2024 Vol. 43, No. 12
Article Contents

ZHAO Lei, WANG Xin, XU Qinqin. 2024. The contrast and connection between the Ural orogenic belt and the western segment of the southern Tienshan orogenic belt. Geological Bulletin of China, 43(12): 2181-2189. doi: 10.12097/gbc.2024.08.013
Citation: ZHAO Lei, WANG Xin, XU Qinqin. 2024. The contrast and connection between the Ural orogenic belt and the western segment of the southern Tienshan orogenic belt. Geological Bulletin of China, 43(12): 2181-2189. doi: 10.12097/gbc.2024.08.013

The contrast and connection between the Ural orogenic belt and the western segment of the southern Tienshan orogenic belt

  • The Ural−Southern Tienshan orogenic system is an important tectonic unit of the Paleo−Asian tectonic domain. Because most of the area between the Ural orogenic belt and the South Tienshan orogenic belt lies under the Meso−Cenozoic cover of basin, the lack of outcrop evidence makes scholars have different opinions on the specific location of the Ural−South Tienshan suture belt. This paper introduces the basic situation and main progress in the division of tectonic units of the Urals orogenic belt, the South Tienshan Orogenic belt and the basement of the West Siberian basin. Based on the constraints of aeromagnetic data and mineral geological background, it is considered that the Valeranov marginal volcanic belt in the Ural orogenic belt is similar to the Beltao−Kurama marginal arc belt north to the Southern Tienshan orogenic belt, and both are magmatic arcs developed on the late Paleozoic Kazakhstan. It is suggested that the South Tienshan suture zone, through the transformation of the Aral Sea fault zone, can be traced to the north along the eastern foot of the Ural Mountains, that is, the western boundary fault of the TransUral tectonic belt (Kartaly fault), and can reach about 60° north latitude. However, the main Ural fault is only a suture zone within the Ural orogenic belt, and does not have the geological significance of separating the Eastern European ancient land and the Kazakhstan ancient land. At the same time, the Valeryanov−Belta−Kurama magmatic arc belt has rich mineral resources and important metallogenic significance.

  • 加载中
  • [1] Armitage J J, Allen P A. 2010. Cratonic basins and the long−term subsidence history of continental interiors[J]. Journal of the Geological Society, 167(1): 61−70. doi: 10.1144/0016-76492009-108

    CrossRef Google Scholar

    [2] Bochkarev V S, Brekhuntsov A M, Deshchenya N P. 2003. The Paleozoic and Triassic evolution of West Siberia (data of comprehensive studies)[J]. Russian Geology and Geophysics, 44(1/2): 120−143.

    Google Scholar

    [3] Buslov M M. 2011. Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large−amplitude strike−slip faults[J]. Russian Geology and Geophysics, 52(1): 52−71. doi: 10.1016/j.rgg.2010.12.005

    CrossRef Google Scholar

    [4] Cawood P A, Zhao G C, Yao J L et al. 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth−Science Reviews, 186: 173−194. doi: 10.1016/j.earscirev.2017.06.001

    CrossRef Google Scholar

    [5] Cheng S D, Liu T, Wang S W. 2010. The brief description of the division of tectonic units in the Five−Countries in Central−Asia[J]. Xinjiang Geology, 28(1): 16−21 (in Chinese with English abstract).

    Google Scholar

    [6] De Boorder H, Van Emmichoven M Z. 2005. From Urals to Altaids−structured continuity? [C]//Conference: CERCAMS, London.

    Google Scholar

    [7] Dolgopolova A, Seltmann R, Konopelko D, et al. 2017. Geodynamic evolution of the western Tien Shan, Uzbekistan: Insights from U−Pb SHRIMP geochronology and Sr−Nd−Pb−Hf isotope mapping of granitoids[J]. Gondwana Research, 47: 76−109. doi: 10.1016/j.gr.2016.10.022

    CrossRef Google Scholar

    [8] Dyakonova A G, Ivanov K S, Surina O V, et al. 2008. The structure of the tectonosphere of the Urals and West Siberian Platform by electromagnetic data[J]. Doklady Earth Sciences, 423(9): 1479−1482.

    Google Scholar

    [9] Feng Q W. 2023. Technological approach of structural investigation of complex orogenic belts on mutil−scales: Insights and experiences from Kumish region, South Tianshan, NW China[J]. Geological Bulletin of China, 42(10): 1706−1717 (in Chinese with English abstract).

    Google Scholar

    [10] Fu H, Han J H, Sun Y X, et al. 2024. Tethys orogenic belt[J]. Sedimentary Geology and Tethyan Geology, 44(1): 101−133 (in Chinese with English abstract).

    Google Scholar

    [11] Gao J, Long L L, Huang D Z, et al. 2006. South Tianshan: a Late Paleozoic or a Triassic orogen?[J]. Acta Petrologica Sinica, 22(5): 1049−1061 (in Chinese with English abstract).

    Google Scholar

    [12] Gao J, Zhu M T, Wang X S, et al. 2019. Large-scale porphyry-type mineralization in the central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 93(1): 24−71 (in Chinese with English abstract).

    Google Scholar

    [13] He G Q, Li M Q. 2000. New achievement in researching ophiolitic belts in central Asia and its significance in the link of tectonic belts between northern Xinjiang and adjacent area[J]. Xinjiang Geology, 18(3): 193−202 (in Chinese with English abstract).

    Google Scholar

    [14] He Z J, Wen Z X, Wang Z M, et al. 2020. Reservoir forming assemblages and favorable exploration fields of Jurassic−Cretaceous in the West Siberian giant rift basin[J]. Marin Origin Petroleum Geology, 25(1): 70−78 (in Chinese with English abstract).

    Google Scholar

    [15] Herrington R J, Puchkov V N, Yakubchuk A S. 2005. Reassessment of the tectonic zonation of the Uralides: implications for metallogeny[J]. Special Publications, The Geological Society, 248(1): 153−166.

    Google Scholar

    [16] Ivanov K S, Koroteev V A, Pecherkin M F, et al. 2009. The western part of the West Siberian petroleum megabasin: geologic history and structure of the basement[J]. Russian Geology and Geophysics, 50(9): 357−371.

    Google Scholar

    [17] Ivanov K S, Erokhin Y V. 2011. On the age of granitoids and the ancient basement in the eastern part of the Western Siberian platform (first U−Pb data)[J]. Doklady Earth Sciences, 436(2): 253−257. doi: 10.1134/S1028334X11020140

    CrossRef Google Scholar

    [18] Ivanov K S, Puchkov V N, Fyodorov Y N, et al. 2013. Tectonics of the Urals and adjacent part of the West−Siberian platform basement: Main features of geology and development[J]. Journal of Asian Earth Sciences, 72: 12−24. doi: 10.1016/j.jseaes.2013.02.029

    CrossRef Google Scholar

    [19] Li C Y, Wang Q, Liu X Y, et al. 1982. Explanatory notes to the tectonic map of Asia[M]. Beijing: Cartographic Publishing House.

    Google Scholar

    [20] Li J Y, Wang K Z, Li Y P, et al. 2006. Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains[J]. Geological Bulletin of China, 25(8): 895−909 (in Chinese with English abstract).

    Google Scholar

    [21] Konopelko D, Biske G, Kullerud K, et al. 2011. The Koshrabad granite massif in Uzbekistan: petrogenesis, metallogeny and geodynamic setting[J]. Russ. Geol. Geophys., 52(12): 1563−1573. doi: 10.1016/j.rgg.2011.11.009

    CrossRef Google Scholar

    [22] Kontorovich A E, Varlamov A I, Grazhdankin DV. 2008. A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3)[J]. Russian Geology and Geophysics, 49(12): 932−939. doi: 10.1016/j.rgg.2008.06.012

    CrossRef Google Scholar

    [23] Makarova Z A. 1974. Map of the anomalous magnetic field of the Territory of the U. S. S. R. and adjacent marine areas[Z]. Scale 1∶ 2500000 (18 sheets), U. S. S. R. Ministry of Geology, VSEGEI, Leningrad.

    Google Scholar

    [24] Mao X, Li J H, Fu C J, et al. 2011. Developments of basins in northern Eurasia: Evidence from E−W inter−continent profile[J]. Chinese Journal of Geology, 46(3): 763−774 (in Chinese with English abstract).

    Google Scholar

    [25] Milanovski E(Writing). Chen Z(Translation). 2010. Geology of Russia and its adjacent areas[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [26] Natalin B A, Şengör A M C. 2005. Late Paleozoic to Triassic evolution of the Turan and Scythian platforms: The pre−history of the Paleo−Tethyan closure[J]. Tectonophysics, 404: 175−202.

    Google Scholar

    [27] National Geophysical Data Center. 1996. Magnetic anomaly data of the former Soviet Union[Z]. Boulder CO, CD−ROM.

    Google Scholar

    [28] Nikishin A M, Ziegler P A, Abbott D, et al. 2002. Permo−Triassic intraplate magmatism and rifting in Eurasia: Implications for mantle plumes and mantle dynamics[J]. Tectonophysics, 351(1/2): 3−39.

    Google Scholar

    [29] Pirajno F. 2010. Intracontinental strike–slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay−Sayan (Siberia)[J]. J. Geodyn., 50: 325−346. doi: 10.1016/j.jog.2010.01.018

    CrossRef Google Scholar

    [30] Ren J S, Wang Z X, Chen B W, et al. 1999. The tectonics of China from a global view—A guide to the tectonic map of China and adjacent regions[M]. Beijing: Geological Publishing House.

    Google Scholar

    [31] Ren J S, Niu B G, Wang J, et al. 2013. International Geological Map of Asia at the scale 1∶ 5000 000 [Z]. Beijing: Geological Publishing House.

    Google Scholar

    [32] Şengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [33] Şengör A M C, Natal’in B A. 1996. Turkic−type orogeny and its role in the making of the continental crust[J]. Annu. Rev. Earth Planet. Sci., 24: 263−337. doi: 10.1146/annurev.earth.24.1.263

    CrossRef Google Scholar

    [34] Şengör A M C, Sunal G, Natal’in B A. 2022. The Altaids: A review of twenty−five years of knowledge accumulation[J]. Earth−Science Reviews, 228(104013): 1−28.

    Google Scholar

    [35] Seltmann R, Shatov V. 2001. Mineral Deposits Map of central Asia, scale 1∶ 1500000 [Z]. CERCAMS, London.

    Google Scholar

    [36] Seltmann R, Porter T M, Pirajno F. 2014. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review[J]. Journal of Asian Earth Sciences., 79: 810−841. doi: 10.1016/j.jseaes.2013.03.030

    CrossRef Google Scholar

    [37] Vyssotski A V, Vyssotski V N, Nezhdanov A A. 2006. Evolution of the west Siberian Basin[J]. Marine and Petroleum Geology, 23(1): 93−126. doi: 10.1016/j.marpetgeo.2005.03.002

    CrossRef Google Scholar

    [38] Wang B, Song F, Ning X H, et al. 2022. Paleozoic accretionary orogenesis and major transitional tectonic events of the Tiansshan orogen[J]. Acta Geologica Sinica, 96(10): 3514−3540 (in Chinese with English abstract).

    Google Scholar

    [39] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion[J]. Annu. Rev. Earth Planet. Sci., 43: 477−507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [40] Xiao W J, Song D F, Windley B F, et al. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 49(10): 1512−1545(in Chinese).

    Google Scholar

    [41] Zhu Y F, He G Q, An F. 2007. Geological evolution and metallogeny in the core part of the Central Asian metallogenic domain[J]. Geological Bulletin of China, 26(9): 1167−1177(in Chinese with English abstract).

    Google Scholar

    [42] Zhu Z X, Li J Y, Dong L H, et al. 2009. Tectonic framework and tectonic evolution of the southern Tianshan, Xinjiang, China[J]. Geological Bulletin of China, 28(12): 1863−1870 (in Chinese with English abstract).

    Google Scholar

    [43] 成守德, 刘通, 王世伟. 2010. 中亚五国大地构造单元划分简述[J]. 新疆地质, 28(1): 16−21. doi: 10.3969/j.issn.1000-8845.2010.01.002

    CrossRef Google Scholar

    [44] 冯乾文. 2023. 复杂造山带多尺度构造变形的观测方法——来自南天山库米什地区研究的启示[J]. 地质通报, 42(10): 1706−1717. doi: 10.12097/j.issn.1671-2552.2023.10.008

    CrossRef Google Scholar

    [45] 傅恒, 韩建辉, 孙煜新, 等. 2024. 特提斯造山带[J]. 沉积与特提斯地质, 44(1): 101−133.

    Google Scholar

    [46] 高俊, 龙灵利, 黄德志, 等. 2006. 南天山: 晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报, 22(5): 1049−1061. doi: 10.3321/j.issn:1000-0569.2006.05.001

    CrossRef Google Scholar

    [47] 高俊, 朱明田, 王信水, 等. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 93(1): 24−71. doi: 10.3969/j.issn.0001-5717.2019.01.004

    CrossRef Google Scholar

    [48] 何国琦, 李茂松. 2000. 中亚蛇绿岩带研究进展及区域构造连接[J]. 新疆地质, 18(3): 193−202. doi: 10.3969/j.issn.1000-8845.2000.03.001

    CrossRef Google Scholar

    [49] 贺正军, 温志新, 王兆明, 等. 2020. 西西伯利亚大型裂谷盆地侏罗系—白垩系成藏组合与有利勘探领域[J]. 海相油气地质, 25(1): 70−78. doi: 10.3969/j.issn.1672-9854.2020.01.008

    CrossRef Google Scholar

    [50] 李锦轶, 王克卓, 李亚萍, 等. 2006. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报, 25(8): 895−909. doi: 10.3969/j.issn.1671-2552.2006.08.001

    CrossRef Google Scholar

    [51] 毛翔, 李江海, 傅臣建, 等. 2011. 欧亚大陆北部盆地发育历史——来自东西向跨洲剖面的证据[J]. 地质科学, 46(3): 763−774. doi: 10.3969/j.issn.0563-5020.2011.03.012

    CrossRef Google Scholar

    [52] 米兰诺夫斯基(著). 陈正(译). 2010. 俄罗斯及其毗邻地区地质[M]. 北京: 地质出版社.

    Google Scholar

    [53] 王博, 宋芳, 倪兴华, 等. 2022. 天山古生代增生造山作用及其构造转换事件[J]. 地质学报, 96(10): 3514−3540. doi: 10.3969/j.issn.0001-5717.2022.10.014

    CrossRef Google Scholar

    [54] 肖文交, 宋东方, Windley B F, 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545.

    Google Scholar

    [55] 朱永峰, 何国琦, 安芳. 2007. 中亚成矿域核心地区地质演化与成矿规律[J]. 地质通报, 26(9): 1167−1177. doi: 10.3969/j.issn.1671-2552.2007.09.018

    CrossRef Google Scholar

    [56] 朱志新, 李锦轶, 董莲慧, 等. 2009. 新疆南天山构造格架及构造演化[J]. 地质通报, 28(12): 1863−1870. doi: 10.3969/j.issn.1671-2552.2009.12.018

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(230) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint