.

    Google Scholar

    [210] 魏学平, 龚全胜, 梁明宏, 等. 2000. 马鬃山隆起区前长城系敦煌岩群变质变形和演化特征[J]. 甘肃地质学报, 9(1): 36−43.

    Google Scholar

    [211] 魏学平, 龚全胜, 梁明宏, 等. 1999. 北山草呼勒哈德地区早元古代火山岩特征及构造环境探讨[J]. 甘肃地质学报, 8(2): 23−27.

    Google Scholar

    [212] 武鹏, 王国强, 李向民, 等. 2012. 甘肃北山地区牛圈子蛇绿岩的形成时代及地质意义[J]. 地质通报, 31(12): 2032−2037. doi: 10.3969/j.issn.1671-2552.2012.12.012

    CrossRef Google Scholar

    [213] 肖文交, 舒良树, 高俊, 等. 2008. 中亚造山带大陆动力学过程与成矿作用[J]. 新疆地质, 26(1): 4−8. doi: 10.3969/j.issn.1000-8845.2008.01.002

    CrossRef Google Scholar

    [214] 肖文交, 宋东方, Windley B F, 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学, 49(10): 1512−1545.

    Google Scholar

    [215] 谢建强, 第鹏飞, 杨婧, 等. 2018. 甘肃北山地区花牛山群变英安岩LA−ICP−MS锆石U−Pb年龄、地球化学特征及其地质意义[J]. 西北地质, 51(1): 54−64. doi: 10.3969/j.issn.1009-6248.2018.01.007

    CrossRef Google Scholar

    [216] 辛后田, 牛文超, 田健, 等. 2020. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 39(9): 1297−1316.

    Google Scholar

    [217] 许伟, 徐学义, 牛亚卓, 等. 2019. 北山南部二叠纪海相玄武岩地球化学特征及其构造意义[J]. 地质学报, 93(8): 1928−1953. doi: 10.3969/j.issn.0001-5717.2019.08.008

    CrossRef Google Scholar

    [218] 闫涛, 辛后田, 卫彦升, 等. 2020. 对内蒙古北山造山带洋-陆转换认识的新思考——来自大红山南泥盆纪弧花岗岩的证据[J]. 地质通报, 39(9): 1341−1366.

    Google Scholar

    [219] 杨合群, 李英, 赵国斌, 等. 2010. 北山蛇绿岩特征及构造属性[J]. 西北地质, 43(1): 26−36. doi: 10.3969/j.issn.1009-6248.2010.01.002

    CrossRef Google Scholar

    [220] 杨婧. 2019. 北山花牛山早古生代—早中生代花岗岩类地球化学特征及构造意义研究[D]. 兰州大学硕士学位论文.

    Google Scholar

    [221] 杨五宝, 闫涛, 张永, 等. 2020. 内蒙古北山造山带小红山TTG岩石锆石U−Pb年龄、地球化学特征及其对百合山构造带性质的制约[J]. 地质通报, 39(9): 1404−1421.

    Google Scholar

    [222] 杨镇熙, 丁书宏, 张晶, 等. 2021a. 北山造山带早泥盆世埃达克岩的发现及地质意义[J]. 岩石矿物学杂志, 40(2): 185−201.

    Google Scholar

    [223] 杨镇熙, 赵吉昌, 荆德龙, 等. 2021b. 甘肃北山前红泉地区斑状花岗闪长岩年代学、地球化学特征及其构造意义[J]. 矿物岩石地球化学通报, 40(1): 228−241.

    Google Scholar

    [224] 杨镇熙, 赵青虎, 张晶, 等. 2022. 甘肃北山地区黑山头石英二长闪长岩年代学、地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 41(6): 1165−1177.

    Google Scholar

    [225] 叶晓峰, 宗克清, 张泽明, 等. 2013. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 32(2/3): 307−317. doi: 10.3969/j.issn.1671-2552.2013.02.010

    CrossRef Google Scholar

    [226] 于福生, 李金宝, 王涛. 2006. 东天山红柳河地区蛇绿岩U−Pb同位素年龄[J]. 地球学报, 27(3): 213−216. doi: 10.3321/j.issn:1006-3021.2006.03.004

    CrossRef Google Scholar

    [227] 余吉远, 计波, 过磊, 等. 2018. 甘肃北山地区古硐井群地质特征与时代厘定[J]. 地质通报, 37(4): 704−715.

    Google Scholar

    [228] 余吉远, 李向民, 王国强, 等. 2012. 甘肃北山地区辉铜山和帐房山蛇绿岩LA−ICP−MS锆石U−Pb年龄及地质意义[J]. 地质通报, 31(12): 2038−2045. doi: 10.3969/j.issn.1671-2552.2012.12.013

    CrossRef Google Scholar

    [229] 张国震, 辛后田, 段连峰, 等. 2022. 内蒙古北山造山带北部早二叠世末期高镁辉长岩地球化学特征及构造意义[J]. 地球科学, 47(9): 3258−3269. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209010

    CrossRef Google Scholar

    [230] 张文, 冯继承, 郑荣国, 等. 2011. 甘肃北山音凹峡南花岗岩体的锆石LA−ICP MS定年及其构造意义[J]. 岩石学报, 27(6): 1649−1661.

    Google Scholar

    [231] 张文, 吴泰然, 贺元凯, 等. 2010. 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA−ICP−MS定年及其构造意义[J]. 岩石矿物学杂志, 29(6): 719−731. doi: 10.3969/j.issn.1000-6524.2010.06.009

    CrossRef Google Scholar

    [232] 张元元, 郭召杰. 2008. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J]. 岩石学报, 24(4): 803−809.

    Google Scholar

    [233] 张正平, 段炳鑫, 孟庆涛, 等. 2017. 内蒙古北山地区北山岩群斜长角闪岩LA−ICP−MS锆石U−Pb定年及其地质意义[J]. 地质与勘探, 53(6): 1129−1139. doi: 10.3969/j.issn.0495-5331.2017.06.008

    CrossRef Google Scholar

    [234] 张正平, 辛后田, 程海峰, 等. 2020. 内蒙古北山造山带发现额勒根蛇绿岩——红石山-百合山蛇绿岩带东延的证据[J]. 地质通报, 39(9): 1389−1403.

    Google Scholar

    [235] 赵宏刚, 梁积伟, 王驹, 等. 2020. 甘肃北山南带沙枣园复式岩体年代学、地球化学特征及其构造意义[J]. 地质学报, 94(2): 396−425. doi: 10.3969/j.issn.0001-5717.2020.02.004

    CrossRef Google Scholar

    [236] 赵泽辉, 郭召杰, 王毅. 2007. 甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义[J]. 岩石学报, 23(8): 1847−1860. doi: 10.3969/j.issn.1000-0569.2007.08.007

    CrossRef Google Scholar

    [237] 郑荣国, 吴泰然, 张文, 等. 2012a. 北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J]. 地质学报, 86(6): 961−971.

    Google Scholar

    [238] 郑荣国, 吴泰然, 张文, 等. 2012b. 甘肃北山中带早泥盆世的构造-岩浆作用: 来自公婆泉花岗岩体年代学和地球化学证据[J]. 北京大学学报: 自然科学版, 48(4): 603−616.

    Google Scholar

    [239] 周国庆. 1988. 古塔里木大陆东北缘加里东期蛇绿岩套的发现及其构造意义[J]. 南京大学学报(自然科学), 24(1): 39−54.

    Google Scholar

    [240] 周国庆, 陈小明, 赵建新. 2001. 内蒙石板井-小黄山与蛇绿岩相伴的变质岩及其演化[J]. 高校地质学报, 7(3): 329−344. doi: 10.3969/j.issn.1006-7493.2001.03.009

    CrossRef Google Scholar

    [241] 朱江, 吕新彪, 彭三国, 等. 2015. 甘肃北山小西弓金矿区石英正长斑岩LA−ICP−MS锆石U−Pb年龄和地球化学特征[J]. 地质通报, 34(8): 1460−1469. doi: 10.3969/j.issn.1671-2552.2015.08.006

    CrossRef Google Scholar

    [242] 左国朝, 刘春燕, 白万成, 等. 1995. 北山泥盆纪碰撞造山火山-磨拉石地质构造及地球化学特征[J]. 甘肃地质学报, 4(1): 35−43.

    Google Scholar

    [243] 左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 12(1): 1−15.

    Google Scholar

    [244] 左国朝, 张淑玲, 何国琦, 等. 1990. 北山地区早古生代板块构造特征[J]. 地质科学, 25(4): 305−314.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(337) PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint