2024 Vol. 43, No. 12
Article Contents

WANG Sheng, JIANG Yingde, SUN Min, KAREL Schulmann, YUAN Chao. 2024. Crustal reworking and maturation in the Chinese Altai orogenic belt: Insights from magmatism, deformation and metamorphism. Geological Bulletin of China, 43(12): 2162-2180. doi: 10.12097/gbc.2024.07.070
Citation: WANG Sheng, JIANG Yingde, SUN Min, KAREL Schulmann, YUAN Chao. 2024. Crustal reworking and maturation in the Chinese Altai orogenic belt: Insights from magmatism, deformation and metamorphism. Geological Bulletin of China, 43(12): 2162-2180. doi: 10.12097/gbc.2024.07.070

Crustal reworking and maturation in the Chinese Altai orogenic belt: Insights from magmatism, deformation and metamorphism

More Information
  • Giant accretionary complexes form at active margins by scraping off oceanic sediments from the subducting plate. Whether or not those compositionally complicated accretionary complexes would be ultimately transformed into mature continent crust remains an unsolved question that calls for further investigation. The Chinese Altai section of the Central Asian Orogenic Belt (CAOB), the largest accretionary orogenic belt on the earth, preserves complicated tectono−thermal geological records and is characterized by formation of mature continental crust, making it a natural laboratory for studying the reworking of accretionary complexes and their evolution into mature continental crust. This paper focuses on the main orogenic period (Silurian−Devonian) of the Chinese Altai and systematically summarizes its recent research progresses in terms of metamorphism−deformation, anatexis, and granitization. ① The Ordovician accretionary complex underwent multiple−stage deformation involving compression−extension−compression during the Silurian−Devonian period, accompanied by intense metamorphism and widespread anatexis during the extensional deformation stage; ② The Ordovician accretionary complexes and most Silurian−Devonian granites in the region exhibited significant similarities in their geochemical characteristics. More importantly, the chemical compositions of Silurian−Devonian granites resemble those of the modelled partial melts of the accretionary complex under regional anatexis PT conditions. ③ Regional deformation processes facilitated crustal differentiation and the formation of mature continental crust. Together with regional available data, this contribution proposes that the intense crustal reworking during the Silurian−Devonian of the Chinese Altai Orogenic Belt was related to changes in the dynamics of the related supra−subduction system. The cyclic switching between subduction advance and retreat in accretionary orogenic belts could lead to changes of regional stress field and provide anomalous heat source for crustal anatexis, thus control the processes of crustal anatexis and mass redistribution. In these regards, anatexis of accretionary complexes, plays a pivotal role on transformation of active continental margin sediments into compositionally differentiated mature continental crust. This may be a key mechanism contributing to the peripheral continental growth in accretionary orogenic belts in general.

  • 加载中
  • [1] Allegre C J, Courtillot V, Tapponnier P, et al. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307: 17−22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [2] Allen M, Alsop G, Zhemchuzhnikov V. 2001. Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan[J]. Journal of the Geological Society, 158: 83−95. doi: 10.1144/jgs.158.1.83

    CrossRef Google Scholar

    [3] Arndt N T, Goldstein S L. 1989. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling[J]. Tectonophysics, 161: 201−212. doi: 10.1016/0040-1951(89)90154-6

    CrossRef Google Scholar

    [4] Briggs S M, Yin A, Manning C E, et al. 2007. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System[J]. Geological Society of America Bulletin, 119: 944−960. doi: 10.1130/B26044.1

    CrossRef Google Scholar

    [5] Broussolle A, Aguilar C, Sun M, et al. 2018. Polycyclic Palaeozoic evolution of accretionary orogenic wedge in the southern Chinese Altai: Evidence from structural relationships and U–Pb geochronology[J]. Lithos, 314/315: 400−424. doi: 10.1016/j.lithos.2018.06.005

    CrossRef Google Scholar

    [6] Broussolle A, Štípská P, Lehmann J, et al. 2015. PTtD record of crustal−scale horizontal flow and magma−assisted doming in the SW Mongolian Altai[J]. Journal of Metamorphic Geology, 33: 359−383. doi: 10.1111/jmg.12124

    CrossRef Google Scholar

    [7] Broussolle A, Sun M, Schulmann K, et al. 2019. Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis?[J]. Gondwana Research, 66: 183−206. doi: 10.1016/j.gr.2018.11.003

    CrossRef Google Scholar

    [8] Brown M. 2010. Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust[J]. Canadian Journal of Earth Sciences, 47: 655−694. doi: 10.1139/E09-057

    CrossRef Google Scholar

    [9] Brun J P. 1980. The cluster−ridge pattern of mantled gneiss domes in eastern Finland: Evidence for large−scale gravitational instability of the Proterozoic crust[J]. Earth & Planetary Science Letters, 47: 441−449.

    Google Scholar

    [10] Burenjargal U, Okamoto A, Kuwatani T, et al. 2014. Thermal evolution of the Tseel terrane, SW Mongolia and its relation to granitoid intrusions in the Central Asian Orogenic Belt[J]. Journal of Metamorphic Geology, 32: 765−790. doi: 10.1111/jmg.12090

    CrossRef Google Scholar

    [11] Buriánek D, Schulmann K, Hrdličková K, et al. 2017. Geochemical and geochronological constraints on distinct Early−Neoproterozoic and Cambrian accretionary events along southern margin of the Baydrag Continent in western Mongolia[J]. Gondwana Research, 47: 200−227. doi: 10.1016/j.gr.2016.09.008

    CrossRef Google Scholar

    [12] Buslov M M, Fujiwara Y, Iwata K, et al. 2004. Late Paleozoic−Early Mesozoic Geodynamics of Central Asia[J]. Gondwana Research, 7: 791−808. doi: 10.1016/S1342-937X(05)71064-9

    CrossRef Google Scholar

    [13] Cai H M, Wang R, Liu G P, et al. 2022. Discovery of Late Devonian monzogranite from the Eastern Tianshan, and its constrains on the tectonic evolution of the Aqishan−Yamansu belt[J]. Geological Bulletin of China, 41(7): 1184−1190.

    Google Scholar

    [14] Cai K D, Sun M, Yuan C, et al. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 18: 638−652. doi: 10.1016/j.gr.2010.02.010

    CrossRef Google Scholar

    [15] Cai K D, Sun M, Yuan C, et al. 2011a. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China[J]. Lithos, 127: 261−281. doi: 10.1016/j.lithos.2011.09.001

    CrossRef Google Scholar

    [16] Cai K D, Sun M, Yuan C, et al. 2011b. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids[J]. Journal of Asian Earth Sciences, 42: 949−968. doi: 10.1016/j.jseaes.2010.11.020

    CrossRef Google Scholar

    [17] Chai F, Mao J, Dong L, et al. 2009. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: Implications for the tectonic evolution and metallogeny[J]. Gondwana Research, 16(2): 189−200.

    Google Scholar

    [18] Chen B I N, Jahn B M 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications [J]. Geological Magazine, 139: 1−13.

    Google Scholar

    [19] Clos F, Weinberg R F, Zibra I, et al. 2019. Archean diapirism recorded by vertical sheath folds in the core of the Yalgoo Dome, Yilgarn Craton[J]. Precambrian Research, 320: 391−402. doi: 10.1016/j.precamres.2018.11.010

    CrossRef Google Scholar

    [20] Coleman R G. 1989. Continental growth of northwest China[J]. Tectonics, 8: 621−635. doi: 10.1029/TC008i003p00621

    CrossRef Google Scholar

    [21] Collins W J. 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30: 535.

    Google Scholar

    [22] Conrad W K, Nicholls I A, Wall V J, et al. 1988. Water−saturated and −undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: Evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences[J]. Journal of Petrology, 29(4): 765−803. doi: 10.1093/petrology/29.4.765

    CrossRef Google Scholar

    [23] Coward M P. 1981. Diapirism and gravity tectonics: report of a tectonic studies group conference held at Leeds University, 25–26 March 1980[J]. Journal of Structural Geology, 3: 89−95. doi: 10.1016/0191-8141(81)90059-6

    CrossRef Google Scholar

    [24] Currie C, Wang K, Hyndman R D, et al. 2004. The thermal effects of steady−state slab−driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc[J]. Earth Planetary Science Letters, 223: 35−48. doi: 10.1016/j.jpgl.2004.04.020

    CrossRef Google Scholar

    [25] Demoux A, Kröner A, Badarch G, et al. 2009. Zircon ages from the Baydrag block and the Bayankhongor ophiolite zone: Time constraints on Late Neoproterozoic to Cambrian subduction−and accretion−related magmatism in Central Mongolia[J]. The Journal of Geology, 117: 377−397. doi: 10.1086/598947

    CrossRef Google Scholar

    [26] Faure M, Lalevée F, Gusokujima Y, et al. 1986. The pre−Cretaceous deep−seated tectonics of the Abukuma massif and its place in the structural framework of Japan[J]. Earth & Planetary Science Letters, 77: 384−398.

    Google Scholar

    [27] Fowler T, Osman A. 2001. Gneiss−cored interference dome associated with two phases of late Pan−African thrusting in the central Eastern Desert, Egypt[J]. Precambrian Research, 108: 17−43. doi: 10.1016/S0301-9268(00)00146-7

    CrossRef Google Scholar

    [28] Gates A E 1987. Transpressional dome formation in the Southwest Virginia Piedmont [J]. American Journal of Science, 287: 927−949.

    Google Scholar

    [29] Gerdes A, Montero P, Bea F, et al. 2002. Peraluminous granites frequently with mantle−like isotope compositions: the continental−type Murzinka and Dzhabyk batholiths of the eastern Urals[J]. International Journal of Earth Sciences, 91: 3−19. doi: 10.1007/s005310100195

    CrossRef Google Scholar

    [30] Hacker B R, Kelemen P B, Behn M D. 2011. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 307: 501−516. doi: 10.1016/j.jpgl.2011.05.024

    CrossRef Google Scholar

    [31] Hanžl P, Schulmann K, Janoušek V, et al. 2016. Making continental crust: origin of Devonian orthogneisses from SE Mongolian Altai [J]. Journal of Geosciences: 25−50.

    Google Scholar

    [32] Harris N, Inger S 1992. Trace element modelling of pelite−derived granites [J]. Contributions to Mineralogy Petrology, 110: 46−56.

    Google Scholar

    [33] Hawkesworth C J, Kemp A I S. 2006. The differentiation and rates of generation of the continental crust [J]. Chemical Geology, 226: 134−143.

    Google Scholar

    [34] He, G Q, Liu, D Q, Li, M S, et al. 1995. The five stage model of crustal evolution and metallogenic series of chief orogenic belts in Xinjiang[J]. Xinjiang Geology, 13: 99−194 (in Chinese with English abstract).

    Google Scholar

    [35] Hu W W, Li P, Rosenbaum G, et al. 2020. Structural evolution of the eastern segment of the Irtysh Shear Zone: Implications for the collision between the East Junggar Terrane and the Chinese Altai Orogen (northwestern China)[J]. Journal of Structural Geology, 139: 104126. doi: 10.1016/j.jsg.2020.104126

    CrossRef Google Scholar

    [36] Huang Y Q, Jiang Y, Collett S, et al. 2020. Magmatic recycling of accretionary wedge: A new perspective on Silurian−Devonian I−type granitoids generation in the Chinese Altai[J]. Gondwana Research, 78: 291−307. doi: 10.1016/j.gr.2019.07.019

    CrossRef Google Scholar

    [37] Hyndman R D, Currie C A, Mazzotti S P. 2005. Subduction zone backarcs, mobile belts, and orogenic heat[J]. GSA Today, 15: 4−10. doi: 10.1130/1052-5173(2005)015<4:TNELOT>2.0.CO;2

    CrossRef Google Scholar

    [38] Jahn B M, Wu B M, Chen F, et al. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 91: 181−193. doi: 10.1017/S0263593300007367

    CrossRef Google Scholar

    [39] Jahn B M, Wu F Y, Chen B 2000b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 23: 82−92.

    Google Scholar

    [40] Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 226: 73−100. doi: 10.1144/GSL.SP.2004.226.01.05

    CrossRef Google Scholar

    [41] Janoušek V, Jiang Y, Buriánek D, et al. 2018. Cambrian–Ordovician magmatism of the Ikh−Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south–central Mongolia)[J]. Gondwana Research, 54: 122−149. doi: 10.1016/j.gr.2017.10.003

    CrossRef Google Scholar

    [42] Jiang Y D, Sun M, Zhao G C, et al. 2010. The similar to 390 Ma high-T Metamorphic event in the Chinese Altai: a consequence of ridge-subduction?[J]. American Journal of Science, 310(10): 1421−1452.

    Google Scholar

    [43] Jiang Y D, Sun M, Zhao G, et al. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia[J]. Precambrian Research, 189: 140−154. doi: 10.1016/j.precamres.2011.05.008

    CrossRef Google Scholar

    [44] Jiang Y D, Štípská P, Sun M, et al. 2015. Juxtaposition of Barrovian and migmatite domains in the Chinese Altai: A result of crustal thickening followed by doming of partially molten lower crust[J]. Journal of Metamorphic Geology, 33: 45−70. doi: 10.1111/jmg.12110

    CrossRef Google Scholar

    [45] Jiang Y D, Schulmann K, Sun M, et al. 2016. Anatexis of accretionary wedge, Pacific−type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt[J]. Tectonics, 35: 3095−3118. doi: 10.1002/2016TC004271

    CrossRef Google Scholar

    [46] Jiang Y D, Schulmann K, Kröner A, et al. 2017. Neoproterozoic−Early Paleozoic Peri−Pacific accretionary evolution of the Mongolian collage system: Insights from geochemical and U−Pb zircon data from the Ordovician sedimentary wedge in the Mongolian Altai[J]. Tectonics, 36: 2305−2331. doi: 10.1002/2017TC004533

    CrossRef Google Scholar

    [47] Jiang Y D, Schulmann K, Sun M, et al. 2019. Structural and geochronological constraints on Devonian suprasubduction tectonic switching and Permian collisional dynamics in the Chinese Altai, Central Asia[J]. Tectonics, 38: 253−280. doi: 10.1029/2018TC005231

    CrossRef Google Scholar

    [48] Jiang Y D, Štípská P, Schulmann K, et al. 2022. Barrovian and Buchan metamorphic series in the Chinese Altai: PTtD evolution and tectonic implications[J]. Journal of Metamorphic Geology, 40: 823−857. doi: 10.1111/jmg.12647

    CrossRef Google Scholar

    [49] Jull M, Kelemen P. 2001. On the conditions for lower crustal convective instability [J]. Solid Earth, 106: 6423−6446.

    Google Scholar

    [50] Kelemen P B, Behn M D. 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons[J]. Nature Geoscience, 9: 197−205. doi: 10.1038/ngeo2662

    CrossRef Google Scholar

    [51] Kong L J, Jiang Y, Schulmann K, et al. 2022. Petrostructural and geochronological constraints on Devonian extension−shortening cycle in the Chinese Altai: Implications for retreating−advancing subduction[J]. Tectonics, 41: e2021TC007195. doi: 10.1029/2021TC007195

    CrossRef Google Scholar

    [52] Kong X, Zhang C, Liu D, et al. 2019. Disequilibrium partial melting of metasediments in subduction zones: Evidence from O−Nd−Hf isotopes and trace elements in S−type granites of the Chinese Altai[J]. Lithosphere, 11: 149−168. doi: 10.1130/L1039.1

    CrossRef Google Scholar

    [53] Kroener A, Kovach V, Alexeiev D, et al. 2017. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data[J]. Gondwana Research, 50: 135−166. doi: 10.1016/j.gr.2017.04.006

    CrossRef Google Scholar

    [54] Kröner A, Lehmann J, Schulmann K, et al. 2010. Lithostratigraphic and geochronilogical constraints on the evolution of the Central Asian orogenic belt in SW Mongolia: Early Paleozoic rifting followed by Late Paleozoic accretion[J]. American Journal of Science, 310: 523−574. doi: 10.2475/07.2010.01

    CrossRef Google Scholar

    [55] Lehmann J, Schulmann K, Lexa O, et al. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 310: 575−628. doi: 10.2475/07.2010.02

    CrossRef Google Scholar

    [56] Lehmann J, Schulmann K, Lexa O, et al. 2017. Detachment folding of partially molten crust in accretionary orogens: A new magma−enhanced vertical mass and heat transfer mechanism [J]. Lithosphere.

    Google Scholar

    [57] Li H J. 2006. Confirmation of Altai−Mongolia microcontinent and its implications[J]. Acta Petrologica Sinica, 22(5): 1369−1379 (in Chinese with English abstract).

    Google Scholar

    [58] Li P F, Sun M, Rosenbaum G, et al. 2015. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt[J]. Journal of Structural Geology, 80: 142−156. doi: 10.1016/j.jsg.2015.08.008

    CrossRef Google Scholar

    [59] Li P F, Sun M, Rosenbaum G, et al. 2016. Transpressional deformation, strain partitioning and fold superimposition in the southern Chinese Altai, Central Asian Orogenic Belt[J]. Journal of Structural Geology, 87: 64−80. doi: 10.1016/j.jsg.2016.04.006

    CrossRef Google Scholar

    [60] Li P F, Sun M, Rosenbaum G, et al. 2017. Late Paleozoic closure of the Ob−Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt[J]. Geological Society of America Bulletin, 129: 547−569. doi: 10.1130/B31541.1

    CrossRef Google Scholar

    [61] Li P F, Sun M, Shu C, et al. 2019. Evolution of the Central Asian Orogenic Belt along the Siberian margin from Neoproterozoic−Early Paleozoic accretion to Devonian trench retreat and a comparison with Phanerozoic eastern Australia[J]. Earth−Science Reviews, 198: 102951.

    Google Scholar

    [62] Li Z, Yang X, Li Y, et al. 2014. Late Paleozoic tectono–metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: Constraints from metamorphic PT pseudosection and zircon U–Pb dating of ultra−high−temperature granulite[J]. Lithos, 204: 83−96. doi: 10.1016/j.lithos.2014.05.022

    CrossRef Google Scholar

    [63] Liu W, Liu LJ, Liu XJ, et al. 2010. Age of the Early Devonian Kangbutiebao Formation along the southern Altay Mountains and its northeastern extension[J]. Acta Petrologica Sinica, 26(2): 387−400 (in Chinese with English abstract).

    Google Scholar

    [64] Liu W, Liu X J, Xiao W J. 2012. Massive granitoid production without massive continental−crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U−Pb age, Hf−Nd−Sr isotopes and geochemistry[J]. American Journal of Science, 312: 629−684.

    Google Scholar

    [65] Liu Z, Bartoli O, Tong L, et al. 2020. Permian ultrahigh–temperature reworking in the southern Chinese Altai: Evidence from petrology, PT estimates, zircon and monazite U–Th–Pb geochronology[J]. Gondwana Research, 78: 20−40. doi: 10.1016/j.gr.2019.08.007

    CrossRef Google Scholar

    [66] Long X P, Sun M, Yuan C, et al. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution[J]. Sedimentary Geology, 208: 88−100. doi: 10.1016/j.sedgeo.2008.05.002

    CrossRef Google Scholar

    [67] Long X, Sun M, Yuan C, et al. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt[J]. Tectonics, 26: TC5015.

    Google Scholar

    [68] Long X, Yuan C, Sun M, et al. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution[J]. Tectonophysics, 480: 213−231.

    Google Scholar

    [69] Martini A, Bitencourt M d F, Weinberg R F, et al. 2019. From migmatite to magma − crustal melting and generation of granite in the Camboriú Complex, south Brazil[J]. Lithos, 340/341: 270−286. doi: 10.1016/j.lithos.2019.05.017

    CrossRef Google Scholar

    [70] Montel J, Vielzeuf D. 1997. Partial melting of metagreywackes, Part II. Compositions of minerals and melts[J]. Contributions to Mineralogy and Petrology, 128(2): 176−196.

    Google Scholar

    [71] Nguyen H, Hanžl P, Janoušek V, et al. 2018. Geochemistry and geochronology of Mississippian volcanic rocks from SW Mongolia: Implications for terrane subdivision and magmatic arc activity in the Trans−Altai Zone[J]. Journal of Asian Earth Sciences, 164: 322−343. doi: 10.1016/j.jseaes.2018.06.029

    CrossRef Google Scholar

    [72] Niu H, Sato H, Zhang H, et al. 2006. Juxtaposition of adakite, boninite, high−TiO2 and low−TiO2 basalts in the Devonian southern Altay, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 28: 439−456. doi: 10.1016/j.jseaes.2005.11.010

    CrossRef Google Scholar

    [73] Paterson S R, Vernon R H, Tobisch O. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids[J]. Journal of Structural Geology, 11: 349−363. doi: 10.1016/0191-8141(89)90074-6

    CrossRef Google Scholar

    [74] Patiño Douce A E, Beard J S. 1995. Dehydration−melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 36(3): 707−738. doi: 10.1093/petrology/36.3.707

    CrossRef Google Scholar

    [75] Qu G, Zhang J. 1994. Oblique thrust systems in the Altay orogen, China[J]. Journal of Southeast Asian Earth Sciences, 9: 277−287. doi: 10.1016/0743-9547(94)90035-3

    CrossRef Google Scholar

    [76] Rudnick R L. 1995. Making continental crust[J]. Nature, 378: 571−578. doi: 10.1038/378571a0

    CrossRef Google Scholar

    [77] Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective[J]. Reviews of Geophysics, 33: 267−309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    [78] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Treatise on Geochemistry.

    Google Scholar

    [79] Sawyer E W. 1994. Melt segregation in the continental crust[J]. Geology, 22: 1019.

    Google Scholar

    [80] Sawyer E W. 1996. Melt segregation and magma flow in migmatites: implications for the generation of granite magmas[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 87: 85−94. doi: 10.1017/S0263593300006507

    CrossRef Google Scholar

    [81] Sawyer E W. 1998. Formation and Evolution of Granite Magmas During Crustal Reworking: the Significance of Diatexites[J]. Journal of Petrology, 39: 1147−1167. doi: 10.1093/petroj/39.6.1147

    CrossRef Google Scholar

    [82] Schofield D I, D'Lemos R. 1998. Relationships between syn−tectonic granite fabrics and regional PTtd paths: An example from the Gander−Avalon boundary of NE Newfoundland[J]. Journal of Structural Geology, 20: 459−471. doi: 10.1016/S0191-8141(97)00117-X

    CrossRef Google Scholar

    [83] Sengör A M C, Natal'ln B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and paleozoic crustal growth in Eurasia.[J]. Nature, 364: 209−304.

    Google Scholar

    [84] Shi W, Zhang J D, Liu W G, et al. 2015. Hronology and petrology characteristics of Early Devonian gnessic. Granites from East Altai Orogenic Belt.[J]. Xinjiang Geology, 33: 7 (in Chinese with English abstract).

    Google Scholar

    [85] Shu T, Jiang Y D, Schulmann K, et al. 2022. Structure, geochronology, and petrogenesis of Permian peraluminous granite dykes in the southern Chinese Altai as indicators of Altai East Junggar convergence[J]. GSA Bulletin, 135(5/6): 1243−1264.

    Google Scholar

    [86] Soejono I, Čáp P, Míková J, et al. 2018. Early Palaeozoic sedimentary record and provenance of flysch sequences in the Hovd Zone (western Mongolia): Implications for the geodynamic evolution of the Altai accretionary wedge system[J]. Gondwana Research, 64: 163−183. doi: 10.1016/j.gr.2018.07.005

    CrossRef Google Scholar

    [87] Soejono I, Janoušek V, Žáčková E, et al. 2017. Long-lasting Cadomian magmatic activity along an active northern Gondwana margin: U-Pb zircon and Sr-Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif[J]. International Journal of Earth Sciences, 106(6): 2109−2129.

    Google Scholar

    [88] Soejono I, Peřestý V, Schulmann K, et al. 2021. Structural, metamorphic and geochronological constraints on Palaeozoic multi−stage geodynamic evolution of the Altai accretionary wedge system (Hovd Zone, western Mongolia)[J]. Lithos, 396: 106204.

    Google Scholar

    [89] Štípská P, Schulmann K, Lehmann J, et al. 2010. Early Cambrian eclogites in SW Mongolia: Evidence that the Palaeo−Asian Ocean suture extends further east than expected[J]. Journal of Metamorphic Geology, 28: 915−933. doi: 10.1111/j.1525-1314.2010.00899.x

    CrossRef Google Scholar

    [90] Sun M, Yuan C, Xiao W, et al. 2008. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 247: 352−383. doi: 10.1016/j.chemgeo.2007.10.026

    CrossRef Google Scholar

    [91] Sun M, Long X, Cai K, et al. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions[J]. Science in China Series D: Earth Sciences, 52: 1345−1358. doi: 10.1007/s11430-009-0110-3

    CrossRef Google Scholar

    [92] Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45: 29−44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    [93] Tang G J, Chung S L, Hawkesworth C J, et al. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China[J]. Earth Planetary Science Letters, 464: 142−154. doi: 10.1016/j.jpgl.2017.02.022

    CrossRef Google Scholar

    [94] Taylor S R. 1967. The origin and growth of continents [J]. Tectonophysics, 4: 17−34.

    Google Scholar

    [95] Tong L, Xu YG, Cawood P A, et al. 2014. Anticlockwise PT evolution at ~280Ma recorded from ultrahigh−temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume?[J]. Journal of Asian Earth Sciences, 94: 1−11. doi: 10.1016/j.jseaes.2014.07.043

    CrossRef Google Scholar

    [96] Tong Y, Wang T, Hong D W, et al. 2007. Ages and origin of the early Devonian granites from thenorth part of Chinese Altai Mountains and its tectonic implications[J]. Acta Petrologica Sinica, 23(8): 1933−1944 (in Chinese with English abstract).

    Google Scholar

    [97] Wan B, Xiao W, Zhang L, et al. 2011. Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: Implications for the accretionary history of the southern Altaids[J]. Journal of the Geological Society, 168: 1311−1321. doi: 10.1144/0016-76492011-021

    CrossRef Google Scholar

    [98] Wang S, Xu K, Huang Y Q, et al. 2018. Permian deformational history of western chinese Altai orogenic belt: Insights from structural and monazite U−Pb data[J]. Geotectonica et Metallogenia, 42: 798−811 (in Chinese with English abstract).

    Google Scholar

    [99] Wang S, Jiang Y, Weinberg R, et al. 2021. Flow of Devonian anatectic crust in the accretionary Altai Orogenic Belt, central Asia: Insights into horizontal and vertical magma transfer[J]. GSA Bulletin, 133(11/12): 2501−2523.

    Google Scholar

    [100] Wang T, Hong D W, Jahn, B M, et al. 2006. Timing, petrogenesis and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen[J]. Journal of Geology, 114: 735−751. doi: 10.1086/507617

    CrossRef Google Scholar

    [101] Wang T, Jahn B M, Kovach V P, et al. 2009. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 110: 359−372. doi: 10.1016/j.lithos.2009.02.001

    CrossRef Google Scholar

    [102] Wang W, Wei C J, Wang T, et al. 2009. Confirmation of pelitic granulite in the Altai orogen and its geological significance[J]. Chinese Sci. Bull., 54: 918−923 (in Chinese with English abstract). doi: 10.1360/csb2009-54-7-918

    CrossRef Google Scholar

    [103] Wedepohl K H. 1995. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 59: 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [104] Wei C J, Clarke G, Tian W, et al. 2007. Transition of metamorphic series from the Kyanite− to andalusite−types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations[J]. Lithos, 96: 353−374. doi: 10.1016/j.lithos.2006.11.004

    CrossRef Google Scholar

    [105] Wei C J, Wang W, Zhang Y H, et al. 2008. Low−pressure metamorphic belt and metapelitic granulites in the Altai orogenic Belt, Xinjiang [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27: 284−285 (in Chinese).

    Google Scholar

    [106] Weinberg R F, Mark G. 2008. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone, Ladakh, NW India[J]. Geological Society of America Bulletin, 120: 994−1009. doi: 10.1130/B26227.1

    CrossRef Google Scholar

    [107] Weinberg R F, Hasalova P, Ward L, et al. 2013. Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia[J]. Geological Society of America Bulletin, 125: 1282−1300. doi: 10.1130/B30781.1

    CrossRef Google Scholar

    [108] Weinberg R F, Hasalová P. 2015. Water−fluxed melting of the continental crust: A review[J]. Lithos, 212/215: 158−188. doi: 10.1016/j.lithos.2014.08.021

    CrossRef Google Scholar

    [109] Weinberg R F, Becchio R, Farias P, et al. 2018. Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana[J]. Earth−Science Reviews, 187: 219−247. doi: 10.1016/j.earscirev.2018.10.001

    CrossRef Google Scholar

    [110] Wilhem C, Windley B F, Stampfli G M. 2012. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth−Science Reviews, 113: 303−341. doi: 10.1016/j.earscirev.2012.04.001

    CrossRef Google Scholar

    [111] Windley B F, Kroner A, Guo J, et al. 2002. Neoproterozoic to Paleozoicgeology of the Altai orogen, NW China[J]. Journal of Geology, 110: 719−737. doi: 10.1086/342866

    CrossRef Google Scholar

    [112] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [113] Windley B F, Xiao W J. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 61: 73−87. doi: 10.1016/j.gr.2018.05.003

    CrossRef Google Scholar

    [114] Xiao W J, Kusky T. 2009. Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts: Introduction[J]. Gondwana Research, 16: 167−169. doi: 10.1016/j.gr.2009.05.001

    CrossRef Google Scholar

    [115] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth Planetary Sciences, 43: 477−507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [116] Xiao W J, Huang B, Han C, et al. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2/3): 253−273.

    Google Scholar

    [117] Xiao W J, Song D F, Fwindley B, et al. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49(10): 34 (in Chinese).

    Google Scholar

    [118] Xu J F, Castillo P R, Chen F R, et al. 2003. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China: implications for backarc mantle evolution[J]. Chemical Geology, 193: 137−154. doi: 10.1016/S0009-2541(02)00265-6

    CrossRef Google Scholar

    [119] Xu K, Jiang Y, Wang S, et al. 2021. Multi−phase tectonothermal evolution in the SE Chinese Altai, central Asia: Structures, U−Pb monazite ages and tectonic implications[J]. Lithos, 392: 106148.

    Google Scholar

    [120] Yakymchuk C, Siddoway C S, Fanning C M, et al. 2013. Anatectic reworking and differentiation of continental crust along the active margin of Gondwana: a zircon Hf–O perspective from West Antarctica [J]. Geological Society, London, Special Publications, 383: 169−210.

    Google Scholar

    [121] Yuan C, Sun M, Xiao W, et al. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids[J]. Chemical Geology, 242: 22−39. doi: 10.1016/j.chemgeo.2007.02.013

    CrossRef Google Scholar

    [122] Zhang C, Santosh M, Luo Q, et al. 2019. Impact of residual zircon on Nd−Hf isotope decoupling during sediment recycling in subduction zone[J]. Geoscience Frontiers, 10: 241−251. doi: 10.1016/j.gsf.2018.03.015

    CrossRef Google Scholar

    [123] Zhang C L, Santosh M, Zou H B, et al. 2012. Revisiting the “Irtish tectonic belt”: Implications for the Paleozoic tectonic evolution of the Altai orogen[J]. Journal of Asian Earth Sciences, 52: 117−133. doi: 10.1016/j.jseaes.2012.02.016

    CrossRef Google Scholar

    [124] Zhang J, Sun M, Schulmann K, et al. 2015. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process[J]. Journal of Structural Geology, 73: 64−82. doi: 10.1016/j.jsg.2015.02.007

    CrossRef Google Scholar

    [125] Zhang X, Zhang H, Tang Y, et al. 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 249: 262−281. doi: 10.1016/j.chemgeo.2008.01.005

    CrossRef Google Scholar

    [126] Zhuag Y X. 1994. The pressure−temperature−space−time (PTSt) evolution of metamorphism and development mechanism of the thermal−structural−gneiss domes in the Chinese Altaides[J]. Acta Geologica Sinica, 68: 35−47 (in Chinese).

    Google Scholar

    [127] 蔡宏明, 王蓉, 刘桂萍, 等. 2022. 东天山晚泥盆世二长花岗岩的发现及其对阿奇山−雅满苏带构造演化的制约[J]. 地质通报, 41(7): 1184−1190. doi: 10.12097/j.issn.1671-2552.2022.07.005

    CrossRef Google Scholar

    [128] 何国琦, 刘德权, 李茂松, 等. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列[J]. 新疆地质, 13: 99−194.

    Google Scholar

    [129] 李会军. 2006. 阿尔泰-蒙古微大陆的确定及其意义[J]. 岩石学报, 22: 1369−1379. doi: 10.3321/j.issn:1000-0569.2006.05.025

    CrossRef Google Scholar

    [130] 刘伟, 刘丽娟, 刘秀金, 等. 2010. 阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围[J]. 岩石学报, 26(2): 387−400.

    Google Scholar

    [131] 施文翔, 张建东, 刘崴国, 等. 2015. 阿尔泰造山带东段早泥盆世片麻状花岗岩岩石地球化学及年代学特征[J]. 新疆地质, 33: 456−462. doi: 10.3969/j.issn.1000-8845.2015.01.003

    CrossRef Google Scholar

    [132] 童英, 王涛, 洪大卫, 等. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J]. 岩石学报, 28: 1933−1944. doi: 10.3969/j.issn.1000-0569.2007.08.014

    CrossRef Google Scholar

    [133] 汪晟, 徐扛, 黄艳琼, 等. 2018. 中国阿尔泰造山带西部二叠纪构造演化: 来自构造地质及独居石U−Pb年代学的制约[J]. 大地构造与成矿学, 42: 798−811.

    Google Scholar

    [134] 王伟, 魏春景, 王涛, 等. 2009. 中国阿尔泰造山带泥质麻粒岩的确定及地质意义[J]. 科学通报, 54: 918−923.

    Google Scholar

    [135] 魏春景, 王伟, 张颖慧, 等. 2008. 新疆阿尔泰造山带低压变质带与泥质麻粒岩[J]. 矿物岩石地球化学通报, 27: 284−285. doi: 10.3969/j.issn.1007-2802.2008.z1.152

    CrossRef Google Scholar

    [136] 肖文交, 宋东方, Fwindley B , 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545.

    Google Scholar

    [137] 庄育勋. 1994. 中国阿尔泰造山带变质作用PTSt演化和热−构造−片麻岩穹窿形成机制[J]. 地质学报, 68: 35−47.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(289) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint