2025 Vol. 44, No. 5
Article Contents

LI Xiaoyuan, YUE Gaofan, SONG Shenghua. 2025. Numerical simulation study on the influence of primary mineral components on CO2 geological trapping forms. Geological Bulletin of China, 44(5): 921-934. doi: 10.12097/gbc.2024.11.006
Citation: LI Xiaoyuan, YUE Gaofan, SONG Shenghua. 2025. Numerical simulation study on the influence of primary mineral components on CO2 geological trapping forms. Geological Bulletin of China, 44(5): 921-934. doi: 10.12097/gbc.2024.11.006

Numerical simulation study on the influence of primary mineral components on CO2 geological trapping forms

More Information
  • Objective

    The increasingly intensifying global climatic change necessitates carbon capture and storage (also referred to as CCS). The mechanisms and processes of CO2−water−rock interactions not only directly affect the safety and stability of CO2 reservoirs but also determine the injection efficiency and storage capacity of CO2.

    Methods

    Based on China's first whole−process CCS demonstration project in saline aquifers and using the TOUGHREACT ECO2N software, this study constructed a water−CO2−thermal−chemical reaction coupling model for long−term CCS in reservoirs at the Shenhua CCS demonstration site.

    Results

    Using this model, this study investigated the influence of primary mineral components in reservoirs on the transformation of different CO2 capture mechanisms. The results indicate that the deep saline aquifers in the Ordos Basin are favorable for CO2 storage capacity through the mineralization mechanism mineral trapping, with a storage capacity reaching up to 64.02% of the total injectivity at 1000 a. The calcite, orthoclase, albite, chlorite, and kaolinite in the reservoir undergo varying degrees of dissolution, resulting in the precipitation of montmorillonite, iron−bearing dolomite, and analcime. Iron dolomite is the main carbon fixing mineral, with the highest storage capacity in the water gas two−phase zone, reaching up to 15 kg/m3. The changes in the content of plagioclase, albite, and calcite have little impact on gas and dissolution trapping, and have no effect on mineralization trapping. The variation in the content of chlorite has a significant impact on the three types of trapping forms. When the initial volume fraction of chlorite increases from 1.9% to 8.4%, the mineralization trapping amount increases from 7×108 kg to 1.6×109 kg at 1000 a, with a change of 9×108 kg.

    Conclusions

    The types and contents of primary mineral components can affect the sequestration capacity of CO2 by different trapping mechanisms. The results of this study can serve as a reference for the design optimization of existing CO2 storage projects and the proper assessment of the siting of future CO2 storage, assisting in the achievement of China's carbon neutrality target.

  • 加载中
  • [1] Al B H, Awoyomi A, Patchigolla K, et al. 2021. A review of large−scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage[J]. Applied Energy, 287: 116510. doi: 10.1016/j.apenergy.2021.116510

    CrossRef Google Scholar

    [2] Al−Darweesh J, Aljawad M S, Kamal M S, et al. 2023. Water chemistry role in the stability of CO2 foam for carbon sequestration in water aquifers[J]. Gas Science and Engineering, 118: 205090. doi: 10.1016/j.jgsce.2023.205090

    CrossRef Google Scholar

    [3] Cai L. 2022. Pathways for electric power industry to achieve carbon emissions peak and carbon neutrality based on LEAP model: A case study of state−owned power generation enterprise in China[J]. Industrial Engineering, 170: 108334.

    Google Scholar

    [4] Chehrazi M. 2022. A review on CO2 capture with chilled ammonia and CO2 utilization in urea plant[J]. Journal of CO2 Utilization, 61: 1−13.

    Google Scholar

    [5] Corey A T. 1954. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 19: 38−41.

    Google Scholar

    [6] Duan W, Li C F, Chen X G, et al. 2020. Diagenetic differences caused by gas charging with different compositions in the XF13 block of the Yinggehai Basin, South China Sea[J]. AAPG Bulletin, 104(4): 735−765. doi: 10.1306/06191917331

    CrossRef Google Scholar

    [7] Gan M G, Lei H W, Zhang M, et al. 2024. Quantitative evaluation method of wellbore leakage risk of CO2 geological storage project based on numerical simulation[J]. Advanced Engineering Sciences, 56(1): 195−205 (in Chinese with English abstract).

    Google Scholar

    [8] Gao X, Yang S, Shen B, et al. 2023. Influence of reservoir spatial heterogeneity on a multicoupling process of CO2 geological storage[J]. Energy Fuels, 37: 14991−15005. doi: 10.1021/acs.energyfuels.3c02784

    CrossRef Google Scholar

    [9] Gunter W D, Perkins E H, Mccann T J. 1993. Aquifer disposal of CO2−rich gases: reaction design for added capacity[J]. Energy Convers Manag, 34: 941−948. doi: 10.1016/0196-8904(93)90040-H

    CrossRef Google Scholar

    [10] Gunter W D, Bachu S, Benson S. 2004. The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide[J]. Geological Society, 233: 129−145. doi: 10.1144/GSL.SP.2004.233.01.09

    CrossRef Google Scholar

    [11] Huang S J, Xie L W, Zhang M, et al. 2004. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(3): 273−281 (in Chinese with English abstract).

    Google Scholar

    [12] Huq F, Haderlein S B, Cirpka O A, et al. 2015. Flow−through experiments on water−rock interactions in a sandstone caused by CO2 injection at pressures and temperatures mimicking reservoir conditions[J]. Applied Geochemistry, 58: 136−146. doi: 10.1016/j.apgeochem.2015.04.006

    CrossRef Google Scholar

    [13] Kharaka Y K, Thordsen J J, Hovorka S D, et al. 2009. Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio−I Brine Pilot test, Texas, USA. Applied Geochemistry, 24(6): 1106−1112.

    Google Scholar

    [14] Krevor S, de Coninck H, Gasda S E, et al. 2023. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future[J]. Nature Reviews Earth & Environment, 4: 102−118.

    Google Scholar

    [15] Lin R, Yu Z, Zhao J, et al. 2022. Experimental evaluation of tight sandstones reservoir flow characteristics under CO2−Brine−Rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China[J]. Fuel, 309: 122167. doi: 10.1016/j.fuel.2021.122167

    CrossRef Google Scholar

    [16] Marini L. 2006. Geological sequestration of carbon dioxide: thermodynamics, kinetics and reaction path modeling [M]. New York: Elsevier: 1−453.

    Google Scholar

    [17] Ofori A, Engler T. 2011. Effects of CO2 sequestration on the petrophysical properties of an aquifer rock [M]. Canadian Unconventional Resources Conference. Calgary: Society of Petroleum Engineers : 1−8.

    Google Scholar

    [18] O’Neill S. 2020. Global CO2 emissions level off in 2019, with a drop predicted in 2020[J]. Engineering, 6: 958−959. doi: 10.1016/j.eng.2020.07.005

    CrossRef Google Scholar

    [19] Osama M, Ahmad S A. 2024. CO2 sequestration in subsurface geological formations: A review of trapping mechanisms and monitoring techniques[J]. Earth−Science Reviews, 253: 104793. doi: 10.1016/j.earscirev.2024.104793

    CrossRef Google Scholar

    [20] Pruess K, Xu T, Apps J, et al. 2003. Numerical modeling of aquifer disposal of CO2[J]. SPE Journal, 8: 49−60. doi: 10.2118/83695-PA

    CrossRef Google Scholar

    [21] Tutolo B M, Luhmann A J, Kong X Z, et al. 2015. CO2 sequestration in feldspar−rich sandstone: coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties[J]. Geochimica et Cosmochimica Acta, 160: 132−154. doi: 10.1016/j.gca.2015.04.002

    CrossRef Google Scholar

    [22] Van G. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Journal of American Soil Science Society, 44: 892−898. doi: 10.2136/sssaj1980.03615995004400050002x

    CrossRef Google Scholar

    [23] Wang W, Xie Q, An S, et al. 2023. Pore−scale simulation of multiphase flow and reactive transport processes involved in geologic carbon sequestration[J]. Earth−Science Reviews, 247: 104602. doi: 10.1016/j.earscirev.2023.104602

    CrossRef Google Scholar

    [24] Wang Y, Guo C, Du C, et al. 2021. Carbon peak and carbon neutrality in China: Goals, implementation path, and prospects[J]. China Geology, 4: 720−746.

    Google Scholar

    [25] Wang K R, Xu T F, Tian H L, et al. 2016. Impacts of mineralogical compositions on different trapping mechanisms during long−term CO2 storage in deep saline aquifers[J]. Acta Geotechnica, 11: 1167−1188. doi: 10.1007/s11440-015-0427-3

    CrossRef Google Scholar

    [26] Wei B, Zhang X, Liu J, et al. 2020. Adsorptive behaviors of supercritical CO2 in tight porous media and triggered chemical reactions with rock minerals during CO2−EOR and sequestration[J]. Chemical Engineering Journal, 381: 122577. doi: 10.1016/j.cej.2019.122577

    CrossRef Google Scholar

    [27] Wei Y M, Chen K, Kang J N, et al. 2022. Policy and management of carbon peaking and carbon neutrality: a literature review[J]. Engineering, 14: 52−63. doi: 10.1016/j.eng.2021.12.018

    CrossRef Google Scholar

    [28] Xie Q H, Wang W D, Su Y L. 2023. Pore−scale study of calcite dissolution during CO2−saturated brine injection for sequestration in carbonate aquifers[J]. Gas Science and Engineering, 114: 204978. doi: 10.1016/j.jgsce.2023.204978

    CrossRef Google Scholar

    [29] Xu H. 2024. Enhanced CO2 hydrate formation using hydrogen−rich stones, L−Methionine and SDS: Insights from kinetic and morphological studies[J]. Energy, 291: 130280. doi: 10.1016/j.energy.2024.130280

    CrossRef Google Scholar

    [30] Xu T, Pruess K. 2001. On fluid flow and mineral alteration in fractured caprock of magmatic hydrothermal systems[J]. Journal of geophysical research, 106: 2121−2138. doi: 10.1029/2000JB900356

    CrossRef Google Scholar

    [31] Xu T, Eric S, Nicolas S, et al. 2004a. Toughreact user’s guide: A Simulation Program for non−isothermal multiphase reactive geochemical transport in variably saturated geologic media[M]. California: Lawrence Berkeley Laboratory: 1−195.

    Google Scholar

    [32] Xu T, Apps J A, Pruess K. 2004b. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 19(6): 917−936. doi: 10.1016/j.apgeochem.2003.11.003

    CrossRef Google Scholar

    [33] Yu M, Liu L, Yang S, et al. 2016. Experimental identification of CO2−oil−brine−rock interactions: Implications for CO2 sequestration after termination of a CO2−EOR project[J]. Applied Geochemistry, 75: 137−151. doi: 10.1016/j.apgeochem.2016.10.018

    CrossRef Google Scholar

    [34] Zhang X, Wei B, Shang J, et al. 2018. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2−brine−rock interactions in CO2−EOR and geosequestration[J]. Journal of CO2 Utilization, 28: 408−418. doi: 10.1016/j.jcou.2018.11.002

    CrossRef Google Scholar

    [35] Zhang Y, Zhang Z, Arif M, et al. 2020. Carbonate rock mechanical response to CO2 flooding evaluated by a combined X−ray computed tomography−DEM method[J]. Journal of Natural Gas Science and Engineering, 84: 103675. doi: 10.1016/j.jngse.2020.103675

    CrossRef Google Scholar

    [36] 甘满光, 雷宏武, 张力为, 等. 2024. 基于数值模拟的CO2地质封存项目井筒泄漏风险定量化评价方法[J]. 工程科学与技术, 56(1): 195−205.

    Google Scholar

    [37] 黄思静, 谢连文, 张萌, 等. 2004. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版, 31(3): 273−281.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(7)

Article Metrics

Article views(181) PDF downloads(17) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint