2024 Vol. 43, No. 12
Article Contents

ZHENG Rongguo, ZHANG Jin. 2024. Tectonic switching during Carboniferous-Early Triassic within the southern Alxa. Geological Bulletin of China, 43(12): 2190-2203. doi: 10.12097/gbc.2024.08.028
Citation: ZHENG Rongguo, ZHANG Jin. 2024. Tectonic switching during Carboniferous-Early Triassic within the southern Alxa. Geological Bulletin of China, 43(12): 2190-2203. doi: 10.12097/gbc.2024.08.028

Tectonic switching during Carboniferous-Early Triassic within the southern Alxa

  • Numerous Paleozoic ophiolitic mélange, accretionary complex and plutons are exposed in the Alxa region, located in the central segment of the Central Asian Orogenic Belt, which may record the reworking process of continental crust during the closure of the Paleo−Asian Ocean. In this study, we collected and compiled new published data of zircon U−Pb age, whole−rock major and trace element and zircon Hf isotope for ophiolitic mélange and plutons in the southern Alxa. Based on these new data, we propose that Permian SSZ−type ophiolitic mélange and Middle−Late Permian high−Mg diorites and adakites support the hypothesis that a Permian oceanic slab subduction in the southern Alxa. The zircon U−Pb ages of Carboniferous−Permian magmatism show a younging trend toward the northwest in the southern Alxa region, indicating a northward accretion of the Alxa Block. Temporal−spatial variations of zircon Hf isotope for plutons suggest tectonic switching from advancing to retreating subduction during Carboniferous–Early Triassic within the southern Alxa.

  • 加载中
  • [1] Boekhout F, Roberts N M W, Gerdes A, et al. 2015. A Hf−isotope perspective on continent formation in the south Peruvian Andes[J]. Geological Society, London, Special Publications, 389: 305–321.

    Google Scholar

    [2] Chen Y, Wu T R, Zhang Z C, et al. 2020. Provenance of the Permo–Carboniferous sediments in the northern Alxa and its tectonic implications for the southernmost Central Asian Orogenic Belt[J]. Geoscience Frontiers, 11: 1415–1429.

    Google Scholar

    [3] Collins W J. 2002. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 30: 535–538.

    Google Scholar

    [4] Collins W J, Huang H Q, Bowden P, et al. 2020. Repeated S−I−A−type granite trilogy in the Lachlan Orogen, and geochemical contrasts with A−type granites in Nigeria: Implications for petrogenesis and tectonic discrimination[J]. Geological Society London Special Publications, 491(1): SP491−2018−159.

    Google Scholar

    [5] Cawood P A, Kröner A, Collins W J, et al. 2009. Accretionary orogens through Earth history, in earth accretionary systems in space and time[C]//Cawood P A, Kröner A. Geological Society of London, Special Publication, 318(1): 1–36.

    Google Scholar

    [6] Dan W, Li X H, Guo J H, et al. 2012. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: Evidence from in situ zircon U–Pb dating and Hf–O isotopes[J]. Gondwana Research, 21: 838−864. doi: 10.1016/j.gr.2011.09.004

    CrossRef Google Scholar

    [7] Dan W, Li X H, Wang Q, et al. 2014a. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: A magmatic flare−up triggered by a mantle−plume? [J]. Lithos, 204: 144–158.

    Google Scholar

    [8] Dan W, Li X H, Wang Q, et al. 2014b. Neoproterozoic S−type granites in the Alxa Block, westernmost North China and tectonic implications: In situ zircon U−Pb−Hf−O isotopic and geochemical constraints[J]. American Journal of Science, 314(1): 110−153. doi: 10.2475/01.2014.04

    CrossRef Google Scholar

    [9] Dan W, Wang Q, Wang X C, et al. 2015. Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust–mantle interaction and implications for the generation of silicic igneous provinces[J]. Lithos, 230: 133−145. doi: 10.1016/j.lithos.2015.05.016

    CrossRef Google Scholar

    [10] Dan W, Li X H, Wang Q, et al. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry[J]. Gondwana Research, 32: 105−121. doi: 10.1016/j.gr.2015.02.011

    CrossRef Google Scholar

    [11] Feng J Y, Xiao W J, Windley B, et al. 2013. Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 78: 114−142. doi: 10.1016/j.jseaes.2013.01.020

    CrossRef Google Scholar

    [12] Geng Y S, Wang X S, Shen Q H, et al. 2006. Redefinition of the Alxa Group of Precambrian metamorphic basement in Alxa region, Inner Mongolia[J]. Geology in China, 33: 138−145 (in Chinese with English abstract).

    Google Scholar

    [13] Geng Y S, Zhou X W. 2010. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance: Evidence from geochronology[J]. Acta Petrologica et Mineralogica, 29(6): 779−795 (in Chinese with English abstract).

    Google Scholar

    [14] Geng Y S, Zhou X W. 2011. Characteristics of geochemistry and zircon Hf isotope of the early Neoproterozoic granite in Alax area, Inner Mongolia[J]. Acta Petrologica Sinica, 27(4): 897−908 (in Chinese with English abstract).

    Google Scholar

    [15] Geng Y S, Zhou X W. 2012. Early Permian magmatic events in the Alxa metamorphic basement: Evidence from geochronology[J]. Acta Petrologica Sinica, 28(9): 2667−2685 (in Chinese with English abstract).

    Google Scholar

    [16] Gong J H, Zhang J X, Wang Z Q, et al. 2016. Origin of the Alxa Block, western China: New evidence from zircon U–Pb geochronology and Hf isotopes of the Longshoushan Complex[J]. Gondwana Research, 36: 359−375. doi: 10.1016/j.gr.2015.06.014

    CrossRef Google Scholar

    [17] Han B F, He G Q, Wang X C, et al. 2011. Late Carboniferous collision between the Tarim and Kazakhstan−Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth−Science Reviews, 109: 74−93. doi: 10.1016/j.earscirev.2011.09.001

    CrossRef Google Scholar

    [18] Hu J M, Gong W B, Wu S J, et al. 2014. LA−ICP−MS zircon U−Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255: 756–770.

    Google Scholar

    [19] Jahn B M, Wu F Y, Hong D W. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from east−central Asia[J]. Journal of Earth System Science, 109: 5–20.

    Google Scholar

    [20] Kemp A I S, Hawkesworth C J, Collins W J, et al. 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 284: 455−466. doi: 10.1016/j.jpgl.2009.05.011

    CrossRef Google Scholar

    [21] Lin L N, Xiao W J, Wan B, et al. 2014. Geochronology and geological evidence for persistence of south−dipping subduction to Late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids[J]. American Journal of Science, 314: 679−703. doi: 10.2475/02.2014.08

    CrossRef Google Scholar

    [22] Liu M, Zhang D, Xiong G Q, et al. 2016. Zircon U–Pb age, Hf isotope and geochemistry of Carboniferousintrusions from the Langshan area, Inner Mongolia: Petrogenesisand tectonic implications[J]. Journal of Asian Earth Sciences, 120: 139−158. doi: 10.1016/j.jseaes.2016.01.005

    CrossRef Google Scholar

    [23] Liu Q, Zhao G C, Han Y G, et al. 2017. Timing of the final closure of the Paleo−Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 274/275: 19–30.

    Google Scholar

    [24] Liu C H, Zhao G C, Liu F L, et al. 2019. Late Precambrian tectonic affinity of the Alxa block and the North China Craton: Evidence from zircon U−Pb dating and Lu−Hf isotopes of the Langshan Group[J]. Precambrian Research, 326: 312−332. doi: 10.1016/j.precamres.2017.10.019

    CrossRef Google Scholar

    [25] Moresi L N, Betts P G, Miller M S, et al. 2014. Dynamics of continental accretion[J]. Nature, 508: 7495.

    Google Scholar

    [26] Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63–81.

    Google Scholar

    [27] Peng R M, Zhai Y S, Wang J P, et al. 2010. Discovery of Neoproterozoic acid volcanic rock in the western section of Langshan, Inner Mongolia, and its geological significance[J]. Chinese Science Bulletin, 55: 2611−2620 (in Chinese with English abstract). doi: 10.1360/972010-266

    CrossRef Google Scholar

    [28] Spencer C J, Roberts N M W, Santosh M. 2017. Growth, destruction, and preservation of earth’s continental crust[J]. Earth−Science Reviews, 172: 87–106.

    Google Scholar

    [29] Sengör A M C, Natal’in B A. 1996. Paleotectonics of Asia: Fragments of a synthesism, in The Tectonic Evolution of Asia[C]//Yin A, Harrison T M.Cambridge Univ. Press, New York: 486−640.

    Google Scholar

    [30] Sengör A M C, Okurogullari A H. 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to Plate Tectonics[J]. Eclogae Geol. Helv. , 84: 535 –597.

    Google Scholar

    [31] Shi X J, Wang T, Zhang L, et al. 2014. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro– granodiorite–granite intrusions in the Shalazhashan of northern Alxa: constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 208/209: 158–177.

    Google Scholar

    [32] Shi X J, Zhang L, Wang T, et al. 2016. Zircon geochronology and Hf isotopic compositions for the Mesoproterozoic gneisses in Zongnaishan area, northern Alxa and its tectonic affinity[J]. Acta Petrologica Sinica, 32(11): 3518−3536 (in Chinese with English abstract).

    Google Scholar

    [33] Song D F, Xiao W J, Collins A S, et al. 2017. New chronological constrains on the tectonic affinity of the Alxa Block, NW China[J]. Precambrian Research, 299: 230−243. doi: 10.1016/j.precamres.2017.07.015

    CrossRef Google Scholar

    [34] Wang M M, Zhang L, Huo Y J, et al. 2019. Tectonic affinity of the northern Longshoushan−Beidashan: Constraints from the zircon U−Pb age and Hf isotopic compositions of the Haisen Chulu gneiss [J]. Acta Petrologica et Mineralogica, 38(5): 631−645 (in Chinese with English abstract).

    Google Scholar

    [35] Wang J R, Song C H, Gao J P. 1995. The original mechanism of the Enger Us ophiolitic mélange, North Alaxa [J]. Journal of Lanzhou University (Natural Sciences), 31(2): 140−147 (in Chinese with English abstract).

    Google Scholar

    [36] Wang T Y, Wang J R, Liu J K. 1993. Relationships between the North China and Tarim Plate[J]. Acta Geologica Sinica, 67: 287−300 (in Chinese with English abstract).

    Google Scholar

    [37] Wang T Y, Wang S Z, Wang J R. 1994. The Formation and Evolution of Paleozoic Continental Crust in Alxa Region[M]. Lanzhou: Lanzhou University Press (in Chinese).

    Google Scholar

    [38] Wang Z Z, Han B F, Feng L X, et al. 2015. Geochronology, geochemistry and origins of the Paleozoic–Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 97: 337−351. doi: 10.1016/j.jseaes.2014.08.005

    CrossRef Google Scholar

    [39] Wilson M. 1989. Igneous Petrogenesis[M]. Unwin Hyman Press, London: 295–323.

    Google Scholar

    [40] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society of London, 164: 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [41] Wu S, Hu J, Ren M, et al. 2014. Petrography and zircon U−Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton[J]. Journal of Asian Earth Sciences, 94: 226−239. doi: 10.1016/j.jseaes.2014.05.011

    CrossRef Google Scholar

    [42] Wu T R, He G Q. 1992. Ophiolitic mélange belts in the northern margin of the Alashan Block[J]. Geoscience, 6: 69−78 (in Chinese with English abstract).

    Google Scholar

    [43] Wu T R, He G Q. 1993. Tectonic units and their fundamental characteristics on the northern margin of the Alxa block[J]. Acta Geologica Sinica, 6: 373−385 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.1993.mp6004001.x

    CrossRef Google Scholar

    [44] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477–507.

    Google Scholar

    [45] Xiao W J, Windley B F, Han C, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [46] Xie L, Yin H Q, Zhou H R, et al. 2014. Permian radiolarians from the Engeerwusu suture zone in Alashan area, Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 33: 691−697 (in Chinese with English abstract).

    Google Scholar

    [47] Xue S, Ling M M, Liu Y L, et al. 2017. The genesis of early Carboniferous adakitic rocks at the southern margin of the Alxa Block, North China[J]. Lithos, 278/281: 181−194. doi: 10.1016/j.lithos.2017.01.012

    CrossRef Google Scholar

    [48] Yin H Q. 2016. Late Paleozoic Sedimentary Characteristics and its Tectonic Evolution in Northern Alax area, Inner Mongolia [D]. Doctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [49] Zhang J X, Gong J H, Yu S Y, et al. 2013a. Neoarchean–Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication: evidence from zircon U–Pb ages and Hf isotopic composition[J]. Precambrian Research, 235: 36−57. doi: 10.1016/j.precamres.2013.05.002

    CrossRef Google Scholar

    [50] Zhang W, Wu T R, Feng J C, et al. 2013b. Time constraints for the closing of the Paleo−Asian Ocean in the Northern Alxa Region: evidence from Wuliji granites[J]. Science China: Earth Sciences, 56(1): 153−164. doi: 10.1007/s11430-012-4435-y

    CrossRef Google Scholar

    [51] Zheng R G, Wu T R, Zhang W, et al. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 25: 842−858. doi: 10.1016/j.gr.2013.05.011

    CrossRef Google Scholar

    [52] Zheng R G, Li J Y, Liu J F. 2017. The age of volcanic rocks of Amushan Formation on the northern margin of Alxa block: Evidence from zircon U−Pb data[J]. Geology in China, 44(3): 612−613 (in Chinese with English abstract).

    Google Scholar

    [53] Zheng R G, Li J Y, Xiao W J, et al. 2018. A new ophiolitic mélange containing boninitic blocks in Alxa region: Implications for Permian subduction events in southern CAOB[J]. Geoscience Frontiers, 9: 1355−1367. doi: 10.1016/j.gsf.2018.02.014

    CrossRef Google Scholar

    [54] Zheng R G, Li J Y, Zhang J, et al. 2019a. Early Carboniferous High Ba–Sr Granitoid in Southern Langshan of Northeastern Alxa: Implications for Accretionary Tectonics along Southern Central Asian Orogenic Belt[J]. Acta Geologica Sinica (English Edition), 93(4): 820−844. doi: 10.1111/1755-6724.13803

    CrossRef Google Scholar

    [55] Zheng R G, Zhang J, Xiao W J. 2019b. Association of Permian gabbro and granite in the Langshan, southern Central Asian Orogenic Belt: age, origin, and tectonic implications[J]. Lithos, 348/349: 105174.

    Google Scholar

    [56] Zheng R G, Li J Y, Zhang J. 2022. Juvenile hafnium isotopic compositions recording a Late Carboniferous−Early Triassic retreating subduction in the southern Central Asian Orogenic Belt: A case study from the southern Alxa[J]. GSA Bulletin, 134(5/6): 1375–1396.

    Google Scholar

    [57] Zheng R G, Li J Y, Xiao W J, et al. 2023a. A combination of plume and subduction tectonics contributing to breakup of northern Rodinia: Constraints from the Neoproterozoic magmatism in the Dunhuang−Alxa Block, northwest China[J]. GSA Bulletin, 135(5/6): 1109−1126.

    Google Scholar

    [58] Zheng R G, Zhang J, Xiao W J. 2023b. Continental crust delamination in a retreating subduction zone: a case study in the southern Alxa, Central Asian Orogenic Belt[J]. GSA Bulletin, 135(11/12): 3241–3257.

    Google Scholar

    [59] 耿元生, 王新社, 沈其韩, 等. 2006. 内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J]. 中国地质, 33: 138−145.

    Google Scholar

    [60] 耿元生, 王新社, 吴春明, 等. 2010. 阿拉善变质基底古元古代晚期的构造热事件[J]. 岩石学报, 26: 1159−1170.

    Google Scholar

    [61] 耿元生, 周喜文. 2011. 阿拉善地区新元古代早期花岗岩的地球化学和锆石 Hf 同位素特征[J]. 岩石学报, 27: 897−908.

    Google Scholar

    [62] 耿元生, 周喜文. 2012. 阿拉善变质基底中的早二叠世岩浆热事件-来自同位素年代学的证据[J]. 岩石学报, 28, 2667–2685.

    Google Scholar

    [63] 彭润民, 翟裕生, 王建平, 等. 2010. 内蒙狼山新元古代酸性火山岩的发现及其地质意义[J]. 科学通报, 55(26): 2611−2620.

    Google Scholar

    [64] 史兴俊, 张磊, 王涛, 等. 2016. 阿拉善北部宗乃山地区片麻岩锆石 U−Pb年龄、Hf同位素特征及其构造归属探讨[J]. 岩石学报, 32(11): 3518−3536.

    Google Scholar

    [65] 王毛毛, 张磊, 霍雨佳. 2019. 龙首山-北大山北部的属性-来自海森楚鲁片麻岩锆石U−Pb年龄和Hf同位素的约束[J]. 岩石矿物学杂志, 38(5): 631−645.

    Google Scholar

    [66] 王金荣, 宋春晖, 高军平, 等. 1995. 阿拉善北部恩格尔乌苏蛇绿混杂岩的形成机制[J]. 兰州大学学报(自然科学版), 31(2): 140−147.

    Google Scholar

    [67] 王廷印, 王士政, 1993. 华北板块和塔里木板块之关系[J]. 地质学报, 67: 287–300.

    Google Scholar

    [68] 王廷印, 王士政, 王金荣. 1994. 阿拉善地区古生代陆壳的形成和演化[M]. 兰州: 兰州大学出版社.

    Google Scholar

    [69] 吴泰然, 何国琦. 1992. 阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义[J]. 现代地质, 6: 69−78.

    Google Scholar

    [70] 吴泰然, 何国琦. 1993. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 67: 97−108.

    Google Scholar

    [71] 谢力, 尹海权, 周洪瑞, 等. 2014. 内蒙古阿拉善地区恩格尔乌苏缝合带二叠纪放射虫及其地质意义[J]. 地质通报, 33(5): 691−697.

    Google Scholar

    [72] 尹海权. 2016. 内蒙古阿拉善地区北部古生代沉积及其大地构造演化特征[D]. 中国地质大学(北京) 博士学位论文.

    Google Scholar

    [73] 郑荣国, 李锦轶, 刘建峰. 2017. 阿拉善地块北缘地区阿木山组火山岩时代: 锆石U−Pb 定年证据[J]. 中国地质, 44(3): 612−613.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(188) PDF downloads(44) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint