2025 Vol. 44, No. 4
Article Contents

MA Zhongyuan, ZHANG Jinyang, ZHANG Yong, MA Qiang, LI Jun. 2025. Metallogenic system and metallogenic model of Triassic porphyry deposits in the East Kunlun orogenic belt. Geological Bulletin of China, 44(4): 534-551. doi: 10.12097/gbc.2024.09.005
Citation: MA Zhongyuan, ZHANG Jinyang, ZHANG Yong, MA Qiang, LI Jun. 2025. Metallogenic system and metallogenic model of Triassic porphyry deposits in the East Kunlun orogenic belt. Geological Bulletin of China, 44(4): 534-551. doi: 10.12097/gbc.2024.09.005

Metallogenic system and metallogenic model of Triassic porphyry deposits in the East Kunlun orogenic belt

More Information
  • Objective

    The PaleoTethys tectonic evolution triggered important porphyry magma−mineralization in the East Kunlun orogenic belt, resulting in strong magmatic activity, complex and diverse mineralization types and endowment mineral resources. At present, a systematic review and summary of the diagenetic and mineralization ages and mineralization characteristics of porphyry have not yet been carried out.In order to enhance our understanding of the mineralization system and mineralization model of porphyry−type deposits in the Eastern Kunlun area.

    Methods

    On the basis of collecting previous data, this paper summarizes the spatial and temporal distribution, metallogenic types and metallogenic rules of ore−producing porphyry and porphyry type deposits, and studies the evolution of paleo−Tethys structure and porphyry mineralization process.

    Results

    The ore−producing porphyry and porphyry deposits in East Kunlun area are located in the northern and central Quinqueinian magmatic arcs, and their ages are concentrated between 218 Ma and 236 Ma. Mainly formed porphyry Cu, porphyry Mo, porphyry Cu−Mo, porphyry Cu−Au, porphyry Cu−Sn deposit five types, the discovered ore bodies are mainly located in the top or side of the porphyry tectonic belt, the structure is the most important ore−controlling factor, the size of the porphyry−related low−temperature vein type Ag−Pb−Zn mineralization often reaches large−super large.

    Conclusions

    It is considered that the most important dynamic background for the mineralization of porphyry deposits is the partial melting of mantle enrichment induced by asthenosphere mantle upgassing caused by subduction plate fragmentation in early cocollision orogeny and the partial melting of new crust and thickened lower crust induced by asthenosphere upgassing in post−collision extension stage. The metallogenic model of porphyry type, skarn type, cryptoexplosive breccia type and epithermal vein typedeposit was established.

  • 加载中
  • [1] Cookedr D R, Hollingsp D, Walsheji J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801−818. doi: 10.2113/gsecongeo.100.5.801

    CrossRef Google Scholar

    [2] Chen J J, Wei J H, Fu L B, et al. 2017. Multiple sources of the Early Mesozoic Gouli batholith, Eastern Kunlun Orogenic Belt, northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction[J]. Lithos, 292/293: 161−178. doi: 10.1016/j.lithos.2017.09.006

    CrossRef Google Scholar

    [3] Catherine M M, Dawn A K, Tony B, et al. 2024. Tracking the porphyry−epithermal mineralization transition using U−Pb carbonate dating[J]. Geology, 52(9): 723−728. doi: 10.1130/G52211.1

    CrossRef Google Scholar

    [4] Chen H W, Luo Z H, Mo X X, et al. 2005. Underplating mechanism of Triassic granite of magma mixing origin in the East Kunlun orogenic belt[J]. Geology in China, 32(3): 386−395(in Chinese with English abstract).

    Google Scholar

    [5] Cai H J, Zhang J M, Zhang Q L. 2016. Age and geological implications of Shasongwula Rapakivi granite in East Kunlun Mountains[J]. Northwestern Geology, 49(4): 62−72(in Chinese with English abstract).

    Google Scholar

    [6] Deng J, Wang Q F, Li G J. 2016. Superimposed orogeny and composite metallogenic system: Case study from the Sanjiang Tethyan belt[J]. Acta Petrologica Sinica, 32(8): 2225−2247(in Chinese with English abstract).

    Google Scholar

    [7] Fan X Z, Sun F Y, Xu C H, et al. 2021. Genesis of Harizha Ag−Pb−Zn deposit in the eastern Kunlun Orogen, NW China: Evidence of fluid inclusions and C−H−O−S−Pb isotopes[J]. Resource Geology, 71(3): 177−201.

    Google Scholar

    [8] Feng C Y, Li D S, Wu Z S, et al. 2010. Major Types, Time−Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area[J]. Northwestern Geology, 43(4): 10−17(in Chinese with English abstract).

    Google Scholar

    [9] Feng K, Li R B, Pei X Z, et al. 2022. Zircon U−Pb chronology, geochemistry and geological significance of Late Triassic intermediate−acid volcanic rocks in Boluositai area, East Kunlun Orogenic Belt[J]. Earth Science, 47(4): 1194−1216(in Chinese with English abstract).

    Google Scholar

    [10] Gao Y F, Santosh, Wei R H, et al. 2013. Origin of high Sr/Y magmas from the northern Taihang Mountains: Implications for Mesozoic porphyry copper mineralization in the North China Craton[J]. Journal of Asian Earth Sciences, 78: 143−159. doi: 10.1016/j.jseaes.2012.10.040

    CrossRef Google Scholar

    [11] Gu Y, Qian Y, Li Y J, et al. 2019. Geochronology, geochemistry and tectonic significance of Middle and Late Triassic granites in the Luotuofeng area, East Kunlun[J]. Mineral Exploration, (4): 724−736(in Chinese with English abstract).

    Google Scholar

    [12] Guo X Z. 2021. The intermediate−acid magmatism and polymetallic mineralization in East Kunlun, Paleo−Tethys[D]. Doctoral Thesis of China University of Geosciences: 147−193(in Chinese with English abstract).

    Google Scholar

    [13] Guo X Z, Jia Q Z, Zhen Y Y, et al. 2016. Re−Os isotopic dating of molybdenite from Reshui molybdenum polymetallic deposit in the East Kunlun and its geological significance[J]. Acta Geologica Sinca, 90(10): 2818−2829(in Chinese with English abstract).

    Google Scholar

    [14] Gu R P, Bu A, Chen S Q. 2009. Geological characteristics and prognosis of prospects of Jinkeng Cu−Sn−Pb−Zn deposit, Jiexi County, Guangdong Province[J]. Resource Survey and Environment, 30(2): 109−114(in Chinese with English abstract).

    Google Scholar

    [15] Hao N N. 2016. Magmatism and metallogeny in the East Kunlun Orogenic Belt[D]. Doctoral Thesis of China University of Geosciences(Beijing): 38−185(in Chinese with English abstract).

    Google Scholar

    [16] He S Y, Lin G, Zhong S H, et al. 2023. Geological characteristics and related mineralization of “Qinghai Gold Belt” formed by orogeny[J]. Northwestern Geology, 56(6): 1−16(in Chinese with English abstract).

    Google Scholar

    [17] He S Y, Li D S, Li L L, et al. 2009. Re-Os Age of molybdenite from the Yazigou Copper (Molybdenum) mineralized area in Eastern Kunlun of Qinghai Province, and its geological significance[J]. Geotectonica et Metallogenia, 33(2): 236−242 (in Chinese with English abstract).

    Google Scholar

    [18] Hou Z Q, Zhou Y, Wang R, et al. 2017. Recycling of metal−fertilized lower continental crust: origin of non−arc Au−rich porphyry deposits at cratonic edges[J]. Geology, 45(6): 563−566. doi: 10.1130/G38619.1

    CrossRef Google Scholar

    [19] Hu Y D. 2007. Geological characteristics and mineralizing perspective evaluation of Wulanwuzhuer copper deposit in the Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Master Thesis of Jilin University: 83−147(in Chinese with English abstract).

    Google Scholar

    [20] Lei Y L. 2024. Preliminary exploration report of the Gemalong silver polymetallic deposit, Dulan County, Qinghai Province[R]. The Second Geological Exploration Institute of Nonferrous Metals of Qinghai Province:11-57 (in Chinese).

    Google Scholar

    [21] Li B L, Zhi Y B, Zhang L, et al. 2015. U−Pb dating, geochemistry, and Sr–Nd isotopic composition of a granodiorite porphyry from the Jiadanggen Cu−(Mo) deposit in the Eastern Kunlun metallogenic belt, Qinghai Province, China[J]. Ore Geology Reviews, 67: 1−10. doi: 10.1016/j.oregeorev.2014.11.008

    CrossRef Google Scholar

    [22] Li D S, Zhang Z Y, Su S S, et al. 2010. Geological characteristics and genesis of the Kaerqueka copper molybdenum deposit in Qinghai Province[J]. Northwestern Geology, 43(4): 239−244(in Chinese with English abstract).

    Google Scholar

    [23] Li Z C, Pei X Z, Bons P D, et al. 2022. Petrogenesis and tectonic setting of the Early−Middle Triassic subduction−related granite in the eastern segment of East Kunlun: Evidences from petrology, geochemistry, and zircon U−Pb−Hf isotopes[J]. International Geology Review, 64(5/6): 698−721.

    Google Scholar

    [24] Li W, Liu Y L, Li W J, et al. 2024. Ore−forming age and material sources of the North Santonggou manganese deposit in East Kunlun of Qinghai: Constrained by Re−Os isotopic chronology and geochemistry[J]. Acta Petrologica Sinica, 40(4): 1231−1248(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.04.11

    CrossRef Google Scholar

    [25] Li X K, Yuan Y B, Liu X F. 2013. LA−(MC)−ICP−MS U−Pb dating of zircon with quartz porphyry in Yejiwei porphyry copper−tin deposit in Dongpo mine, Hunan Province[C]//Geological Society of China Youth Working Committee. Proceedings of the First National Youth Geological Congress: 200−201(in Chinese with English abstract).

    Google Scholar

    [26] Li S J, Sun F Y, Feng C Y, et al. 2008. Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun, Qinhai Province[J]. Acta Geologica Sinca, (7): 949−955(in Chinese with English abstract).

    Google Scholar

    [27] Lin Y H, Li J Q, Wang M, et al. 2021. LA−ICP−MS U−Pb zircon dating and geological significance of ore−bearing granodiorit porphyry in Zamaxiuma area, East Kunlun[J]. Mineralogy and Petrology, 41(3): 29−39(in Chinese with English abstract).

    Google Scholar

    [28] Liu J D, Zhang K, Wang B Z, et al. 2023. U−Pb age, geochemical and Hf isotopic characteristics of Late Triassic granodiorite porphyry in Gounao area of Lalinggaoli River, Eastern Kunlun Mountains[J]. Geological Review, 69(4): 1525−1542(in Chinese with English abstract).

    Google Scholar

    [29] Liu J N, Feng C Y, Qi F, et al. 2012. SIMS zircon U−Pb dating and fluid inclusion studies of Xiadeboli Cu−Mo ore district in Dulan County, Qinghai Province, China[J]. Acta Petrologica Sinica, 28(2): 679−690(in Chinese with English abstract).

    Google Scholar

    [30] Liu Z Q. 2011. Study on the geological characteristics and tectonic of Buqingshan melanges belt, the south margin of East Kunlun Mountains[D]. Doctoral Thesis of Changan University: 141−149(in Chinese with English abstract).

    Google Scholar

    [31] Lu H F, Yang Y Q, He J, et al. 2017. Zircon U−Pb age dating for granodiorite porphyry and molybdrnote Re−Os isotope dating of Halongxiuma molybdenum(Tungstem) deposhin the east Kunlun area and its geological significance[J]. Mineralogy and Petrology, 37(2): 33−39(in Chinese with English abstract).

    Google Scholar

    [32] Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and crustal growth in the East−Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414(in Chinese with English abstract).

    Google Scholar

    [33] Ma Z Y, Zhang A K, Li J, et al. 2023a. Porphyry−hydrothermal metallogenic characteristics and prospecting prospect of Harizha deposit in East Kunlun[J]. Xinjiang Geology, 41(4): 538−546(in Chinese with English abstract).

    Google Scholar

    [34] Ma Z Y, Zhang A K, Li J, et al. 2023b. Study on the occurrence status of silver polymetallic minerals in the V−belt of Harizha deposit in East Kunlun[J]. Journal of Qinghai University, 41(6): 78−87(in Chinese with English abstract).

    Google Scholar

    [35] Ma Z Y, Chai J X, Zhang A K, et al. 2024a. Geochronology, geochemistry and petrogenesis of the Harizha−Nagengkangqieer granites in the East Kunlun Orogen[J]. Earth Science, 49(5): 1778−1792 (in Chinese with English abstract).

    Google Scholar

    [36] Ma Z Y, Li J, Zhao J P, et al. 2024b. Discussion on genesis of Wulanwuzhuer−Shizisong Ag−polymetallic deposit in east Kunlunshan area[J]. Contributions to Geology and Mineral resources Research, 39(2): 160−168(in Chinese with English abstract).

    Google Scholar

    [37] Ma Z Y, Li J, Lu D J, et al. 2024c. Prospecting practice of porphyry−hydrothermal metallogenic system in East Kunlun: A case study of the Wulanwuzhuer−Shizisong deposit[J]. Geology and Exploration, 60(4): 700−711(in Chinese with English abstract).

    Google Scholar

    [38] Ma Z Y, Zhang Y, Li J, et al. 2024d. Discussion on metallogenic model of Qingshuihedonggou Mo deposit in East Kunlun area[J]. Contributionsto Geology and Mineral Resources Research, 39(3): 293−300(in Chinese with English abstract).

    Google Scholar

    [39] Pan T, Wang B Z, Zhang A K. 2019. Metallogenic series and prospecting prediction in north and south margin of Qaidam Basin[M]. Wuhan: China University of Geosciences Press: 11−174(in Chinese with English abstract).

    Google Scholar

    [40] Pan T, Xue W W, Wang G R, et al. 2021. Geology mineral resources of Qinghai province[M]. Beijing: Geologi-cal Publishing House: 7−34(in Chinese with English abstract).

    Google Scholar

    [41] Richards. 2013. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 6(11): 911−916. doi: 10.1038/ngeo1920

    CrossRef Google Scholar

    [42] She H Q, Zhang D Q, Jing X Y, et al. 2007. Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai[J]. Geology in China, 34(2): 306−314.

    Google Scholar

    [43] Shao F L, Niu Y L, Liu Y, et al. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications[J]. Lithos, 282: 33−44.

    Google Scholar

    [44] Seedorff E, Dilles J H, Proffett J M. 2005. Porphyry detposits characetristics and origin of hypogene features[J]. Economic Geology, 100th Anniversary Volume: 251−298.

    Google Scholar

    [45] The Editorial Board of the Geological Atlas of Qinghai Province. 2021. Mineral Geology of China · Qinghai Volume · Popular Edition[M]. Beijing: Geological Publishing House: 7−34.

    Google Scholar

    [46] Wang H, Feng C Y, Li R X, et al. 2018. Geological characteristics, metallogenesis, and tectonic setting of porphyry–skarn Cu deposits in East Kunlun Orogen[J]. Geological Journal, 53: 58−76.

    Google Scholar

    [47] Wang Y D, Li S H. 2023. Deep prospecting potential analysis of Yikeguole porphyry molybdenum deposit in Qinghai[J]. Minerals resources and geology, 37(4): 794−805(in Chinese with English abstract).

    Google Scholar

    [48] Wang R, Zhu D C, Wang Q, et al. 2020. Porphyry mineralization in the Tethyan orogen[J]. Science China: Earth Sciences, 63(12): 2042−2067(in Chinese with English abstract). doi: 10.1007/s11430-019-9609-0

    CrossRef Google Scholar

    [49] Xiong F H, Ma C Q, Zhang J Y, et al. 2014. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I−type granitoids in the East Kunlun Orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 171(6): 847−863. doi: 10.1144/jgs2013-038

    CrossRef Google Scholar

    [50] Xia R, Deng J, Qing M, et al. 2017. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust−mantle interaction and geodynamic process of the East Kunlun Orogen[J]. Ore Geology Reviews, 90: 1099−1117.

    Google Scholar

    [51] Xia R, Qing M, Wang C M, et al. 2014. The genesis of the ore−bearing porphyry of the Tuoketuo porphyry Cu−Au (Mo) deposit in the East Kunlun, Qinghai Province: Constraints from zircon U−Pb geochronological and geochemistry[J]. Journal of Jilin University: Earth Science Edition, 44(5): 1502−1524(in Chinese with English abstract).

    Google Scholar

    [52] Xu Q L, Sun F Y, Li B L, et al. 2014. Geochronological dating, geochemical characteristics and tectonic setting of the granite−porphyry in the Mohexiala silver polymetallic deposit, eastern Kunlun Orogenic Belt[J]. Geotectonica et Metallogenia, 38(2): 421−433(in Chinese with English abstract).

    Google Scholar

    [53] Xu Q L. 2014. Study on mineralization of porphyry deposits in the East Kunlun Orogenic Belt, Qinghai Province[D]. Doctoral Thesis of Jilin University: 88−152(in Chinese with English abstract).

    Google Scholar

    [54] Yue Y G, Dong Y P, Sun S S, et al. 2022. Mafic−ultramafic rocks in the Buqingshan Complex of the East Kunlun Orogen, northern Tibetan Plateau: Remnants of the Paleo−Tethys Ocean[J]. International Geology Review, 64(22): 1−22.

    Google Scholar

    [55] Yuan W M, Mo X X, Zhang A K, et al. 2017. Discovery of new porphyry belts in Eastern Kunlun Mountains[J]. Earth Science Frontiers, 24(6): 1−9(in Chinese with English abstract).

    Google Scholar

    [56] Yin H F, Zhang K X. 1997. Characristics of the eastern Kunlun orogenic belt[J]. Earth Sience−Journal of China University of Geosciences, 22(4): 339−342(in Chinese with English abstract).

    Google Scholar

    [57] Zhou T F, Wang S W, Fan Y, et al. 2015. A review of the intracontinental porphyry deposits in the Middle−Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 65: 433−456. doi: 10.1016/j.oregeorev.2014.10.002

    CrossRef Google Scholar

    [58] Zhang J Y, Yang Z B, Zhang H, et al. 2017a. Controls on the formation of Cu−rich magmas: Insights from the Late Triassic post−collisional Saishitang complex in the eastern Kunlun Orogen, western China[J]. Lithos, 278/281: 400−418. doi: 10.1016/j.lithos.2017.02.008

    CrossRef Google Scholar

    [59] Zhang H R, Hou Z Q, Yang Z M. 2010. Metallogenesis and geodynamics of Tethyan metallogenic domain: A review[J]. Mineral Deposits, 29(1): 113−133(in Chinese with English abstract).

    Google Scholar

    [60] Zhang D M, Zhang A K, Qu G J, et al. 2020. Metallogenic and prospecting model of Kaerqueka iron−copper polymetallic deposit in western segment of Eastern Kunlun[J]. Northwestern Geology, 53(1): 91−106(in Chinese with English abstract).

    Google Scholar

    [61] Zhang A K, Yuan W M, Liu G L, et al. 2023. Metallogenic regularities and exploration directions of strategic metallic minerals around the Qaidam Basin[J]. Earth Science Frontiers, 31(3): 260−283(in Chinese with English abstract).

    Google Scholar

    [62] Zheng Z H, Zhang Q S, He L, et al. 2022. LA−ICP−MS zircon U−Pb dating of Yikeguole intrusive rocks in eastern segment of East Kunlun and its geological significance[J]. World Geology, 41(1): 56−71,84(in Chinese with English abstract).

    Google Scholar

    [63] Zhang X T, Yao Y, Zheng J, et al. 2017. Diagenetic age of the granite porphyry in northern Aikengdelesite south of East Kunlun and geological implications[J]. Geology and Exploration, 53(4): 680−685(in Chinese with English abstract).

    Google Scholar

    [64] Zhen J H, Dong S S. 2014. Detailed investigation report of Tuoketuo copper gold deposit in Dulan County, Qinghai Province[R]. Qinghai Tangrong Mining Co., Ltd.: 16−54(in Chinese with English abstract).

    Google Scholar

    [65] Zhan S Z, Zhao H C, Li Z Q, et al. 2013. Copper polymetallic ore survey report of Xiadeboli−Aikengdelesite deposit in Dulan County, Qinghai Province[R]. The Fifth Geological Exploration Institute of Qinghai Province: 36−76(in Chinese with English abstract).

    Google Scholar

    [66] Zhong S H, Feng C Y, Li D X, et al. 2017. SIMS chronology and geochemistry of diabase dykes from the Weibao polymetallic orefield, Xinjiang[J]. Acta Geologica Sinica, 91(4): 762−775(in Chinese with English abstract).

    Google Scholar

    [67] 谌宏伟, 罗照华, 莫宣学, 等. 2005. 东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J]. 中国地质, 32(3): 386−395. doi: 10.3969/j.issn.1000-3657.2005.03.006

    CrossRef Google Scholar

    [68] 才航加, 张金明, 张启龙. 2016. 东昆仑沙松乌拉环斑花岗岩的时代及地质意义[J]. 西北地质, 49(4): 62−72.

    Google Scholar

    [69] 邓军, 王庆飞, 李龚健. 2016. 复合造山和复合成矿系统: 三江特提斯例析[J]. 岩石学报, 32(8): 2225−2247.

    Google Scholar

    [70] 丰成友, 李东生, 吴正寿, 等. 2010. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 43(4): 10−17. doi: 10.3969/j.issn.1009-6248.2010.04.002

    CrossRef Google Scholar

    [71] 封铿, 李瑞保, 裴先治, 等. 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U−Pb年代学、地球化学及地质意义[J]. 地球科学, 47(4): 1194−1216. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204004

    CrossRef Google Scholar

    [72] 国显正. 2021. 东昆仑东段古特提斯中酸性岩浆活动与多金属成矿作用[D]. 中国地质大学(武汉)博士学位论文: 147−193.

    Google Scholar

    [73] 国显正, 贾群子, 郑有业, 等. 2016. 东昆仑热水钼多金属矿床辉钼矿Re−Os同位素年龄及地质意义[J]. 地质学报, 90(10): 2818−2829. doi: 10.3969/j.issn.0001-5717.2016.10.019

    CrossRef Google Scholar

    [74] 古润平, 卜安, 陈少青. 2009. 广东省揭西金坑铜锡铅锌矿区矿床地质特征与远景预测[J]. 资源调查与环境, 30(2): 109−114.

    Google Scholar

    [75] 顾焱, 钱烨, 李予晋, 等. 2019. 东昆仑骆驼峰地区中晚三叠世花岗岩年代学、地球化学及构造意义[J]. 矿产勘查, (4): 724−736. doi: 10.3969/j.issn.1674-7801.2019.04.003

    CrossRef Google Scholar

    [76] 何书跃, 李东生, 李良林, 等. 2009. 青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J]. 大地构造与成矿学, 33(2): 236−242.

    Google Scholar

    [77] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16. doi: 10.12401/j.nwg.2023157

    CrossRef Google Scholar

    [78] 胡永达. 2007. 青海东昆仑乌兰乌珠尔铜矿地质特征及成矿远景评价[D]. 吉林大学硕士学位论文: 13−65.

    Google Scholar

    [79] 郝娜娜. 2016. 东昆仑造山带岩浆活动与成矿作用[D]. 中国地质大学(北京)博士学位论文: 38−185.

    Google Scholar

    [80] 雷延利. 2024. 青海省都兰县各玛龙银多金属矿普查报告[R]. 青海省有色第二地质勘查院:11−57.

    Google Scholar

    [81] 李文, 刘永乐, 李文君, 等. 2024. 青海东昆仑三通沟北锰矿成矿时代与物质来源: 来自Re−Os同位素年代学与地球化学的约束[J]. 岩石学报, 40(4): 1231−1248. doi: 10.18654/1000-0569/2024.04.11

    CrossRef Google Scholar

    [82] 李东生, 张占玉, 苏生顺, 等. 2010. 青海卡尔却卡铜钼矿床地质特征及成因探讨[J]. 西北地质, 43(4): 239−244. doi: 10.3969/j.issn.1009-6248.2010.04.028

    CrossRef Google Scholar

    [83] 李世金, 孙丰月, 丰成友, 等. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, (7): 949−955. doi: 10.3321/j.issn:0001-5717.2008.07.013

    CrossRef Google Scholar

    [84] 李雪凯, 原垭斌, 刘晓菲. 2013. 湖南东坡矿田野鸡尾斑岩型铜锡矿床含矿石英斑岩锆石LA−(MC)−ICP−MS U−Pb测年[C]//中国地质学会青年工作委员会. 第一届全国青年地质大会论文集: 200−201.

    Google Scholar

    [85] 林艳海, 李积清, 王明, 等. 2021. 东昆仑扎玛休玛地区含矿花岗闪长斑岩LA−ICP−MS锆石定年及地质意义[J]. 矿物岩石, 41(3): 29−39.

    Google Scholar

    [86] 刘建栋, 张焜, 王秉璋, 等. 2023. 东昆仑拉陵高里河沟脑地区晚三叠世花岗闪长斑岩年代学、岩石地球化学及Hf同位素特征[J]. 地质论评, 69(4): 1525−1542.

    Google Scholar

    [87] 刘建楠, 丰成友, 亓锋, 等. 2012. 青海都兰县下得波利铜钼矿区锆石U−Pb测年及流体包裹体研究[J]. 岩石学报, 28(2): 679−690.

    Google Scholar

    [88] 刘战庆. 2011. 东昆仑南缘布青山构造混杂岩带地质特征及区域构造研究[D]. 长安大学博士学位论文: 41−99.

    Google Scholar

    [89] 鲁海峰, 杨延乾, 何皎, 等. 2017. 东昆仑哈陇休玛钼(钨)矿床花岗闪长斑岩锆石U−Pb及辉钼矿Re−Os同位素定年及其地质意义[J]. 矿物岩石, 37(2): 33−39.

    Google Scholar

    [90] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    CrossRef Google Scholar

    [91] 马忠元, 柴佳兴, 张爱奎, 等. 2024a. 东昆仑哈日扎-那更康切尔银矿区花岗岩年代学、地球化学及岩石成因[J]. 地球科学, 49(5): 1778−1792.

    Google Scholar

    [92] 马忠元, 张爱奎, 李军, 等. 2023a. 东昆仑哈日扎矿床斑岩-热液成矿特征及找矿远景[J]. 新疆地质, 41(4): 538−546. doi: 10.3969/j.issn.1000-8845.2023.04.007

    CrossRef Google Scholar

    [93] 马忠元, 张爱奎, 李军, 等. 2023b. 东昆仑哈日扎矿床V矿带银多金属矿物赋存状态研究[J]. 青海大学学报, 41(6): 78−87.

    Google Scholar

    [94] 马忠元, 李军, 赵建鹏, 等. 2024b. 东昆仑乌兰乌珠尔-十字嵩银多金属矿床成因研究[J]. 地质找矿论丛, 39(2): 160−168. doi: 10.6053/j.issn.1001-1412.2024.02.003

    CrossRef Google Scholar

    [95] 马忠元, 李军, 逯登军, 等. 2024c. 东昆仑斑岩-热液成矿系统找矿实践——以乌兰乌珠尔-十字嵩矿床为例[J]. 地质与勘探, 60(4): 700−711.

    Google Scholar

    [96] 马忠元, 张勇, 李军, 等. 2024d. 东昆仑清水河东沟钼矿床成矿模式探讨[J]. 地质找矿论丛, 39(3): 293−300. doi: 10.6053/j.issn.1001-1412.2024.03.001

    CrossRef Google Scholar

    [97] 潘彤, 薛万文, 王贵仁, 等. 2021. 青海矿产地质[M]. 北京: 地质出版社: 7−34.

    Google Scholar

    [98] 潘彤, 王秉璋, 张爱奎. 2019. 柴达木盆地南北缘成矿系列及找矿预测[M]. 武汉: 中国地质大学出版社: 11−174.

    Google Scholar

    [99] 佘宏全, 张德全, 景向阳, 等. 2007. 青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质, 34(2): 306−314.

    Google Scholar

    [100] 王永德, 李生虎. 2023. 青海益克郭勒斑岩型钼矿深部找矿潜力分析[J]. 矿产与地质, 37(4): 794−805.

    Google Scholar

    [101] 王瑞, 朱弟成, 王青, 等. 2020. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 50(12): 1919−1946.

    Google Scholar

    [102] 夏锐, 卿敏, 王长明, 等. 2014. 青海东昆仑托克妥Cu−Au(Mo)矿床含矿斑岩成因: 锆石U−Pb年代学和地球化学约束[J]. 吉林大学学报(地球科学版), 44(5): 1502−1524.

    Google Scholar

    [103] 许庆林, 孙丰月, 李碧乐, 等. 2014. 东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景[J]. 大地构造与成矿学, 38(2): 421−433.

    Google Scholar

    [104] 许庆林. 2014. 青海东昆仑造山带斑岩型矿床成矿作用研究[D]. 吉林大学博士学位论文: 88−152.

    Google Scholar

    [105] 袁万明, 莫宣学, 张爱奎, 等. 2017. 青海省东昆仑斑岩带新发现[J]. 地学前缘, 24(6): 1−9.

    Google Scholar

    [106] 殷鸿福, 张克信. 1997. 东昆仑造山带的一些特点[J]. 地球科学—中国地质大学学报, 22(4): 339−342.

    Google Scholar

    [107] 湛守智, 赵海超, 李志强, 等. 2013. 青海省都兰县下得波利−埃坑德勒斯特铜多金属矿普查报告[R]. 青海省第五地质矿产勘查院: 36−76.

    Google Scholar

    [108] 张洪瑞, 侯增谦, 杨志明. 2010. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 29(1): 113−133. doi: 10.3969/j.issn.0258-7106.2010.01.011

    CrossRef Google Scholar

    [109] 张大明, 张爱奎, 屈光菊, 等. 2020. 东昆仑西段卡而却卡铁铜多金属矿床成矿模式及找矿模型[J]. 西北地质, 53(1): 91−106.

    Google Scholar

    [110] 张爱奎, 袁万明, 刘光莲, 等. 2023. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, 31(3): 260−283.

    Google Scholar

    [111] 张雪亭, 姚远, 郑杰, 等. 2017. 东昆仑南坡埃坑北花岗斑岩的成岩年龄及其地质意义[J]. 地质与勘探, 53(4): 680−685.

    Google Scholar

    [112] 郑建华, 东寿山. 2014. 青海省都兰县托克妥铜金矿详查报告[R]. 青海唐荣矿业有限公司, 16−54.

    Google Scholar

    [113] 郑振华, 张勤山, 何利, 等. 2022. 东昆仑东段益克郭勒侵入岩LA−ICP−MS锆石U−Pb定年及其地质意义[J]. 世界地质, 41(1): 56−71,84. doi: 10.3969/j.issn.1004-5589.2022.01.005

    CrossRef Google Scholar

    [114] 钟世华, 丰成友, 李大新, 等. 2017. 新疆维宝多金属矿区辉绿岩脉SIMS年代学和地球化学[J]. 地质学报, 91(4): 762−775. doi: 10.3969/j.issn.0001-5717.2017.04.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(141) PDF downloads(35) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint