2025 Vol. 44, No. 4
Article Contents

ZHONG Shihua, LI Sanzhong, FENG Chengyou, TANG Hejun, ZHANG Yong, HE Shuyue. 2025. Proto-Tethys and Paleo-Tethys collisional magmas and porphyry mineralization: A case study of the Qimantagh area, East Kunlun Mountains. Geological Bulletin of China, 44(4): 511-533. doi: 10.12097/gbc.2024.12.011
Citation: ZHONG Shihua, LI Sanzhong, FENG Chengyou, TANG Hejun, ZHANG Yong, HE Shuyue. 2025. Proto-Tethys and Paleo-Tethys collisional magmas and porphyry mineralization: A case study of the Qimantagh area, East Kunlun Mountains. Geological Bulletin of China, 44(4): 511-533. doi: 10.12097/gbc.2024.12.011

Proto-Tethys and Paleo-Tethys collisional magmas and porphyry mineralization: A case study of the Qimantagh area, East Kunlun Mountains

  • Objective

    Tethys can be divided into Proto−Tethys, Paleo−Tethys and Neo−Tethys according to its evolutionary history, roughly corresponding to the Early Paleozoic, Late Paleozoic and Mesozoic oceans, respectively. In recent years, a large number of studies in the southern Tibetan Plateau, Iran, Pakistan and other areas have shown that the (post−) collisional granite formed after the closure of the New Tethys Ocean is generally characterized by high oxygen fugacity and high water contents, which has led to the formation of many large to super−large porphyry copper deposits in these areas. How about the metallogenic potential of Proto−Tethys and Paleo−Tethys porphyry deposits? Does the (post−) collisional stage after the closure of the two paleo−oceans also have the metallogenic potential of large to super−large porphyry copper deposits? These problems have not been systematically studied before. The Qimantagh area in the East Kunlun Orogenic Belt records the tectonic evolution and metallogenic history of Proto− and Paleo−Tethys from subduction to closed stages. Thus, this area is a natural laboratory and excellent place to study the porphyry mineralization of Proto−Tethys and Paleo−Tethys.

    Methods

    In this paper, the age and geochemical data of granites previously reported in Qimantagh area of the East Kunlun Orogenic Belt are reviewed, and the granite characteristics related to porphyrie−skarn deposits are particularly studied. The purpose of this paper is to reveal the metallogenic regularity of Proto−Tethys and Paleo−Tethys porphyry and serve a new round of prospecting breakthrough strategy.

    Results

    The granites in the Qimantagh area of the East Kunlun Orogenic Belt mainly occurred in two periods, i.e., 435~370 Ma and 245~196 Ma. These granites formed in the collisional stage after the closing of the Proto−Tethys and the Paleo−Tethys Oceans, respectively. In contrast, the granites related to oceanic subduction were rarely found. The two stage collisional granites have similar geochemical characteristics, mainly fall into the range of high−K calc−alkaline and shoshonitic series, belong to metaluminous to weakly peraluminous rocks with depleted Nb and Ta, and display characterisitics of crustal−mantle mixing in the sources of parental magmas.

    Conclusions

    Based on the results of previous studies, this paper proposes that the Proto−Tethys and Paleo−Tethys experienced similar evolutionary processes. ① During the subduction stage, the Proto−Tethys and Paleo−Tethys subducted to the continent in the form of flat subduction, which inhibited arc magmatism and resulted in the scarcity of arc granites in Qimantagh area, East Kunlun. ② During the collisional stage, the subduction plate was detached which led to the upwelling of the asthenosphere mantle, forming a large number of collisional granites of crustal−mantle mixing origin. However, compared with the Neo−Tethys collisional granites, the Proto−Tethys and Paleo−Tethys collisional granites generally have lower oxygen fugacity and water content. These characteristics may explain why no large and super−large porphyry copper deposits have been found in the northern part of the Tibetan Plateau. In spite of this, the skarn copper polymetallic deposits in the north of the Qinghai−Tibet Plateau have great prospecting potential and should be the main type and direction of prospecting in the future.

  • 加载中
  • [1] Atherton M P, Ghani A A. 2002. Slab breakoff: A model for Caledonian, Late Granite syn−collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland[J]. Lithos, 62(3/4): 65−85.

    Google Scholar

    [2] Bai Y N, Sun F Y, Qian Y, et al. 2016. Zircon U−Pb geochronology and geochemistry of pyroxene diorite in the Galinge iron−polymetallic deposit, East Kunlun[J]. Global Geology, (1): 17−27 (in Chinese with English abstract).

    Google Scholar

    [3] Ballard J R, Palin J M, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 144(3): 347−364. doi: 10.1007/s00410-002-0402-5

    CrossRef Google Scholar

    [4] Bergomi M A, Zanchetta S, Tunesi A. 2015. The Tertiary dike magmatism in the Southern Alps: Geochronological data and geodynamic significance[J]. International Journal of Earth Sciences, 104: 449−473. doi: 10.1007/s00531-014-1087-5

    CrossRef Google Scholar

    [5] Bonin B. 2004. Do coeval mafic and felsic magmas in post−collisional to within−plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 78(1/2): 1−24.

    Google Scholar

    [6] Chen J, Wang B Z, Li B, et al. 2015. Zircon U–Pb ages, geochemistry, and Sr–Nd–Pb isotopic compositions of Middle Triassic granodiorites from the Kaimuqi area, East Kunlun, Northwest China: Implications for slab breakoff[J]. International Geology Review, 57(2): 257−270. doi: 10.1080/00206814.2014.1003105

    CrossRef Google Scholar

    [7] Chen J, Wang B Z, Lu H F, et al. 2018. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: Evidence for post−collisional slab break−off[J]. International Geology Review, 60(4): 479−95. doi: 10.1080/00206814.2017.1346487

    CrossRef Google Scholar

    [8] Chen B, Zhang Z Y, Geng J Z, et al. 2012. Zircon LA−ICP−MS U−Pb age of monzogranites in the Kaerqueka copper−polymetallic deposit of Qimantag, Western Qinghai Province[J]. Geological Bulletin of China, (2/3): 463−468 (in Chinese with English abstract).

    Google Scholar

    [9] Chen J, Hu J C, Lu Y Z, et al. 2018a. Geochronology, geochemical characteristics of molybdenum ore−bearing syenogranite from Xiaozhaohuo area in East Kunlun and its geological significance[J]. Gold Science and Technology, 26(4): 465−472 (in Chinese with English abstract).

    Google Scholar

    [10] Deng J, Wang Q, Li G, et al. 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 26(2): 419−437. doi: 10.1016/j.gr.2013.08.002

    CrossRef Google Scholar

    [11] Deng X H, Chen Y J, Bagas L, et al. 2018. Cassiterite U−Pb geochronology of the Kekekaerde W−Sn deposit in the Baiganhu ore field, East Kunlun Orogen, NW China: Timing and tectonic setting of mineralization[J]. Ore Geology Reviews, 100: 534−544. doi: 10.1016/j.oregeorev.2017.02.018

    CrossRef Google Scholar

    [12] Deng Z, Zhong S, Yan J, et al. 2024. Magma mixing formed mineralized Middle–Late Triassic granitoids in the Qimantagh Metallogenic Belt, NW China: A case study from the Hutouya skarn deposit[J]. Ore Geology Reviews, 106192.

    Google Scholar

    [13] Ding L. 2024. New Advances in the Study of Tethyan Geodynamic System[J]. Science China Earth Sciences, 54(3): 892−896 (in Chinese with English abstract).

    Google Scholar

    [14] Dong Y, He D, Sun S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006

    CrossRef Google Scholar

    [15] Dong Y, Sun S, He D, et al. 2024. Early Paleozoic back−arc basin in the East Kunlun Orogen, northern Tibetan Plateau: Insight from the Wutumeiren ophiolitic mélange[J]. Lithos, 464/465: 107460. doi: 10.1016/j.lithos.2023.107460

    CrossRef Google Scholar

    [16] Du L H, Huang Y, Gao X, et al. 2025. Characteristics of strong reducing metallogenic porphyry and its constraints on the genesis of the rare metal-tin-polymetallic deposit in Weilasituo, Inner Mongolia [J]. Geological Bulletin of China, 44(4):633-648 (in Chinese with English abstract).

    Google Scholar

    [17] Duan X P, Meng F C, Jia L H. 2019. Early Paleozoic mantle evolution of East Kunlun Orogenic Belt in Qinghai, NW China: evidence from the geochemistry and geochronology of the Late Ordovician to Late Silurian mafic−ultramafic rocks in the Qimantag region[J]. International Geology Review, 62(15): 1883−1903.

    Google Scholar

    [18] Fang J, Zhang L, Chen H, et al. 2018. Genesis of the Weibao banded skarn Pb−Zn deposit, Qimantagh, Xinjiang: Insights from skarn mineralogy and muscovite 40Ar−39Ar dating[J]. Ore Geology Reviews, 100: 483−503. doi: 10.1016/j.oregeorev.2017.06.001

    CrossRef Google Scholar

    [19] Feng C Y, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678 (in Chinese with English abstract).

    Google Scholar

    [20] Feng C Y, Li D S, Qu W J, et al. 2009. Re−Os Isotopic dating of molybdenite from the Suolajier skarn−type copper−molybdenum deposit of Qimantage Mountain in Qinghai Province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223−227 (in Chinese with English abstract).

    Google Scholar

    [21] Feng C Y, Li D S, Wu Z S, et al. 2010. Major types, time−space distribution and metallogenesis of polymetallic deposits in the Qimantagh metallogenic belt, Eastern Kunlun Area[J]. Northwestern Geology, 43(4): 10−17 (in Chinese with English abstract).

    Google Scholar

    [22] Feng C Y, Wang X P, Shu X F. et al. 2011. Isotopic chronology of the Hutouya skarn lead−zinc polymetallic ore district in the Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806−1817 (in Chinese with English abstract).

    Google Scholar

    [23] Fu H, Han J H, Sun Y X, et al. 2024. Tethys orogenic belt[J]. Sedimentary Geology and Tethyan Geology, 44(1): 100−133 (in Chinese with English abstract).

    Google Scholar

    [24] Gao Y B, Li K, Qian B, et al. 2018. The metallogenic chronology of Kaerqueka deposit in Eastern Kunlun: Evidences from molybdenite Re−Os and phlogopite Ar−Ar ages[J]. Geotectonica et Metallogenia, 42(1): 96−107 (in Chinese with English abstract).

    Google Scholar

    [25] Gao Y B, Li W Y, Ma X G, et al. 2012a. Genesis, geochronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, eastern Kunlun[J]. Journal of Lanzhou University (Natural Sciences), 48(2): 36−47 (in Chinese with English abstract).

    Google Scholar

    [26] Gao Y B, Li W Y, Li K, et al. 2012b. Genesis and chronology of the Baiganhu−Jialesai W−Sn mineralization belt, Qimantage, East Kunlun Mountain, NW China[J]. Northwestern Geology, 45(4): 229−241 (in Chinese with English abstract).

    Google Scholar

    [27] Gao Y B. 2013. The intermediate−acid intrusive magmatism and mineralization in Qimantag, East Kunlun Mountains[D]. Doctoral Thesis of Chang'an University (in Chinese with English abstract).

    Google Scholar

    [28] Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665 (in Chinese with English abstract).

    Google Scholar

    [29] Geng J. 2023. Study on magmatic rocks and mineralization of two stage in Niukutou Mining area, Qinghai Province[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [30] Gerrits A R, Inglis E C, Dragovic B, et al. 2019. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet[J]. Nature Geoscience, 12: 1029−1033. doi: 10.1038/s41561-019-0471-y

    CrossRef Google Scholar

    [31] Gu Y, Qian Y, Li Y J, et al. 2019. Geochronology, geochemistry, and tectonic significance of Middle and Late Triassic granites in the Luotuofeng area, East Kunlun[J]. Mineral Exploration, 10(4): 724−736 (in Chinese with English abstract).

    Google Scholar

    [32] Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing discrimination diagrams for granite mineralization potential by ssing machine learning and zircon trace elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).

    Google Scholar

    [33] Guo T, Liu R, Chen F, et al. 2011. LA−MC−ICP−MS zircon U−Pb dating of Wulanwuzhuer porphyritic syenite granite in the Qimantagh Mountain of Qinghai and its geological significance[J]. Geological Bulletin of China, (8): 1203−1211 (in Chinese with English abstract).

    Google Scholar

    [34] Han H C, Wang G L, Ding Y J, et al. 2018. LA−ICP−MS zircon U−Pb age of late Triassic intrusive rocks in Bayinhudousen area, East Kunlun and its tectonic significance[J]. Northwestern Geology, 51(1): 144−58 (in Chinese with English abstract).

    Google Scholar

    [35] Hao N N, Yuan W M, Zhang A K, et al. 2014b. Late Silurian to Early Devonian granitoids in the Qimantage Area, East Kunlun Mountains: LA−ICPMS zircon U–Pb ages, geochemical features and geological setting[J]. Geological Review, 60(1): 201−15 (in Chinese with English abstract).

    Google Scholar

    [36] He Y, Li S, Hoefs J, et al. 2011. Post−collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 75: 3815−3838. doi: 10.1016/j.gca.2011.04.011

    CrossRef Google Scholar

    [37] He S Y, Bai G L, Liu Z G, et al. 2025. A preliminary discussion on the metallogenetic pattern of Qinghai Province[J/OL]. Geological Bulletin of China, 44(4): 649-678 (in Chinese with English abstract).

    Google Scholar

    [38] He S Y, Li D S, Bai G L, et al. 2018. The report on 40Ar/39Ar age of muscovite from the Qunli Fe−polymetallic deposit in the Qimantag area, Qinghai Province[J]. Geology in China, 45(1): 201−202 (in Chinese with English abstract).

    Google Scholar

    [39] He S Y, Li D S, Li L L, et al. 2009. Re−Os age of molybdenite from the Yazigou Copper (Molybdenum) mineralized area in Eastern Kunlun of Qinghai Province and its geological significance[J]. Geotectonica et Metallogenia, 33(2): 236−242 (in Chinese with English abstract).

    Google Scholar

    [40] He S Y, Lin G, Zhong S H, et al. 2023. Geological characteristics and related mineralization of“Qinghai Gold Belt” formed by orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract).

    Google Scholar

    [41] Hou Z, Pan X, Yang Z, et al. 2007. Porphyry Cu–(Mo–Au) deposits not related to oceanic−slab subduction: examples from Chinese porphyry deposits in continental settings[J]. Geoscience, 21: 332−351 (in Chinese with English abstract).

    Google Scholar

    [42] Hou Z, Zheng Y, Yang Z, et al. 2012. Contribution of mantle components within juvenile lower−crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 48: 173−192.

    Google Scholar

    [43] Hou Z Q. 2010. Metallogensis of continental collision[J]. Acta Geologica Sinica, 84(1): 30−58 (in Chinese with English abstract).

    Google Scholar

    [44] Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu−(Mo−Au) deposits no related to oceanic slab subduction: Examples from Chinese porphyry deposits in continental−settings[J]. Geoscience, (2): 332−351 (in Chinese with English abstract).

    Google Scholar

    [45] Hu C, Li M, Feng C, et al. 2023. Petrogenesis and metallogenic potential of the early Devonian Yugusayi mafic−ultramafic complex in Qimantagh, East Kunlun orogenic belt[J]. International Geology Review, 65: 1056−1076. doi: 10.1080/00206814.2021.1878474

    CrossRef Google Scholar

    [46] Jia L, Meng F, Feng H. 2018. The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai−Tibet Plateau—crustal relics of the Paleo−Tethys ocean[J]. Mineralogy and Petrology, 112: 317−339. doi: 10.1007/s00710-017-0544-9

    CrossRef Google Scholar

    [47] Kong H L, Li J C, Huang J, et al. 2015. Zircon U−Pb dating and geochemical characteristics of the plagiogranite porphyry from the Xiaoyuanshan iron−polymetallic ore district in East Kunlun Mountains[J]. Geology in China, 42(3): 521−533 (in Chinese with English abstract).

    Google Scholar

    [48] Kong H L, Li J C, Li Y Z, et al. 2016. LA−MC−ICP−MS zircon U−Pb dating and its geological implications of the tonalite from Xiaoyuanshan iron−polymetallic ore district in Qimantage Mountain, Qinghai Province[J]. Geologcal Science and Technology Information, 35(1): 8−16 (in Chinese with English abstract).

    Google Scholar

    [49] Kou G C, Feng J W, Luo B, et al. 2017. Zircon U−Pb dating and geochemistry of the volcanic rocks from Maoniushan Formation in Amunike area, Qinghai Province, and its geological implications[J]. Geological Bulletin of China, 36(2/3): 275−284 (in Chinese with English abstract).

    Google Scholar

    [50] Lee R G, Dilles J H, Tosdal R M, et al. 2017. Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons[J]. Economic Geology, 112: 245−273. doi: 10.2113/econgeo.112.2.245

    CrossRef Google Scholar

    [51] Li C S, Zhang Z W, Li W Y, et al. 2015a. Geochronology, petrology and Hf–S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China. Lithos, 216/217: 224−240.

    Google Scholar

    [52] Li J Q, Chen J, Shi Q R, et al. 2016. The genesis of porphyritic monzogranite of the Kaerqueka deposit in the East Kunlun: Evidence from zircon U–Pb dating and Sr–Nd isotopic compositions[J]. Journal of Mineralogy and Petrology, 36(3): 87−95 (in Chinese with English abstract).

    Google Scholar

    [53] Li H M, Shi Y D, Liu Z G, et al. 2006. Geological features and origin of the Baigan Lake W−Sn deposit in the Ruoqiang area, East Kunlun Mountains, China[J]. Geological Bulletin of China, (2/3): 277−281 (in Chinese with English abstract).

    Google Scholar

    [54] Li H P, Liu J C, Zhang X Q, et al. 2011. Characteristics of magmatic rocks from the Sijiaoyang Fe−polymetallic ore district in the southern margin of Qaidam, Qinghai Province and their metallogenic significance[J]. Geology and Exploration, 47(6): 1009−1017 (in Chinese with English abstract).

    Google Scholar

    [55] Li J D, Wang X Y, Zhu X Y, et al. 2019. The preliminary discussion of the Hercynian metallogenic period in Qimantag area−with the example of Niukutou lead and zinc deposit[J]. Mineral Exploration, 10(8): 1775−1783 (in Chinese with English abstract).

    Google Scholar

    [56] Li K, Gao Y, Qian B, et al. 2015b. Geochronology, geochemical characteristics, and Hf isotopic compositions of granite in the Hutouya deposit, Qimantag, East Kunlun[J]. Geology in China, (3): 630−645 (in Chinese with English abstract).

    Google Scholar

    [57] Li S, Suo Y, Li X, et al. 2018. Microplate tectonics: new insights from micro−blocks in the global oceans, continental margins and deep mantle[J]. Earth−Science Reviews, 185: 1029−1064. doi: 10.1016/j.earscirev.2018.09.005

    CrossRef Google Scholar

    [58] Li S, Zhao S, Liu X, et al. 2018. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011

    CrossRef Google Scholar

    [59] Li S J, Sun F Y, Feng C Y, et al. 2008. Geochronological study on the Yazigou polymetallic deposit in Eastern Kunlun, Qinghai Province[J]. Acta Geologica Sinica, 82(7): 949−955 (in Chinese with English abstract).

    Google Scholar

    [60] Li S Z, Zhao S J, Li X Y, et al. 2016. ProtoTehtys Ocean in East Asia (I): Northern and southern border faults and subduction polarity[J]. Acta Petrologica Sinica, 32(9): 2609−2627 (in Chinese with English abstract).

    Google Scholar

    [61] Li S Z, Zhao S J, Yu S, et al. 2016. Proto−Tehtys Ocean in East Asia (Ⅱ): Affinity and assmbly of Early Paleozoic micro−continental blocks[J]. Acta Petrologica Sinica, 32(9): 2628−2644 (in Chinese with English abstract).

    Google Scholar

    [62] Li W, Yang Z, Cao K, et al. 2019. Redox−controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China[J]. Contributions to Mineralogy and Petrology, 174: 12. doi: 10.1007/s00410-019-1546-x

    CrossRef Google Scholar

    [63] Li W Y. The Paleo−Tethys tectonic evolution and Corresponding Metallogenesis[J/OL]. Acta Geologica Sinica, 1−19 (in Chinese with English abstract).

    Google Scholar

    [64] Li Z H, Cui F Y, Yang S T, et al. 2023. Key geodynamic processes and driving forces of Tethyan evolution[J]. Science China Earth Sciences, 53(12): 2701−2722 (in Chinese with English abstract).

    Google Scholar

    [65] Liu J N, Feng C Y, He S Y, et al. 2017. Zircon U−Pb and phlogopite Ar−Ar ages of the monzogranite from Yemaquan iron−zinc deposit in Qinghai Province[J]. Geotectonica et Metallogenia, 41(6): 1158−70 (in Chinese with English abstract).

    Google Scholar

    [66] Liu Y, Genser J, Neubauer F, et al. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 398: 199−224. doi: 10.1016/j.tecto.2005.02.007

    CrossRef Google Scholar

    [67] Liu J Q, Zhong S H, Li S Z, et al. 2023. Identification of mineralized and barren magmatic rocks for the pophryry−skarn deposits from the Qimantagh, East Kunlun: Based on machine learning and whole−Rock compositions[J]. Northwest Geology, 56(6): 41−56 (in Chinese with English abstract).

    Google Scholar

    [68] Loucks R R, Fiorentini M L, Henríquez G J, 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology 61, egaa034.

    Google Scholar

    [69] Lu J P, Li J, Qin X F, et al. 2005. The Yinieke'agan granite mass in Qimantag, eastern Kunlun and its tectonic significance[J]. Sedimentary and Tethyan Geology, (4): 46−54 (in Chinese with English abstract).

    Google Scholar

    [70] Lv P R, Yao W G, Zhang H S, et al. 2020. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica, 94(8): 2291−2310 (in Chinese with English abstract).

    Google Scholar

    [71] Mao J W, Zhou Z H, Feng C Y, et al. 2012. A preliminary study of the Triassic large−scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6): 1437−1471 (in Chinese with English abstract).

    Google Scholar

    [72] McCarthy A, Chelle−Michou C, Müntener O, et al. 2018. Subduction initiation without magmatism: The case of the missing Alpine magmatic arc[J]. Geology, 46: 1059−1062.

    Google Scholar

    [73] Meng X, Kleinsasser J M, Richards J P, et al. 2021. Oxidized sulfur−rich arc magmas formed porphyry Cu deposits by 1.88 Ga[J]. Nature Communications, 12(1): 2189. doi: 10.1038/s41467-021-22349-z

    CrossRef Google Scholar

    [74] Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66: 1−33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [75] O'Neill H S C. 1987. Quartz−fayalite−iron and quartz−fayalite−magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4)[J]. American Mineralogist, 72(1/2): 67−75.

    Google Scholar

    [76] Peng B, Sun F Y, Li B L, et al. 2016. The geochemistry and geochronology of the Xiarihamu II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni–Cu sulfide deposits[J]. Ore Geology Reviews, 73: 13−28. doi: 10.1016/j.oregeorev.2015.10.014

    CrossRef Google Scholar

    [77] Qiao B, Pan T, Chen J. 2016. Geochronology, Geochemical characteristics, and geological significance of granodiorite in the Yemaquan iron polymetallic deposit of the East Kunlun, Qinghai Province[J]. Journal of Qinghai University (Natural Science Edition), (1): 63−73 (in Chinese with English abstract).

    Google Scholar

    [78] Qu H Y, Feng C Y, Pei R F, et al. 2015. Thermochronology of the Hutouya skarn−type copper−lead−zinc polymetallic ore district in the Qimantage Area, Qinghai Province[J]. Acta Geologica Sinica, (3): 498−509 (in Chinese with English abstract).

    Google Scholar

    [79] Qu H Y, Liu J N, Pei R F, et al. 2018. Thermochronology of the monzonitic granite related to the Hutouya Cu−Pb−Zn polymetallic deposit in Qiman Tage, Qinghai Province[J]. Geology in China, 45(3): 511−527 (in Chinese with English abstract).

    Google Scholar

    [80] Richards J P, Şengör A C. 2017. Did Paleo−Tethyan anoxia kill arc magma fertility for porphyry copper formation?[J]. Geology, 45: 591−594.

    Google Scholar

    [81] Richards J P, Spell T, Rameh E, et al. 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan[J]. Economic Geology, 107: 295−332. doi: 10.2113/econgeo.107.2.295

    CrossRef Google Scholar

    [82] Şengör A C. 1979. Mid−Mesozoic closure of Permo–Triassic Tethys and its implications[J]. Nature, 279: 590−593. doi: 10.1038/279590a0

    CrossRef Google Scholar

    [83] She, H Q, Zhang D Q, Jing X Y, et al. 2007. Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai[J]. Geology in China, (2): 306−314 (in Chinese with English abstract).

    Google Scholar

    [84] Shen P, Hattori K, Pan H, et al. 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace−Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt[J]. Economic Geology, 110: 1861−1878. doi: 10.2113/econgeo.110.7.1861

    CrossRef Google Scholar

    [85] Shi C, Li R, He S, et al. 2017. A study of the ore−forming age of the Hutouya deposit and its geological significance: Geochemistry and U−Pb zircon ages of biotite monzonitic granite in Qimantag, East Kunlun Mountains[J]. Geological Bulletin of China, 36(6): 977−86 (in Chinese with English abstract).

    Google Scholar

    [86] Shu Q, Chang Z, Lai Y, et al. 2019. Zircon trace elements and magma fertility: insights from porphyry (−skarn) Mo deposits in NE China[J]. Mineralium Deposita, 54(5): 645−656.

    Google Scholar

    [87] Siégel C, Bryan S E, Allen C M, et al. 2018. Use and abuse of zircon−based thermometers: A critical review and a recommended approach to identify antecrystic zircons[J]. Earth−Science Reviews, 176: 87−116. doi: 10.1016/j.earscirev.2017.08.011

    CrossRef Google Scholar

    [88] Song S, Bi H, Qi S, et al. 2018. HP–UHP Metamorphic belt in the East Kunlun Orogen: final closure of the Proto−Tethys ocean and formation of the Pan−North−China continent[J]. Journal of Petrology, 59: 2043−2060. doi: 10.1093/petrology/egy089

    CrossRef Google Scholar

    [89] Song X Y, Yi J N, Chen L M, et al. 2016. The giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29

    CrossRef Google Scholar

    [90] Song Z B, Zhang Y L, Jia Q Z, et al. 2014. U−Pb age of Yemaquan deep variscan granodiorite in Qimantage area, Eastern Kunlun and its significance[J]. Geoscience, 28(6): 1161−1169 (in Chinese with English abstract).

    Google Scholar

    [91] Spakman W, Hall R. 2010. Surface deformation and slab–mantle interaction during Banda arc subduction rollback[J]. Nature Geoscience, 3: 562−566. doi: 10.1038/ngeo917

    CrossRef Google Scholar

    [92] Su H M, Che Y Y, Liu T, et al. 2024. Multiple generations of garnet and their genetic significance in the Niukutou cobalt−rich Pb−Zn−(Fe) skarn deposit, East Kunlun orogenic belt, western China[J]. Ore Geology Reviews, 106308.

    Google Scholar

    [93] Tan S X, Guo T Z, Dong J S, et al. 2011. Geological characteristics and significance of the peraluminous granite in Late Silurian Epoch in Wulanwuzhuer region of Qinghai[J]. Journal of Qinghai University (Nature Science), 29(1): 36−43 (in Chinese with English abstract).

    Google Scholar

    [94] Tang J X. 2019. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent majormetallogenic belts.[J]. Acta Petrologica Sinica, 35(3): 617−624 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.01

    CrossRef Google Scholar

    [95] Tang J X, Duoji, Liu H F, et al. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic Belt[J]. Acta Geoscientica Sinica, 33(4): 393−410.

    Google Scholar

    [96] Tian C S, Feng C Y, Li H J, et al. 2013. 40Ar−39Ar geochronology of Tawenchahan Fe−Polymetallic deposit in Qimantag mountain of Qinghai Province and its geological implications[J]. Mineral Deposits, (1): 169−176 (in Chinese with English abstract).

    Google Scholar

    [97] Van Staal C R, Wilson R A, McClelland W. 2015. Discussion: Taconian orogenesis, sedimentation and magmatism in the southern Quebec−northern Vermont Appalachians: Stratigraphic and detrital mineral record of Iapetan suturing[J]. American Journal of Science, 315: 486−500. doi: 10.2475/05.2015.04

    CrossRef Google Scholar

    [98] Wang R, Weinberg R F, Collins W J, et al. 2018. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth−Science Reviews, 181: 122−143. doi: 10.1016/j.earscirev.2018.02.019

    CrossRef Google Scholar

    [99] Wang B Z, Pan T, Ren H D, et al. 2021. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U−Pb ages, lithogeochemistry and Hf isotopes of high−Mg andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 28(1): 318−333 (in Chinese with English abstract).

    Google Scholar

    [100] Wang G, Sun F Y, Li B L, et al. 2014b. Petrography, zircon U−Pb geochronology, and geochemistry of the mafic−ultramafic intrusion in the Xiarihamu Cu−Ni deposit from East Kunlun, with implications for geodynamic setting[J]. Earth Science Frontiers, 21(6): 381−401 (in Chinese with English abstract).

    Google Scholar

    [101] Wang R, Zhu D C, Wang Q, et al. 2020. Porphyry mineralization in the Tethyan orogen[J]. Scientia Sinica (Terrae), 50(12): 1919−1946 (in Chinese with English abstract). doi: 10.1360/SSTe-2019-0233

    CrossRef Google Scholar

    [102] Wang S, Feng C Y, Li S J, et al. 2009. Zircon sHRIMP U−Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit, Qimantage mountain, Qinghai Province, and its geological Implications[J]. Geology in China, 36(1): 74−84 (in Chinese with English abstract).

    Google Scholar

    [103] Wang X Y, Wang S, Liu M, et al. Study on the chronology and trace element characteristics of skarn mineral in the Niukutou Deposit, Qimantag region, Qinghai Province[J/OL]. Earth Science Frontiers: 1−27 (in Chinese with English abstract).

    Google Scholar

    [104] Wang Y. 2017. Study on the geological characteristics and enrichment regularities of mineralization of Hutouya copper−iron deposit, Qimantage, Qinghai Province[D]. Master Thesis of Jilin University: 1−58 (in Chinese with English abstract).

    Google Scholar

    [105] Wang Z Z, Han B F, Feng C Y, et al. 2014. Geochronology and geochemistry of granites in the Baiganhu Area, Xinjiang, and their tectonic implications[J]. Acta Petrologica et Mineralogica, 33(4): 597−616 (in Chinese with English abstract).

    Google Scholar

    [106] Wu F Y, Wan B, Zhao L, et al. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627−1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [107] Wu X K, Meng F C, Xu H, et al. 2011. Zircon U−Pb Dating, Geochemistry, and Nd−Hf Isotopic Compositions of the Maxingdaban Late Triassic Granitic Pluton from Qimantag in the Eastern Kunlun[J]. Acta Petrologica Sinica, 27(11): 3380−3394 (in Chinese with English abstract).

    Google Scholar

    [108] Wu Z C. 2017. Genesis and Exploration Prospect of the Bo Wu Porphyry Molybdenum Deposit in the East Kunlun Orogenic Belt[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [109] Xi R G, Xiao P X, Wu Y Z, et al. 2010. The geological significances, composition, and age of the monzonitic granite in the Kendekeke iron mine[J]. Northwestern Geology, 43(4): 195−202 (in Chinese with English abstract).

    Google Scholar

    [110] Xia R, Wang C, Qing M, et al. 2015. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo−Tethys[J]. Lithos, 234/235: 47−60. doi: 10.1016/j.lithos.2015.07.018

    CrossRef Google Scholar

    [111] Xiao Y, Feng C Y, Liu J N, et al. 2013. M. LA−MC−ICP−MS zircon U−Pb dating and sulfur isotope characteristics of the Kendekeke Fe−polymetallic deposit, Qinghai Province[J]. Mineral Deposits, 32(1): 177−186 (in Chinese with English abstract).

    Google Scholar

    [112] Xin R C. 2024. Global Tethys tectonic domain and its spatiotemporal distribution[J/OL]. Sedimentary Geology and Tethyan Geology: 1−20 (in Chinese with English abstract).

    Google Scholar

    [113] Xiong F H, Ma C Q, Zhang J Y, et al. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai−Tibet Plateau: implications for magma mixing during subduction of Paleo−Tethyan lithosphere[J]. Mineralogy and Petrology, 104: 211−224. doi: 10.1007/s00710-011-0187-1

    CrossRef Google Scholar

    [114] Xu B. 2019. Chronology, Geochemistry, and Tectonic Setting of Late Triassic Igneous Rocks in the Ageteng Area, Qimantage, Qinghai[D]. Master Thesis of Jilin University:1−48 (in Chinese with English abstract).

    Google Scholar

    [115] Xue N, An Y S, Li W F, et al. 2009. Characteristic and genesis of normal granite in the Yemaquan Area of Qinghai[J]. Journal of Qinghai University (Natural Science), 27(2): 18−22 (in Chinese with English abstract).

    Google Scholar

    [116] Yan Y F, Yang X S, Chen F B, et al. 2012. Molybdenum containing granites in Lalingzaohuo of the East Kunlun resources and environment[J]. Resources and Environment, 18(4): 37−39 (in Chinese with English abstract).

    Google Scholar

    [117] Yang T, Li Z M, Zhang L, et al. 2017. Geological and geochemical characteristics of the Tawenchahanxi granites in East Kunlun and its tectonic significance[J]. Geological Journal of China Universities, 23(3): 452−464 (in Chinese with English abstract).

    Google Scholar

    [118] Yao L, Dong S Y, Lü Z C, et al. 2020. Origin of the Late Permian gabbros and Middle Triassic granodiorites and their mafic microgranular enclaves from the Eastern Kunlun Orogen Belt: Implications for the subduction of the Palaeo−Tethys Ocean and continent–continent collision[J]. Geological Journal, 55: 147−172 (in Chinese with English abstract). doi: 10.1002/gj.3340

    CrossRef Google Scholar

    [119] Yao L, Lü Z, Zhao C, et al. 2017. Zircon U–Pb geochronological, trace element, and Hf isotopic constraints on the genesis of the Fe and Cu skarn deposits in the Qiman Tagh area, Qinghai Province, Eastern Kunlun Orogen, China[J]. Ore Geology Reviews, 91: 387−403. doi: 10.1016/j.oregeorev.2017.09.017

    CrossRef Google Scholar

    [120] Yao L. 2015. Petrogenesis of the Triassic Granitoids and Skarn Mineralization in the Qimantag Area, Qinghai Province, and Their Geodynamic Setting[D]. Doctoral Thesis of China University of Geosciences (Beijing): 1−175(in Chinese with English abstract).

    Google Scholar

    [121] Yao L, Lv Z C, Zhao C S, et al. 2016a. Geochronological study of granitoids from the Niukutou and B section of the Kaerqueka deposits, Qimantag area, Qinghai Province: Implications for Devonian magmatism and mineralization[J]. Geological Bulletin, 35(7): 1158−1169 (in Chinese with English abstract).

    Google Scholar

    [122] Yao L, Lv Z C, Zhao C S, et al. 2016b. LA−ICP−MS zircon U−Pb dating of granitic rocks in the B zone of the Niukutou and Ka'erquka deposits, East Kunlun Qimantagh: implications for Devonian diagenesis and mineralization[J]. Geological Bulletin of China, 35(7): 1158−1169 (in Chinese with English abstract).

    Google Scholar

    [123] Yin S, Ma C, Xu J. 2017. Geochronology, geochemical and Sr–Nd–Hf−Pb isotopic compositions of the granitoids in the Yemaquan orefield, East Kunlun orogenic belt, northern Qinghai−Tibet Plateau: Implications for magmatic fractional crystallization and sub−solidus hydrothermal alteration[J]. Lithos, 294/295: 339−355. doi: 10.1016/j.lithos.2017.10.012

    CrossRef Google Scholar

    [124] Yu M, Dick J M, Feng C, et al. 2020. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 191: 104168. doi: 10.1016/j.jseaes.2019.104168

    CrossRef Google Scholar

    [125] Yu M, Feng C Y, He S Y, et al. 2017. The Qimantagh Orogen as a window to the crustal evolution of the northern Tibetan Plateau[J]. Acta Geologica Sinica, 91: 703−723 (in Chinese with English abstract).

    Google Scholar

    [126] Yu M. 2017. Geochemistry and zonation of the Galinge iron deposit, Qinghai Province[D]. Master Thesis of China University of Geosciences (Beijing): 106.

    Google Scholar

    [127] Yu M, Feng C, Liu H, et al. 2015. 40Ar−39Ar geochronology of the Galinge large skarn iron deposit in Qinghai Province and geological significance[J]. Acta Geologica Sinica, (3): 510−521 (in Chinese with English abstract).

    Google Scholar

    [128] Yu S, Peng Y, Zhang J, et al. 2021. Tectono−thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto−Tethys Ocean[J]. Earth−Science Reviews, 215: 103547. doi: 10.1016/j.earscirev.2021.103547

    CrossRef Google Scholar

    [129] Yuan W M, Mo X X, Zhang A K, et al. 2017. Discovery of new porphyry belts in Eastern Kunlun Mountainsl Oinghai: Tibet Plateau[J]. Earth Science Frontiers, 24(6): 1−9 (in Chinese with English abstract).

    Google Scholar

    [130] Zhang A, Mo X, Yuan W, et al. 2017a. Petrogensis and tectonic setting of the Yemaquan granite from the iron−polymetallic ore area of Qimantag, Eastern Kunlun Mountains, Qinghai–Tibet Plateau[J]. Island Arc, 26(4): e12190. doi: 10.1111/iar.12190

    CrossRef Google Scholar

    [131] Zhang J Y, Ma C Q, Xiong F H, et al. 2014. Early Paleozoic high−Mg diorite−granodiorite in the eastern Kunlun Orogen, western China: Response to continental collision and slab break−off[J]. Lithos, 210: 129−146.

    Google Scholar

    [132] Zhang L, Zhang H, Zhang S, et al. 2017b. Lithospheric delamination in post−collisional setting: evidence from intrusive magmatism from the North Qilian orogen to southern margin of the Alxa block, NW China[J]. Lithos, 288: 20−34.

    Google Scholar

    [133] Zhang A K, Liu G L, Feng C Y, et al. 2013. Geochemical Characteristics and Ore−Controlling Factors of the Hutouya Polymetallic Deposit, Qinghai Province[J]. Mineral Deposits, (1): 94−108 (in Chinese with English abstract).

    Google Scholar

    [134] Zhang A S, Xie G Q, Liu W Y, et al. 2023. Identification of the first intermediate−sulfidation epithermal gold deposit in the Timok Metallogenic zone of Serbia, Western Tethys: A case study of the Zlatno Brdo gold deposit[J]. Geotectonica et Metallogenia, 47(5): 1110−1123 (in Chinese with English abstract).

    Google Scholar

    [135] Zhang C Y, Zhao Y, Liu J, et al. 2019. Provenance analysis of the Maoniushan Formation in the North Qaidam basin and its tectonic significance[J]. Acta Geologica Sinica, 93(3): 712−723 (in Chinese with English abstract).

    Google Scholar

    [136] Zhang X, Li Z, Jia Q, et al. 2016. Geochronology, geochemistry, and geological significance of granite porphyry in the Hutouya polymetallic deposit, Qimantage area, Qinghai Province[J]. Journal of Jilin University (Earth Science Edition), 46(3): 749−765 (in Chinese with English abstract).

    Google Scholar

    [137] Zhang Y L, Ni J Y, Shen Y X, et al. 2018. Zircon U−Pb ages and geological significance of volcanic rocks from Maoniushan Formation in the northern margin of Qaidam Basin[J]. Geoscience, 32(2): 329−334 (in Chinese with English abstract).

    Google Scholar

    [138] Zhang Y, Zhang D M, Liu G Y, et al. 2017. M. Zircon U−Pb dating of porphyroid monzonitic granite in the Kaerqueka copper polymetallic deposit of East Kunlun Mountains and its geological significance[J]. Geological Bulletin of China, 36(2/3): 270−274 (in Chinese with English abstract).

    Google Scholar

    [139] Zhang Z W, Wang Y L, Qian B, et al. 2017. Zircon SHRIMP U−Pb age of the Binggounan magmatic Ni−Cu deposit in East Kunlun Mountains and tectonic implications[J]. Acta Geologica Sinica, 91(4): 724−735 (in Chinese with English abstract).

    Google Scholar

    [140] Zhang Z Y, Sun F Y, Wang Q, et al. 2019. Zircon U−Pb chronology and geochemical characteristics of Late Devonian granite porphyry in the Mohexiala silver polymetallic deposit of Eastern Kunlun, Qinghai[J]. Global Geology, 38(2): 309−321 (in Chinese with English abstract).

    Google Scholar

    [141] Zhao C S, Yang F Q, Dai J Z. 2006. Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance[J]. Mineral Deposits, 25: 427−430 (in Chinese with English abstract).

    Google Scholar

    [142] Zhao S F, Wu Z S, Zhang A K, et al. 2014. Geological features, deposit genesis and prospecting potential of Changshan molybdenum deposit in Qimantage, Qinghai Province[J]. Northwestern Geology, 47(1): 179−187 (in Chinese with English abstract).

    Google Scholar

    [143] Zhao Z Y. 2019. Mineralogy and Mineralization of the Skarn at the Niukutou Deposit, Qinghai[D]. Master Thesis of China University of Geosciences (Beijing)(in Chinese with English abstract).

    Google Scholar

    [144] Zheng Z, Chen Y J, Deng X H, et al. 2018. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto−Tethys Ocean[J]. Lithos, 296/299: 181−194. doi: 10.1016/j.lithos.2017.10.019

    CrossRef Google Scholar

    [145] Zheng Z, Chen Y J, Deng X H, et al. 2016. Muscovite 40Ar/39Ar dating of the Baiganhu W−Sn orefield, Qimantag, East Kunlun Mountains, and its geological implications[J]. Geology in China, 43(4): 1341−1352 (in Chinese with English abstract).

    Google Scholar

    [146] Zhong S, Feng C, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53: 855−870. doi: 10.1007/s00126-017-0787-8

    CrossRef Google Scholar

    [147] Zhong S, Li S, Feng C, et al. 2021a. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai−Tibet Plateau: A zircon perspective[J]. Ore Geology Reviews: 139.

    Google Scholar

    [148] Zhong S, Li S, Feng C, et al. 2021b. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth−Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524

    CrossRef Google Scholar

    [149] Zhong S, Seltmann R, Qu H, et al. 2019. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method[J]. Mineralogy and Petrology, 113: 755−763. doi: 10.1007/s00710-019-00682-y

    CrossRef Google Scholar

    [150] Zhong S H. 2018. Genesis of the Weibao Cu−Pb−Zn deposit in Xinjiang, China[D]. Doctoral Thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    Google Scholar

    [151] Zhou J, Feng C, Li D, et al. 2016. Geological, geochemical, and geochronological characteristics of Caledonian W–Sn mineralization in the Baiganhu orefield, southeastern Xinjiang, China[J]. Ore Geology Reviews, 75: 125−149. doi: 10.1016/j.oregeorev.2015.12.009

    CrossRef Google Scholar

    [152] Zhu J J, Hu R, Bi X W, et al. Porphyry Cu fertility of eastern Paleo−Tethyan arc magmas: Evidence from zircon and apatite compositions[J]. Lithos, 2022, 424: 106775.

    Google Scholar

    [153] Zhu R X, Zhao P, Zhao L. 2022. Evolution and Dynamical Processes of the New Tethys Ocean[J]. Scientia Sinica (Terrae), 52(1): 1−25 (in Chinese with English abstract). doi: 10.1360/SSTe-2021-0147

    CrossRef Google Scholar

    [154] 白宜娜, 孙丰月, 钱烨, 等. 2016. 青海东昆仑尕林格铁多金属矿床辉石闪长岩U−Pb年代学及地球化学特征[J]. 世界地质, 35(1): 17−27. doi: 10.3969/j.issn.1004-5589.2016.01.003

    CrossRef Google Scholar

    [155] 陈博, 张占玉, 耿建珍, 等. 2012. 青海西部祁漫塔格山卡尔却卡铜多金属矿床似斑状黑云二长花岗岩LA−ICP−MS锆石U−Pb年龄[J]. 地质通报, 31(2/3): 463−468.

    Google Scholar

    [156] 陈静, 胡继春, 逯永卓, 等. 2018. 东昆仑小灶火地区钼矿化正长花岗岩年代学、地球化学特征及其地质意义[J]. 黄金科学技术, 26(4): 465−472. doi: 10.11872/j.issn.1005-2518.2018.04.465

    CrossRef Google Scholar

    [157] 陈隽璐, 黎敦朋, 李新林, 等. 2024. 东昆仑祁漫塔格山南缘黑山蛇绿岩的发现及其特征[J]. 陕西地质, (2): 35−46.

    Google Scholar

    [158] 丁林. 2024. 特提斯地球动力系统研究新进展 [J]. 中国科学: 地球科学, 54(3): 892−896.

    Google Scholar

    [159] 杜立华, 黄宇, 高雄, 等. 2025. 内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束[J]. 地质通报, 44(4):633-648.

    Google Scholar

    [160] 丰成友, 李东生, 屈文俊, 等. 2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试, 28(3): 223−227. doi: 10.3969/j.issn.0254-5357.2009.03.006

    CrossRef Google Scholar

    [161] 丰成友, 李东生, 吴正寿, 等. 2010. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 43(4): 10−17.

    Google Scholar

    [162] 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 665−678.

    Google Scholar

    [163] 丰成友, 王雪萍, 舒晓峰, 等. 2011. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版), 41(6): 1806−1817.

    Google Scholar

    [164] 傅恒, 韩建辉, 孙煜新, 等. 2024. 特提斯造山带[J]. 沉积与特提斯地质, 44(1): 100−33.

    Google Scholar

    [165] 高永宝, 李侃, 钱兵, 等. 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re−Os和金云母Ar−Ar同位素定年约束[J]. 大地构造与成矿学, 42(1): 96−107.

    Google Scholar

    [166] 高永宝, 李文渊, 李侃, 等. 2012. 东昆仑祁漫塔格白干湖-戛勒赛矿带成岩成矿时代及钨锡成矿作用[J]. 西北地质, 45(4): 229−241.

    Google Scholar

    [167] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    Google Scholar

    [168] 高永宝. 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 长安大学博士学位论文.

    Google Scholar

    [169] 耿健. 2023. 青海牛苦头矿区两期岩浆岩与成矿研究[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [170] 顾焱, 钱烨, 李予晋, 等. 2019. 东昆仑骆驼峰地区中晚三叠世花岗岩年代学、地球化学及构造意义[J]. 矿产勘查, 10(4): 724−736.

    Google Scholar

    [171] 郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70.

    Google Scholar

    [172] 郭通珍, 刘荣, 陈发彬, 等. 2011. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA−MC−ICPMS锆石U−Pb定年及地质意义[J]. 地质通报, 30(8): 1203−1211.

    Google Scholar

    [173] 韩海臣, 王国良, 丁玉进, 等. 2018. 东昆仑巴音呼都森晚三叠世中酸性侵入岩锆石LA−ICP−MSU−Pb定年及地质意义[J]. 西北地质, 51(1): 144−158.

    Google Scholar

    [174] 郝娜娜, 袁万明, 张爱奎, 等. 2014. 东昆仑祁漫塔格晚志留世—早泥盆世花岗岩: 年代学、地球化学及形成环境[J]. 地质论评, 60(1): 201−215.

    Google Scholar

    [175] 何书跃, 白国龙, 刘智刚, 等. 2025. 青海省成矿规律初探[J]. 地质通报, 44(4): 649-678.

    Google Scholar

    [176] 何书跃, 李东生, 白国龙, 等. 2018. 青海祁漫塔格群力矿床矽卡岩中白云母40Ar/39Ar年龄报道[J]. 中国地质, 45(1): 201−202.

    Google Scholar

    [177] 何书跃, 李东生, 李良林, 等. 2009. 青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J]. 大地构造与成矿学, 33(2): 236−242. doi: 10.3969/j.issn.1001-1552.2009.02.007

    CrossRef Google Scholar

    [178] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16.

    Google Scholar

    [179] 侯增谦, 潘小菲, 杨志明, 等. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, (2): 332−351.

    Google Scholar

    [180] 侯增谦. 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30−58.

    Google Scholar

    [181] 黄宇, 钟世华, 李三忠, 等. 2025. 副矿物包裹体和信号采集时间对锆石U−Pb年龄和微量元素分析结果的影响[J]. 地学前缘, 32(1): 388−400.

    Google Scholar

    [182] 孔会磊, 李金超, 黄军, 等. 2015. 东昆仑小圆山铁多金属矿区斜长花岗斑岩锆石U−Pb测年、岩石地球化学及找矿意义[J]. 中国地质, 42(3): 521−532.

    Google Scholar

    [183] 孔会磊, 李金超, 栗亚芝, 等. 2016. 青海祁漫塔格小圆山铁多金属矿区英云闪长岩LA−MC−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质科技情报, 35(1): 8−16.

    Google Scholar

    [184] 寇贵存, 冯金炜, 罗保荣, 等. 2017. 青海阿木尼克山地区牦牛山组火山岩地球化学特征、锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(2/3): 275−284.

    Google Scholar

    [185] 李洪茂, 时友东, 刘忠, 等. 2006. 东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J]. 地质通报, (2/3): 277−281.

    Google Scholar

    [186] 李洪普, 刘具仓, 张喜全, 等. 2011. 青海省柴南缘四角羊铁多金属矿区岩浆岩特征及其成矿意义[J]. 地质与勘探, 47(6): 1009−1017.

    Google Scholar

    [187] 李积清, 陈静, 史青瑞, 等. 2016. 东昆仑卡尔却卡矿区似斑状二长花岗岩成因: 锆石U−Pb年龄及Sr−Nd同位素制约[J]. 矿物岩石, 36(3): 87−95.

    Google Scholar

    [188] 李加多, 王新雨, 祝新友, 等. 2019. 青海祁漫塔格海西期成矿初探——以牛苦头M1铅锌矿床为例[J]. 矿产勘查, 10(8): 1775−1783.

    Google Scholar

    [189] 李侃, 高永宝, 钱兵, 等. 2015. 东昆仑祁漫塔格虎头崖铅锌多金属矿区花岗岩年代学、地球化学及Hf同位素特征[J]. 中国地质, 42(3): 630−645.

    Google Scholar

    [190] 李三忠, 赵淑娟, 李玺瑶, 等. 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性[J]. 岩石学报, 32(9): 2609−2627.

    Google Scholar

    [191] 李三忠, 赵淑娟, 余珊, 等. 2016. 东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合[J]. 岩石学报, 32(9): 2628−2644.

    Google Scholar

    [192] 李世金, 孙丰月, 丰成友, 等. 2008. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报, (7): 949−955.

    Google Scholar

    [193] 李文渊. 2024. 古特提斯构造演化及其成矿作用[J]. 地质学报, 98(11): 3255−3273.

    Google Scholar

    [194] 李忠海, 崔峰源, 杨舒婷, 等. 2023. 特提斯演化的关键动力学过程与驱动力[J]. 中国科学: 地球科学, 53(12): 2701−2722.

    Google Scholar

    [195] 刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩-矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56.

    Google Scholar

    [196] 刘建楠, 2018. 青海野马泉铁锌矿床多期次构造岩浆热年代学成矿意义[D]. 中国地质科学院博士学位论文

    Google Scholar

    [197] 陆济璞, 李江, 覃小锋, 等. 2005. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, (4): 46−54. doi: 10.3969/j.issn.1009-3850.2005.04.008

    CrossRef Google Scholar

    [198] 刘云华, 莫宣学, 张雪亭, 等. 2006. 东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义[J]. 华南地质与矿产, 3: 31−36.

    Google Scholar

    [199] 吕鹏瑞, 姚文光, 张辉善, 等. 2020. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 94(8): 2291−2310. doi: 10.3969/j.issn.0001-5717.2020.08.009

    CrossRef Google Scholar

    [200] 毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471. doi: 10.3969/j.issn.1000-3657.2012.06.001

    CrossRef Google Scholar

    [201] 乔保星, 潘彤, 陈静. 2016. 东昆仑野马泉铁多金属矿床花岗闪长岩年代学、地球化学特征及其地质意义[J]. 青海大学学报(自然科学版), 34(1): 63−73.

    Google Scholar

    [202] 瞿泓滢, 丰成友, 裴荣富, 等. 2015. 青海祁漫塔格虎头崖多金属矿区岩体热年代学研究[J]. 地质学报, 89(3): 498−509.

    Google Scholar

    [203] 瞿泓滢, 刘建楠, 裴荣富, 等. 2018. 青海祁漫塔格成矿带与虎头崖铜铅锌多金属矿床有关的二长花岗岩体热年代学研究[J]. 中国地质, 45(3): 511−527.

    Google Scholar

    [204] 佘宏全, 张德全, 景向阳, 等. 2007. 青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质, (2): 306−314. doi: 10.3969/j.issn.1000-3657.2007.02.013

    CrossRef Google Scholar

    [205] 时超, 李荣社, 何世平, 等. 2017. 东昆仑祁漫塔格虎头崖铅锌多金属矿成矿时代及其地质意义——黑云二长花岗岩地球化学特征和锆石U−Pb年龄证据[J]. 地质通报, 36(6): 977−986.

    Google Scholar

    [206] 宋泰忠, 赵海霞, 张维宽, 等. 2010. 祁漫塔格地区十字沟蛇绿岩地质特征[J]. 西北地质, 43(4): 124−133.

    Google Scholar

    [207] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J]. 现代地质, 28(6): 1161−1169.

    Google Scholar

    [208] 谈生祥, 郭通珍, 董进生, 等. 2011. 青海乌兰乌珠尔地区晚志留世过铝质花岗岩地质特征及意义[J]. 青海大学学报(自然科学版), 29(1): 36−43.

    Google Scholar

    [209] 唐菊兴, 多吉, 刘鸿飞, 等. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 33(4): 393−410. doi: 10.3975/cagsb.2012.04.02

    CrossRef Google Scholar

    [210] 唐菊兴. 2019. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J]. 岩石学报, 35(3): 617−624. doi: 10.18654/1000-0569/2019.03.01

    CrossRef Google Scholar

    [211] 田承盛, 丰成友, 李军红, 等. 2013. 青海它温查汉铁多金属矿床40Ar−39Ar年代学研究及意义[J]. 矿床地质, 32(1): 169−176. doi: 10.3969/j.issn.0258-7106.2013.01.012

    CrossRef Google Scholar

    [212] 汪洋. 2017. 青海祁漫塔格虎头崖铜铁多金属矿床地质特征及矿化富集规律研究[D]. 吉林大学硕士学位论文.

    Google Scholar

    [213] 王秉璋, 潘彤, 任海东, 等. 2021. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U−Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘, 28(1): 318−333.

    Google Scholar

    [214] 王富春, 陈静, 谢志勇, 等. 2013. 东昆仑拉陵灶火钼多金属矿床地质特征及辉钼矿Re−Os同位素定年[J]. 中国地质, 40(4): 1209−1217.

    Google Scholar

    [215] 王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401.

    Google Scholar

    [216] 王瑞, 朱弟成, 王青, 等. 2020. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 50(12): 1919−1946.

    Google Scholar

    [217] 王松, 丰成友, 李世金, 等. 2009. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U−Pb测年及其地质意义[J]. 中国地质, 36(1): 74−84. doi: 10.3969/j.issn.1000-3657.2009.01.005

    CrossRef Google Scholar

    [218] 王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 56(6): 71−81. doi: 10.12401/j.nwg.2023191

    CrossRef Google Scholar

    [219] 王新雨, 王书来, 刘明, 等. 2024. 青海省祁漫塔格牛苦头铅锌矿床年代学与矿物微量元素特征研究[J/OL]. 地学前缘: 1−27. https://doi.org/10.13745/j.esf.sf.2024.11.27.

    Google Scholar

    [220] 王增振, 韩宝福, 丰成友, 等. 2014. 新疆白干湖地区花岗岩年代学、地球化学研究及其构造意义[J]. 岩石矿物学杂志, 33(4): 597−616. doi: 10.3969/j.issn.1000-6524.2014.04.001

    CrossRef Google Scholar

    [221] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [222] 吴祥珂, 孟繁聪, 许虹, 等. 2011. 青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd−Hf同位素组成[J]. 岩石学报, 27(11): 3380−3394.

    Google Scholar

    [223] 吴宗昌. 2017. 东昆仑造山带拉陵灶火中游博武斑岩钼矿成因与找矿潜力[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [224] 奚仁刚, 校培喜, 伍跃中, 等. 2010. 东昆仑肯德可克铁矿区二长花岗岩组成、年龄及地质意义[J]. 西北地质, 43(4): 195−202. doi: 10.3969/j.issn.1009-6248.2010.04.023

    CrossRef Google Scholar

    [225] 肖晔, 丰成友, 刘建楠, 等. 2013. 青海肯德可克铁多金属矿区年代学及硫同位素特征[J]. 矿床地质, 32(1): 177−186. doi: 10.3969/j.issn.0258-7106.2013.01.013

    CrossRef Google Scholar

    [226] 辛仁臣. 2024. 全球特提斯构造域及其时空分布[J/OL]. 沉积与特提斯地质, 1−20. https://doi.org/10.19826/j.cnki.1009-3850.2024.10002.

    Google Scholar

    [227] 许庆林, 2014. 青海东昆仑造山带斑岩型矿床成矿作用研究[D]. 吉林大学博士学位论文.

    Google Scholar

    [228] 薛宁, 安勇胜, 李五福, 等. 2009. 青海野马泉地区正长花岗岩的基本特征及成因[J]. 青海大学学报(自然科学版), 27(2): 18−22.

    Google Scholar

    [229] 严玉峰, 杨雪松, 陈发彬, 等. 2012. 东昆仑-拉陵灶火中游含钼花岗岩的特征[J]. 中国科技信息, (18): 37−39.

    Google Scholar

    [230] 杨金中, 沈远超, 李光明, 等. 1999. 新疆东昆仑鸭子泉蛇绿岩的基本特征及其大地构造意义[J]. 现代地质, (3): 309−314.

    Google Scholar

    [231] 杨涛, 李智明, 张乐, 等. 2017. 东昆仑它温查汉西花岗岩地质地球化学特征及其构造意义[J]. 高校地质学报, 23(3): 452−464.

    Google Scholar

    [232] 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011

    CrossRef Google Scholar

    [233] 姚磊. 2015. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [234] 于淼. 2017. 青海祁漫塔格尕林格矽卡岩铁多金属矿成矿机理研究[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [235] 于淼, 丰成友, 刘洪川, 等. 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义[J]. 地质学报, 89(3): 510−521.

    Google Scholar

    [236] 于淼, 丰成友, 何书跃, 等. 2017. 祁漫塔格造山带——青藏高原北部地壳演化窥探[J]. 地质学报, 91(4): 703−723. doi: 10.3969/j.issn.0001-5717.2017.04.001

    CrossRef Google Scholar

    [237] 袁万明, 莫宣学, 张爱奎, 等. 2017. 青海省东昆仑斑岩带新发现[J]. 地学前缘, 24(6): 1−9.

    Google Scholar

    [238] 张爱奎, 刘光莲, 丰成友, 等. 2013. 青海虎头崖多金属矿床地球化学特征及成矿-控矿因素研究[J]. 矿床地质, 32(1): 94−108. doi: 10.3969/j.issn.0258-7106.2013.01.006

    CrossRef Google Scholar

    [239] 张安顺, 谢桂青, 刘文元, 等. 2023. 特提斯成矿域西部塞尔维亚Timok矿集区首例中硫化型浅成低温金矿床的厘定: 以Zlatno Brdo金矿床为例[J]. 大地构造与成矿学, 47(5): 1110−1123.

    Google Scholar

    [240] 张斌武. 2022. 青海祁漫塔格虎头崖铁铜铅锌多金属矿床磷灰石特征及其地质意义[D]. 中南大学硕士学位论文.

    Google Scholar

    [241] 张春宇, 赵越, 刘金, 等. 2019. 柴达木盆地北缘牦牛山组物源分析及其构造意义[J]. 地质学报, 93(3): 712−723. doi: 10.3969/j.issn.0001-5717.2019.03.015

    CrossRef Google Scholar

    [242] 张雷. 2013. 东昆仑野马泉地区三叠纪构造岩浆作用与成矿关系[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [243] 张晓飞, 李智明, 贾群子, 等. 2016. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 46(3): 749−765.

    Google Scholar

    [244] 张耀玲, 倪晋宇, 沈燕绪, 等. 2018. 柴北缘牦牛山组火山岩锆石U−Pb年龄及其地质意义[J]. 现代地质, 32(2): 329−334.

    Google Scholar

    [245] 张勇, 张大明, 刘国燕, 等. 2017. 东昆仑卡而却卡铜多金属矿床似斑状二长花岗岩锆石U−Pb年龄及其地质意义[J]. 地质通报, 36(Z1): 270−274. doi: 10.3969/j.issn.1671-2552.2017.02.010

    CrossRef Google Scholar

    [246] 赵财胜, 杨富全, 代军治. 2006. 青海东昆仑肯德可克钴铋金矿床成矿年龄及意义[J]. 矿床地质, 25(S1): 427−430.

    Google Scholar

    [247] 赵淑芳, 吴正寿, 张爱奎, 等. 2014. 青海祁漫塔格长山钼矿地质特征、矿床成因及找矿前景[J]. 西北地质, 47(1): 179−187. doi: 10.3969/j.issn.1009-6248.2014.01.016

    CrossRef Google Scholar

    [248] 赵子烨. 2019. 青海牛苦头矿床矽卡岩矿物学及成矿作用研究[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [249] 郑震, 陈衍景, 邓小华, 等. 2016. 东昆仑祁漫塔格地区白干湖钨锡矿田白云母40Ar/39Ar定年及地质意义[J]. 中国地质, 43(4): 1341−1352. doi: 10.12029/gc20160419

    CrossRef Google Scholar

    [250] 钟世华. 2018. 新疆维宝铜铅锌矿床成因研究[D]. 中国地质科学院博士学位论文.

    Google Scholar

    [251] 朱日祥, 赵盼, 赵亮. 2022. 新特提斯洋演化与动力过程[J]. 中国科学: 地球科学, 52(1): 1−25.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(180) PDF downloads(51) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint