2025 Vol. 44, No. 5
Article Contents

MA Yuxiang, LIU Shuai, DU Houfa, YAO Yue, ZHAO Liang. 2025. Mineralogical, geochemical characteristics, and genesis of Shangdong meta-basalt in Southern Jiangxi. Geological Bulletin of China, 44(5): 902-920. doi: 10.12097/gbc.2024.04.046
Citation: MA Yuxiang, LIU Shuai, DU Houfa, YAO Yue, ZHAO Liang. 2025. Mineralogical, geochemical characteristics, and genesis of Shangdong meta-basalt in Southern Jiangxi. Geological Bulletin of China, 44(5): 902-920. doi: 10.12097/gbc.2024.04.046

Mineralogical, geochemical characteristics, and genesis of Shangdong meta-basalt in Southern Jiangxi

More Information
  • Objectives

    The recently discovered meta−basalt in Shangdong, southern Jiangxi Province, is situated at the southern margin of the Cathaysia Caledonian fold belt. Investigating its petrogenesis and tectonic setting of formation is crucial for elucidating the tectonic nature of the South China Caledonian fold belt.

    Methods

    This study focuses on the Shangdong meta−basalt, employing a comprehensive approach combining mineralogical observations and detailed geochemical analyses to constrain its geological history.

    Results

    Mineralogical examination reveals that the Shangdong meta−basalt is primarily composed of hornblende, plagioclase, pyroxene, and biotite. Geochemical data indicate that it belongs to the sub−alkaline tholeiite series, characterized by moderate Mg# values (40.44~45.16), a distinct Na−rich/K−poor signature (K2O/Na2O=0.07~0.16), moderate enrichment of light rare earth elements, negligible Eu anomalies (Eu=1.03~1.11), and notable depletion in Sr, Nb, and Ta despite relative Nb enrichment. Mineral−specific analyses further demonstrate that pyroxene is a Mg−Ca−rich augite with a crystallization temperature of 1184 °C; biotite is ferrobiotite, crystallizing at 660 °C and exhibiting high Al and Fe contents with low Mg and K; hornblende is a Ca−rich, Ti−poor, Fe−Al−enriched common hornblende within the calcic amphibole group, crystallizing at 594°C; and plagioclase is a Ti−poor, Na−Al−rich andesine−oligoclase.

    Conclusions

    Collectively, these findings suggest that the Shangdong meta−basalt formed under high−temperature and high oxygen fugacity conditions, originating from a magma generated by crust−mantle mixing. Its geochemical and mineralogical features are indicative of an island arc tectonic setting, strongly implying that the South China region experienced a subduction−related tectonic regime during the Early Paleozoic Caledonian orogeny.

  • 加载中
  • [1] Albuquerque A C. 1973. Geochemistry of biotites from granitic rocks, Northern Portugal[J]. Geochimica et Cosmochimica Acta, 37(7): 1779−1802. doi: 10.1016/0016-7037(73)90163-4

    CrossRef Google Scholar

    [2] Buddington A F, Lindsley D H. 1964. Iron−titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 5(2): 310−357. doi: 10.1093/petrology/5.2.310

    CrossRef Google Scholar

    [3] Cao M X, Zhang D F, Zhang J R, et al. 2025. Genesis of the Chengkeng pluton in south Jiangxi Province during the Early Paleozoic and its geological significance[J]. Journal of East China University of Technology (Natural Science), 48(2): 128−141 (in Chinese with English abstract).

    Google Scholar

    [4] Charvet J, Shu L, Faure M, et al. 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 39 (4): 309–330.

    Google Scholar

    [5] Coltorti M, Bonadiman C, Faccini B, et al. 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle[J]. Lithos, 99(1): 68−84.

    Google Scholar

    [6] Deer W A, Howie R A, Zussman J. 1992 . An introduction to the rock forming minerals (2nd Edition)[M]. Harlow: Longman Group: 1−232.

    Google Scholar

    [7] DePaolo D J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters, 53(2): 189−202. doi: 10.1016/0012-821X(81)90153-9

    CrossRef Google Scholar

    [8] Ding H. 2016. Chronology, geochemical characteristics and petrogenesis of andesites in Nanjing Basin, southern Jiangxi Province[D]. Master's Thesis of East China University of Technology (in Chinese with English abstract).

    Google Scholar

    [9] Foster M D.1960. Interpretation of the composition of trioctahedral micas[R].

    Google Scholar

    [10] Gao P. 2016. Geochemical study of Mesozoic granites in the Nanling region of the South China Block[D]. Ph. D. Dissertation of University of Science and Technology of China (in Chinese with English abstract).

    Google Scholar

    [11] Gerya T V, Perchuk L L, Triboulet C, et al. 1997. Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan[J]. Petrology, 5(6): 503−533.

    Google Scholar

    [12] Guan Y L, Yuan C, Long X P, et al. 2013. Early Paleozoic intracontinental orogeny in the eastern South China Block: Constraints from I−type granites[J]. Geotectonica et Metallogenia, 37(4): 698−720 (in Chinese with English abstract).

    Google Scholar

    [13] Henry D J, Guidotti C V, Thomson J A. 2005. The Ti−saturation surface for low−to−medium pressure metapelitic biotites: Implications for geothermometry and Ti−substitution mechanisms[J]. American mineralogist, 90(2/3): 316−328. doi: 10.2138/am.2005.1498

    CrossRef Google Scholar

    [14] Jiang C Y, An S Y. 1984. On the chemical composition characteristics of calcic amphibole in igneous rocks and its petrological significance[J]. Journal of Mineralogy and Petrology, (3): 1−9 (in Chinese with English abstract).

    Google Scholar

    [15] Jiao W F, Wu Y B, Yang S H, et al. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U−Pb age and Hf isotope composition[J]. Science China version D, 52: 1393–1399.

    Google Scholar

    [16] Jin S Q. 1991. Compositional Characteristics of Calcic Amphiboles in Different Regional Metamorphic Facies[J]. Chinese Science Bulletin, (11): 851−854 (in Chinese with English abstract).

    Google Scholar

    [17] Kepezhinskas P, Defant M J, Drummond M S. 1996. Progressive enrichment of island arc mantle by melt−peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 60(7): 1217−1229. doi: 10.1016/0016-7037(96)00001-4

    CrossRef Google Scholar

    [18] Kerr A C. 1998. Mineral chemistry of the Mull−Morvern Tertiary lava succession, western Scotland[J]. Mineralogical Magazine, 62(3): 295−312. doi: 10.1180/002646198547639

    CrossRef Google Scholar

    [19] Kushiro I. 1960. Si−Al relation in clinopyroxenes from igneous rocks[J]. American Journal of Science, 258(8): 548−554. doi: 10.2475/ajs.258.8.548

    CrossRef Google Scholar

    [20] Lao Y J. 2017. Geological and geochemical characteristics and geological significance of Caledonian dacite in Nanjing Basin, southern Jiangxi Province[D]. Master's Thesis of East China University of Technology (in Chinese with English abstract).

    Google Scholar

    [21] Lassiter J C, DePaolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints[J]. Geophysical Monograph−American Geophysical Union, 100: 335−356.

    Google Scholar

    [22] Leterrier J, Maury R C, Thonon P, et al. 1982. Clinopyroxene composition as a method of identi-fication of the magmatic affinity of paleovolcanic series[J]. Earth and Planetary Science Letters, 59(1): 139−154.

    Google Scholar

    [23] Li W X, Li X H, Li Z X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 136(1): 51−66.

    Google Scholar

    [24] Li X H, Li W X, Li Z X, et al. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1/2): 117−128. doi: 10.1016/j.precamres.2009.07.004

    CrossRef Google Scholar

    [25] Li Z X, Li X H, Wartho J A, et al. 2010a. Magmatic and metamorphic events during the early Paleozoic Wuyi−Yunkai orogeny, southeastern South China: New age constraints and pressure−temperature conditions[J]. GSA Bulletin, 122(5/6): 772−793.

    Google Scholar

    [26] Li Z X, Li X H, Wartho J A, et al. 2010b. Magmatic and metamorphic events during the early Paleozoic Wuyi–Yunkai orogeny, southeastern South China: new age constraints and pressure–temperature conditions[J]. Geological Society of America Bulletin, 122(5/6): 772−793.

    Google Scholar

    [27] Liu S, Ma S S, Huang M H, et al. 2020. Geochronology, geochemical characteristics and geological significance of Type I rhyolite in Nanjing Basin, southern Jiangxi Province[J]. Geochimica, 49(4): 404−421 (in Chinese with English abstract).

    Google Scholar

    [28] Liu S, Wu J H, Yang D G, et al. 2021. New evidence for the geological age of the Huangzhudong Formation of the Longtouzhai Group in the middle segment of the Qin-Hang Joint Belt: SHRIMP zircon U-Pb age of rhyolite interlayers and its geological significance[J]. Acta Petrologica Sinica, 37(5): 1431−1443(in Chinese with English abstract).

    Google Scholar

    [29] Ma S S, Liu S, Huang M H, et al. 2019. U−Pb geochronology, geochemical characteristics and genesis of Miaoyun pluton in southern Jiangxi Province[J]. Science Technology and Engineering, 19(26): 55−67 (in Chinese with English abstract).

    Google Scholar

    [30] Morimoto N. 1988. Die Nomenklatur von Pyroxenen[J]. Mineralogy and Petrology, 39: 55−76. doi: 10.1007/BF01226262

    CrossRef Google Scholar

    [31] Nachit H, Ibhi A, Ohoud M B. 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 337(16): 1415−1420. doi: 10.1016/j.crte.2005.09.002

    CrossRef Google Scholar

    [32] Nisbet E G, Pearce J A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 63(2): 149−160. doi: 10.1007/BF00398776

    CrossRef Google Scholar

    [33] Niu M L, Zhao Q Q, Wu Q, et al. 2018. Magma mixing of the Guokeshan pluton in the northern margin of Qaidam Basin: Evidence from petrography, mineralogy and geochemistry[J]. Acta Petrologica Sinica, 34(7): 1991−2016 (in Chinese with English abstract).

    Google Scholar

    [34] Peng S B, Liu S F, Lin M S, et al. 2016. Early Paleozoic subduction in Cathaysia (Ⅱ): New evidence from Dashuang high−Mg and magnesian andesites[J]. Earth Science, 41(6): 931−947 (in Chinese with English abstract).

    Google Scholar

    [35] Shu L S. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035−1053 (in Chinese with English abstract).

    Google Scholar

    [36] Stone D. 2000. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, Northwest Superior Province, Ontario, Canada[J]. The Canadian Mineralogist, 38(2): 455−470. doi: 10.2113/gscanmin.38.2.455

    CrossRef Google Scholar

    [37] Sun C M. 1994. Genetic mineralogy of pyroxenes from Proterozoic ophiolite in Yanbian, Sichuan and its tectonic significance[J]. Journal of Mineralogy and Petrology, 3(1): 1−15 (in Chinese with English abstract).

    Google Scholar

    [38] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [39] Thompson R N. 1974. Some high−pressure pyroxenes[J]. Mineralogical Magazine, 39(307): 768−787. doi: 10.1180/minmag.1974.039.307.04

    CrossRef Google Scholar

    [40] Wang D Z. 2004. Review and perspective on granite research in South China[J]. Geological Journal of China Universities, 10(3): 305−314 (in Chinese with English abstract).

    Google Scholar

    [41] Wang J, Li Z X. 2003. History of Neoproterozoxc rift basins m South China implications for Rodinia break−up[J]. Precambrian Research, 122: 141−158.

    Google Scholar

    [42] Wang Q, Xu J F, Jian P, et al. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1): 119−144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    [43] Wang Qi L, Zhou M F. 2008. Platinum−group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China[J]. Chemical Geology, 248(1/2): 83−103.

    Google Scholar

    [44] Wang S, Tao J H, Li W X, et al. 2004. Zircon U−Pb geochronology, geochemistry and Sr−Nd isotopes of the Maixie pluton in northwestern Jiangxi Province: Implications for petrogenesis[J]. Acta Geologica Sinica, 92(4): 747−768 (in Chinese with English abstract).

    Google Scholar

    [45] Wang Y J, Zhang A M, Fan W M, et al. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U–Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi–Yunkai Domains[J]. Lithos, 127(1/2): 239−260.

    Google Scholar

    [46] Wang Y, Fan W, Zhao G, et al. 2007. Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 12(4): 404−416. doi: 10.1016/j.gr.2006.10.003

    CrossRef Google Scholar

    [47] Winchester J A, Floyd P A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 28(3): 459−469. doi: 10.1016/0012-821X(76)90207-7

    CrossRef Google Scholar

    [48] Wones D R. 1989. Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks[J]. American Mineralogist, 74(7/8): 744−749.

    Google Scholar

    [49] Wood D A, Joron J L, Treuil M. 1979. A re−appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings[J]. Earth and Planetary Science Letters, 45(2): 326−336. doi: 10.1016/0012-821X(79)90133-X

    CrossRef Google Scholar

    [50] Wu J H, Xiang Y X, Huang G R, et al. 2012. First SHRIMP zircon U−Pb dating of Caledonian porphyroclastic lava in northern Guangdong and its geological significance[J]. Geological Journal of China Universities, 18(4): 601−608 (in Chinese with English abstract).

    Google Scholar

    [51] Wu J, Wang G Q, Liang H Y, et al. 2014. Identification of Caledonian volcanic rocks in the Dabaoshan ore district, northern Guangdong Province and its geological significance[J]. Acta Petrologica Sinica, 30(4): 1145−1154 (in Chinese with English abstract).

    Google Scholar

    [52] Xia Y, Xu X S, Zhu K Y. 2012. Paleoproterozoic S− and A−type granites in southwestern Zhejiang: magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement[J]. Precambrian Research, 216/219: 177−207.

    Google Scholar

    [53] Xie Y W, Zhang Y Q. 1990. Typomorphic characteristics and genetic significance of amphiboles in granitoids from Hengduan Mountains region[J]. Acta Mineralogica Sinica, 10(1): 35−45 (in Chinese with English abstract).

    Google Scholar

    [54] Xu K Q, Liu Y J, Yu S Y, et al. 1960. Discovery of Caledonian granites in southern Jiangxi[J]. Geological Review, 20(3): 112−114 (in Chinese with English abstract).

    Google Scholar

    [55] Xu X S. 2008. Some problems on the study of granite−volcanic rock genesis in South China[J]. Geological Journal of China Universities, 14(3): 283−294 (in Chinese with English abstract).

    Google Scholar

    [56] Xu Y J, Du Y S, Cawood R A, et al. 2012. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: response to orogenesis in South China[J]. Sedimentary Geology, 267/268: 63−72.

    Google Scholar

    [57] Yi L W, Ma C Q, Wang L X, et al. 2014. Discovery of Late Ordovician subvolcanic rocks in South China: Early Paleozoic subduction−related dacites?[J]. Earth Science (Journal of China University of Geosciences), 39(6): 637−653 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.061

    CrossRef Google Scholar

    [58] Yu J H, O'Reilly S Y, Wang L J, et al. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, south China: Evidence from U−Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181: 97–114.

    Google Scholar

    [59] Yu J H, O'Reilly S Y, Zhou M F, et al. 2012. U−Pb geochronology and Hf−Nd isotopic geochemistry of the Badu Complex, Southeastern China−Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Research, 222–223: 424−449.

    Google Scholar

    [60] Zhang G W, Guo A L, Wang Y J, et al. 2013. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 56(11): 1804−1828 (in Chinese with English abstract). doi: 10.1007/s11430-013-4679-1

    CrossRef Google Scholar

    [61] Zhang H X, Zhang B Y, Niu H C. 2005. Nb−enriched basalts: Partial melting products of the mantle wedge metasomatized by slab melt[J]. Advances in Earth Science, 20(11): 82−90 (in Chinese with English abstract).

    Google Scholar

    [62] Zhang S B, Zheng Y F. 2013. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research, 23(4): 1241−1260. doi: 10.1016/j.gr.2012.09.005

    CrossRef Google Scholar

    [63] Zhang S, Wu J H, Liu S, et al. 2021. Age, genesis of dacite in the Gujiaying Basin, southern Jiangxi Province and its constraints on Early Paleozoic tectonic evolution[J]. Geological Bulletin of China, 40(9): 1459−1475 (in Chinese with English abstract).

    Google Scholar

    [64] Zhang S M, Su T R, Zhu J B, et al. 2024. Zircon Geochronology, Petrogeochemistry and Geological Significance of the Guidong Pluton in the Zhuguangshan Area, South China[J]. Chinese Journal of Geology, 59(6): 1722−1747 (in Chinese with English abstract).

    Google Scholar

    [65] Zheng Y, Zhang S, Zhao Z, et al. 2006. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust[J]. Lithos, 96(1): 127−150.

    Google Scholar

    [66] Zhou D, Long W G, Ke X Z, et al. 2017. Petrogenesis of the tectonic melange along the northern margin of Yunkai Massif[J]. Acta Petrologica Sinica, 33(3): 810−830 (in Chinese with English abstract).

    Google Scholar

    [67] Zhou X M, Chen T H, Liu C S, et al. 1982. Pyroxene and amphibole megacrysts in alkali basaltic rocks from the southeastern coast of China[J]. Acta Mineralogica Sinica, 2(1): 13−20 (in Chinese with English abstract).

    Google Scholar

    [68] Zhou X M. 2003. Some thoughts on the study of granites in South China[J]. Geological Journal of China Universities, 9(4): 556−565 (in Chinese with English abstract).

    Google Scholar

    [69] Zhou Z X. 1988. Chemical characteristics of mafic micas in intrusive rocks and their geological significance[J]. Acta Petrologica Sinica, 4(3): 63−73 (in Chinese with English abstract).

    Google Scholar

    [70] Zhu B. 2010. Study on Mantle Fluids and Uranium Mineralization [D]. Ph. D. Dissertation of Chengdu University of Technology (in Chinese with English abstract).

    Google Scholar

    [71] 曹明轩, 张德富, 张健仁, 等. 2025. 赣南早古生代城坑岩体成因及其地质意义[J]. 东华理工大学学报(自然科学版), 48(2): 128−141.

    Google Scholar

    [72] 丁辉. 2016. 江西南部南迳盆地安山岩年代学、地球化学特征及岩石成因[D]. 东华理工大学硕士学位论文.

    Google Scholar

    [73] 高彭. 2016. 华南陆块南岭地区中生代花岗岩地球化学研究[D]. 中国科学技术大学博士学位论文.

    Google Scholar

    [74] 关义立, 袁超, 龙晓平, 等. 2013. 华南地块东部早古生代的陆内造山作用: 来自I型花岗岩的启示[J]. 大地构造与成矿学, 37(4): 698−720.

    Google Scholar

    [75] 姜常义, 安三元. 1984. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J]. 矿物岩石, (3): 1−9.

    Google Scholar

    [76] 靳是琴. 1991. 不同区域变质相中钙质角闪石的成分特征[J]. 科学通报, (11): 851−854.

    Google Scholar

    [77] 劳玉军. 2017. 赣南南迳盆地加里东期英安岩地质、地球化学特征及地质意义[D]. 东华理工大学硕士学位论文.

    Google Scholar

    [78] 刘帅, 马树松, 黄美化, 等. 2020. 赣南南迳盆地I型流纹岩年代学、地球化学特征及其地质意义[J]. 地球化学, 49(4): 404−421.

    Google Scholar

    [79] 刘帅, 巫建华, 杨东光, 等. 2021. 钦杭结合带中段龙头寨群黄竹洞组地质时代的新证据: 流纹岩夹层的SHRIMP锆石U−Pb年龄及地质意义[J]. 岩石学报, 37(5): 1431−1443.

    Google Scholar

    [80] 马树松, 刘帅, 黄美化, 等. 2019. 赣南苗云岩体U−Pb年代学、地球化学特征及其成因[J]. 科学技术与工程, 19(26): 55−67.

    Google Scholar

    [81] 牛漫兰, 赵齐齐, 吴齐, 等. 2018. 柴北缘果可山岩体的岩浆混合作用: 来自岩相学、矿物学和地球化学证据[J]. 岩石学报, 34(7): 1991−2016.

    Google Scholar

    [82] 彭松柏, 刘松峰, 林木森, 等. 2016. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据[J]. 地球科学, 41(6): 931−947.

    Google Scholar

    [83] 舒良树. 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7): 1035−1053.

    Google Scholar

    [84] 孙传敏. 1994. 四川盐边元古代蛇绿岩中辉石的成因矿物学及其大地构造意义[J]. 矿物岩石, (3): 1−15.

    Google Scholar

    [85] 王德滋. 2004. 华南花岗岩研究的回顾与展望[J]. 高校地质学报, (3): 305−314.

    Google Scholar

    [86] 王帅, 陶继华, 李武显, 等. 2004. 赣西北麦斜岩体锆石U−Pb年代学、地球化学以及Sr−Nd同位素研究及其岩石成因[J]. 地质学报, 92(4): 747−768.

    Google Scholar

    [87] 巫建华, 项媛馨, 黄国荣, 等. 2012. 广东北部碎斑熔岩加里东期锆石SHRIMP年龄的首获及其地质意义[J]. 高校地质学报, 18(4): 601−608.

    Google Scholar

    [88] 伍静, 王广强, 梁华英, 等. 2014. 粤北大宝山矿区加里东期火山岩的厘定及其地质意义[J]. 岩石学报, 30(4): 1145−1154.

    Google Scholar

    [89] 谢应雯, 张玉泉. 1990. 横断山区花岗岩类中角闪石的标型特征及其成因意义[J]. 矿物学报, (1): 35−45.

    Google Scholar

    [90] 徐克勤, 刘英俊, 俞受鋆, 等. 1960. 江西南部加里东期花岗岩的发现[J]. 地质论评, 20(3): 112−114.

    Google Scholar

    [91] 徐夕生. 2008. 华南花岗岩-火山岩成因研究的几个问题[J]. 高校地质学报, (3): 283−294.

    Google Scholar

    [92] 易立文, 马昌前, 王连训, 等. 2014. 华南晚奥陶世次火山岩的发现: 早古生代与俯冲有关的英安岩?[J]. 地球科学(中国地质大学学报), 39(6): 637−653.

    Google Scholar

    [93] 张国伟, 郭安林, 王岳军, 等. 2013. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 43(10): 1553−1582.

    Google Scholar

    [94] 张海祥, 张伯友, 牛贺才. 2005. 富铌玄武岩: 板片熔体交代的地幔楔橄榄岩部分熔融产物[J]. 地球科学进展, (11): 82−90.

    Google Scholar

    [95] 张山, 巫建华, 刘帅, 等. 2021. 赣南古家营盆地英安岩时代、成因及对早古生代构造演化的制约[J]. 地质通报, 40(9): 1459−1475.

    Google Scholar

    [96] 张素梅, 苏天瑞, 朱俊宾, 等. 2024. 华南诸广山一带桂东岩体年代学、岩石地球化学特征及地质意义[J]. 地质科学, 59(6): 1722−1747.

    Google Scholar

    [97] 周岱, 龙文国, 柯贤忠, 等. 2017. 云开地块北缘构造混杂岩的岩石成因探讨[J]. 岩石学报, 33(3): 810−830.

    Google Scholar

    [98] 周新民, 陈图华, 刘昌实, 等. 1982. 我国东南沿海碱性玄武质岩石中辉石和角闪石巨晶[J]. 矿物学报, (1): 13−20.

    Google Scholar

    [99] 周新民. 2003. 对华南花岗岩研究的若干思考[J]. 高校地质学报, (4): 556−565.

    Google Scholar

    [100] 周作侠. 1988. 侵入岩的镁铁云母化学成分特征及其地质意义[J]. 岩石学报, (3): 63−73.

    Google Scholar

    [101] 朱捌. 2010. 地幔流体与铀成矿作用研究[D]. 成都理工大学博士学位论文.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(9)

Article Metrics

Article views(235) PDF downloads(21) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint