2025 Vol. 44, No. 5
Article Contents

LI Linna, JIAO Jiangang, SHEN Qingjie, ZHAO Guobin, XU Mingchi, GUO Junhua, WANG Jiaxin. 2025. Magmatic evolution of the Hongchuan Cu-Ni sulfide deposit, western North Qilian Orogenic Belt: Insights from whole-rock geochemistry and zircon Hf isotopes. Geological Bulletin of China, 44(5): 885-901. doi: 10.12097/gbc.2024.02.021
Citation: LI Linna, JIAO Jiangang, SHEN Qingjie, ZHAO Guobin, XU Mingchi, GUO Junhua, WANG Jiaxin. 2025. Magmatic evolution of the Hongchuan Cu-Ni sulfide deposit, western North Qilian Orogenic Belt: Insights from whole-rock geochemistry and zircon Hf isotopes. Geological Bulletin of China, 44(5): 885-901. doi: 10.12097/gbc.2024.02.021

Magmatic evolution of the Hongchuan Cu-Ni sulfide deposit, western North Qilian Orogenic Belt: Insights from whole-rock geochemistry and zircon Hf isotopes

More Information
  • Objective

    The recent discovery of the Hongchuan Cu−Ni deposit in the North Qilian Orogenic Belt represents a significant breakthrough in mineral exploration. Uncertainties in the formation age, petrogenesis, and magmatic source of the ore−bearing intrusions hinder a comprehensive understanding of the deposit′s mineralization mechanisms.

    Methods

    Therefore, this study integrates petrological, whole−rock geochemical, zircon U−Pb geochronological, and Hf isotopic analyses to characterize these intrusions.

    Results

    The ore−bearing rock in the Hongchuan Cu−Ni deposit predominantly comprises strongly serpentinized peridotite and biotite amphibolite, and the main ore−bearing lithology is strongly serpentinized peridotite. Geochemical analyses reveal features, including low SiO2(39.13%~46.35%) and high MgO(13.69%~27.47%) contents, high Mg# values (68.28~79.91). The distribution curve of rare earth elements shows flat characteristics, and trace elements Nb, P, and Ti are deficient. Zircon U−Pb dating, conducted via LA−ICP−MS on zircons from the plagioclase−bearing peridotite, yielded a weighted mean 206Pb/238U age of 486.9 ± 5.9 Ma, with zircon εHf(t) values ranging from −0.19 to 7.12.

    Conclusions

    Integrating geological data with regional geological context suggests a genesis within an island arc environment. The magma source is proposed to have originated from a depleted mantle that was influenced by fluid alteration and subduction processes, with less than 10% contamination of lower crustal materials during magma emplacement.

  • 加载中
  • [1] Amelin Y, Lee D C, Halliday A N, et al. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399(6733): 252−255.

    Google Scholar

    [2] Arculus R J, Johnson R W. 1981. Island−arc magma sources: A geochemical assessment of the roles of slab−derived components and crustal contamination[J]. Geochemical Journal, 15(3): 109−133. doi: 10.2343/geochemj.15.109

    CrossRef Google Scholar

    [3] Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu−Hf and Sm−Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 273(1/2): 48−57. doi: 10.1016/j.jpgl.2008.06.010

    CrossRef Google Scholar

    [4] Boynton W V. 1984. Cosmochemistry of the rare earth elements: meteorite studies[C]//Developments in geochemistry. Elsevier; 2: 63−114.

    Google Scholar

    [5] Chen L M, Song X Y, Hu R Z, et al. 2021a. Mg−Sr−Nd isotopic insights into Petrogenesis of the Xiarihamu mafic−ultramafic intrusion, northern Tibetan plateau, China[J]. Journal of Petrology, 62(2): egaa113.

    Google Scholar

    [6] Chen W, Zhang G, Ruan M, et al. 2021b. Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation[J]. Journal of Geophysical Research: Solid Earth, 126(3): e2020JB020708.

    Google Scholar

    [7] Chen X H, Shao Z G, Xiong X S, et al. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995−1020 (in Chinese with English abstract).

    Google Scholar

    [8] Chen Y X, Xia X H, Song S G, et al. 2012. Petrogenesis of Aoyougou high−silica adakite in the North Qilian orogen, NW China: Evidence for decompression melting of oceanic slab[J]. Chinese Science Bulletin, 57(22): 2072−2085 (in Chinese with English abstract).

    Google Scholar

    [9] Claesson S, Vetrin V, Bayanova T, et al. 2000. U−Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 51(1/2): 95−108. doi: 10.1016/S0024-4937(99)00076-6

    CrossRef Google Scholar

    [10] Cong Z C. 2017. Study on metallogenic regularity of copper polymetallic deposit in the north Qilian, Qinghai[D]. PhD Thesis of Jilin University (in Chinese with English abstract).

    Google Scholar

    [11] Ding X, Sun W D. 2014. Nb/Ta differentiation and diagenesis and mineralization significance of deep earth processes: From micro to macro[C]//Annual Meeting of Chinese Geoscience Union. Beijing: Chinese Geophysical Society, Organizing Committee of the National Symposium on Petrology and Geodynamics, Special Committee of Structural Geology and Geodynamics, Chinese Geological Society, Regional Geology and Metallogeny Committee of Chinese Geological Society, 2014: 6 (in Chinese).

    Google Scholar

    [12] Duan J, 2012. Petrogenesis and metallogenic potential of Zangbutai mafic−ultramafic intrusion in Longshoushan, Gansu province[D]. Master Thesis of Chang’an University (in Chinese with English abstract).

    Google Scholar

    [13] Duan J, Li C, Qian Z, et al. 2015. Geochronological and geochemical constraints on the petrogenesis and tectonic significance of Paleozoic dolerite dykes in the southern margin of Alxa Block, North China Craton[J]. Journal of Asian Earth Sciences, 111: 244−253. doi: 10.1016/j.jseaes.2015.07.012

    CrossRef Google Scholar

    [14] Duan J, Qian Z Z, Jiao J G, et al. 2015. Genesis of the Xijing intrusion from longshoushan terrane and tectonic significance[J]. Journal of Jilin University (Earth Science Edition), 45(3): 832−846 (in Chinese with English abstract).

    Google Scholar

    [15] Ducea M N, Saleeby J, Morrison J, et al. 2005. Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: an example from California[J]. American Mineralogist, 90(5/6): 864−870.

    Google Scholar

    [16] Fan X X, Kong W Q, Yang Z X, et al. 2020. U−Pb chronology, geochemical characteristics and petrogenesis of the Chelugou pluton in the western part of North Qilian orogenic belt[J]. Geology in China, 47(3): 755−766 (in Chinese with English abstract).

    Google Scholar

    [17] Frey F, Green D, Roy S. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3): 463−513.

    Google Scholar

    [18] Fujinawa A. 1988. Tholeiitic and calc−alkaline magma series at Adatara volcano, northeast Japan: 1. Geochemical constraints on their origin[J]. Lithos, 22(2): 135−158.

    Google Scholar

    [19] Ge X H, Liu J L. 1999. Formation and tectonic background of the northern Qilian orogenic belt[J]. Earth Science Frontiers, (4): 223−230 (in Chinese with English abstract).

    Google Scholar

    [20] Gong Z Z, Yang Z X, Zhao J C, et al. 2025. The first discovery of medium scale magmatic molten nickel deposit in the western part of the north Qilian orogenic belt[J/OL]. Geology in China: 1-3[2025-03-17]. http://kns.cnki.net/kcms/detail/11.1167.p.20230220.1509.002.html (in Chinese with English abstract).

    Google Scholar

    [21] Gong Z Z, Yang Z X, Zhou D F, et al. 2024. The Zircon U−Pb age of the ultrabasic intrusion of Hongchuan copper−nickel deposit in the west of the Northern Qilianshan Orogenic[J]. Geology in China, 51(1): 364−365 (in Chinese with English abstract).

    Google Scholar

    [22] Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LAM−MC−ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133−147.

    Google Scholar

    [23] Griffin W, Wang X, Jackson S, et al. 2002. Zircon chemistry and magma mixing, SE China: in−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3/4): 237−269.

    Google Scholar

    [24] Hanyu T, Tatsumi Y, Nakai S I, et al. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry[J]. Geochemistry, Geophysics, Geosystems, 7(8): Q08002.

    Google Scholar

    [25] Hawkesworth C, Gallagher K. 1993. Mantle hotspots, plumes and regional tectonics as causes of intraplate magmatism[J]. Terra Nova, 5(6): 552−559.

    Google Scholar

    [26] Hess P C. 1992. Dissolution of Plagioclase and the Origin of Mg−Suite Parent Magmas[C]//Abstracts of the Lunar and Planetary Science Conference, XXIII: 529−530.

    Google Scholar

    [27] Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 90(3): 297−314. doi: 10.1016/0012-821X(88)90132-X

    CrossRef Google Scholar

    [28] Hoskin P, Black L. 2000. Metamorphic zircon formation by solid−state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4): 423−439.

    Google Scholar

    [29] Hunter A. 1998. Intracrustal controls on the coexistence of tholeiitic and calc−alkaline magma series at Aso Volcano, SW Japan[J]. Journal of Petrology, 39(7): 1255−1284.

    Google Scholar

    [30] LI C M. 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons[J]. Geological Survey and Research, 32(3): 161−174 (in Chinese with English abstract).

    Google Scholar

    [31] Li S J. 2011. Geodynamic evolution of Qilian orogenic belt and metallogenesis of endogenous metals[D]. PhD Thesis of Jilin University (in Chinese with English abstract).

    Google Scholar

    [32] Li W Y. 2004. Main mineral deposit associations in the Qilian Mountains and their metallogenic dynamics[J]. Acta Geoscientica Sinica, 25(3): 313−320 (in Chinese with English abstract).

    Google Scholar

    [33] Li W Y. 2022. Study of ore−forming theoretical innovation and prospecting breakthrough of magmatic copper−nickel−cobalt sulfide deposits in China[J]. Journal of Geomechanics, 28(5): 793−820 (in Chinese with English abstract).

    Google Scholar

    [34] Liu Y X, Sha X, Ma Z, et al. 2018. Geochemical characteristics and tectonic implication of the shuanglong mafic−ultramafic rocks in western section of the north Qilian[J]. Acta Petrologica Sinica, 34(2): 383−397 (in Chinese with English abstract).

    Google Scholar

    [35] Liu Y, Gao S, Hu Z, et al. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.

    Google Scholar

    [36] Ludwig K. 2003. A geochronological toolkit for Microsoft Excel[J]. Isoplot, 3: 1−70.

    Google Scholar

    [37] Mao J W, Pirajno F, Zhang Z H, et al. 2008. A review of the Cu−Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore−forming processes[J]. Journal of Asian Earth Sciences, 32(2/4): 184−203. doi: 10.1016/j.jseaes.2007.10.006

    CrossRef Google Scholar

    [38] McCulloch M T, Gamble J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 102(3/4): 358−374. doi: 10.1016/0012-821X(91)90029-H

    CrossRef Google Scholar

    [39] McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical geology, 120(3/4): 223−253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [40] Mohr P A. 1987. Crustal contamination in mafic sheets: a summary[J]. Mafic Dyke Swarms. Special Publication−Geological Association of Canada, 34: 75−80.

    Google Scholar

    [41] Neal C, Mahoney J, Chazey III W. 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183[J]. Journal of Petrology, 43(7): 1177−1205. doi: 10.1093/petrology/43.7.1177

    CrossRef Google Scholar

    [42] Oyhantçabal P, Siegesmund S, Wemmer K, et al. 2007. Post−collisional transition from calc−alkaline to alkaline magmatism during transcurrent deformation in the southernmost Dom Feliciano Belt (Braziliano–Pan−African, Uruguay)[J]. Lithos, 98(1/4): 141−159. doi: 10.1016/j.lithos.2007.03.001

    CrossRef Google Scholar

    [43] Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1/4): 14−48. doi: 10.1016/j.lithos.2007.06.016

    CrossRef Google Scholar

    [44] Plank T, Wade J. 2005. Constraints from water on mantle melting and slab fluid composition[C]//AGU Fall Meeting, London.

    Google Scholar

    [45] Qin H P, Wu C L, Wang Ci S, et al. 2014. LA−ICP−MS Zircon U−Pb geochronology and geochemical characteristical of Xiagucheng granite in North Qilian[J]. Acta Geologica Sinica, 88(10): 1832−1842 (in Chinese with English abstract).

    Google Scholar

    [46] Qin K Z, Tang D M, Su B X, et al. 2012. The tectonic setting, style, basic feature, relative erosion degree, ore−bearing evaluation sign, potential analysis of mineralization of Cu−Ni−bearing Permian mafic ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 45(4): 83−116 (in Chinese with English abstract).

    Google Scholar

    [47] Rollinson H. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. London: Longman: 171−214.

    Google Scholar

    [48] Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 33(3): 267−309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    [49] Saunders A, Norry M, Tarney J. 1991. Fluid influence on the trace element compositions of subduction zone magmas[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 335(1638): 377−392. doi: 10.1098/rsta.1991.0053

    CrossRef Google Scholar

    [50] Scherer E E, Cameron K L, Blichert−Toft J. 2000. Lu−Hf garnet geochronology: closure temperature relative to the Sm−Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 64(19): 3413−3432. doi: 10.1016/S0016-7037(00)00440-3

    CrossRef Google Scholar

    [51] Scherer E, Munker C, Mezger K. 2001. Calibration of the lutetium−hafnium clock[J]. Science, 293(5530): 683−687. doi: 10.1126/science.1061372

    CrossRef Google Scholar

    [52] Sha X, Chen S Q, He Z X, et al. 2016. Geochemical Features of Kawa Iron Ore Deposit in the Western Section of the North Qilian Mountains and Their Geological Significance[J]. Geology and exploration, 52(4): 657−666 (in Chinese with English abstract).

    Google Scholar

    [53] Song S, Niu Y, Su L, et al. 2013. Tectonics of the north Qilian orogen, NW China[J]. Gondwana Research, 23(4): 1378−1401. doi: 10.1016/j.gr.2012.02.004

    CrossRef Google Scholar

    [54] Song X Y, Deng Y F, Xie W, et al. 2021. Prolonged basaltic magmatism and short−lived magmatic sulfide mineralization in orogenic belts[J]. Lithos, 390: 106114.

    Google Scholar

    [55] Song X Y, Yi J N, Chen L M, et al. 2016. The giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, northern Tibet plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29

    CrossRef Google Scholar

    [56] Spandler C, Pettke T, Hermann J. 2014. Experimental study of trace element release during ultrahigh−pressure serpentinite dehydration[J]. Earth and Planetary Science Letters, 391: 296−306. doi: 10.1016/j.jpgl.2014.02.010

    CrossRef Google Scholar

    [57] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [58] Tang D M, Qin K Z, Sun H, et al. 2009. Lithological, chronological and geochemical characteristics of Tianyu Cu−Ni deposit: Constraints on source and genesis of mafic−ultramafic intrusions in eastern Xinjiang[J]. Acta Petrologica Sinica, 25(4): 817−831 (in Chinese with English abstract).

    Google Scholar

    [59] Taylor S R, McLennan S M. 1985. The continental crust: its composition and evolution[M]. Oxford Press, Blackwell: 1−312.

    Google Scholar

    [60] Vervoort J D, Patchett P J. 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites[J]. Geochimica et Cosmochimica Acta, 60(19): 3717−3733. doi: 10.1016/0016-7037(96)00201-3

    CrossRef Google Scholar

    [61] Wang R M, Liu De Q, Yin D T. 1987. Study of metallogenitic and ore−controlling factors with prospecting direction of Cu−Ni sulfide deposits in Tudun−Huangshan region, Hami, Xinjiang[J]. Journal of Mineralogy and Petrology, 7(1): 1−152 ( in Chinese).

    Google Scholar

    [62] Wang Y X, Pu W F, Li T G, et al. 2024. Main types of magmatism gold deposits and their mineralization in Gansu Province. Geological Bulletin of China, 43(6): 869−884 (in Chinese with English abstract).

    Google Scholar

    [63] Wu F Y, Li X H, Zheng Y F, et al. 2007. Lu−Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185−220 (in Chinese with English abstract).

    Google Scholar

    [64] Wu Y B, Zheng Y F. 2004. Genesis of zircon and its constraints on interpretation of U−Pb age[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    [65] Xia L Q, Xia Z C, Xu X Y, 1996. Characteristics of Mid Late Proterozoic Volcanic Rocks and Cleavage of Precambrian Continental in Southern Qinling Mountains[J]. Science China Earth Sciences, (3): 237−243 (in Chinese).

    Google Scholar

    [66] Xia X H, Song S G. 2010. Forming age and tectono−petro−genises of the Jiugequan ophiolite in the North Qilian Mountain, NW China[J]. Chinese Science Bulletin, 55(15): 1465−1473 (in Chinese with English abstract). doi: 10.1360/csb2010-55-15-1465

    CrossRef Google Scholar

    [67] Xue S C, Liu J Y, Zhou Y, et al. 2024. Genetic correlation of metasomatized mantle source with Ni−Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica, 40(1): 60−78(in Chinese with English abstract). doi: 10.18654/1000-0569/2024.01.03

    CrossRef Google Scholar

    [68] Xue S, Li C, Qin K, et al. 2018. Sub−arc mantle heterogeneity in oxygen isotopes: evidence from Permian mafic–ultramafic intrusions in the Central Asian Orogenic Belt[J]. Contributions to Mineralogy and Petrology, 173: 1−13. doi: 10.1007/s00410-017-1425-2

    CrossRef Google Scholar

    [69] Xue S, Qin K, Li C, et al. 2016. Geochronological, petrological, and geochemical constraints on Ni−Cu sulfide mineralization in the Poyi ultramafic−troctolitic intrusion in the northeast rim of the Tarim craton, western China[J]. Economic Geology, 111(6): 1465−1484. doi: 10.2113/econgeo.111.6.1465

    CrossRef Google Scholar

    [70] Yang H Q, Zhao D H, Wang Y H, et al. 2009. Essential factors and model for prediction of Jingti−eshan−type copper deposits in the western segment of the North Qilian mountains[J]. Geoscience, 23(2): 269−276 (in Chinese with English abstract).

    Google Scholar

    [71] Yu J Y, Li X M, Wang G Q, et al. 2010. LA−ICP−MS U−Pb dating of zircon from the Hamandaban granite body in the Honggou area, Qinghai Province: New Evidence For metallogenic age and causes of the Honggou copper polymetallic deposit[J]. Geology and Exploration, 46(4): 592−598 (in Chinese with English abstract).

    Google Scholar

    [72] Zanetti A, Mazzucchelli M, Rivalenti G, et al. 1999. The Finero phlogopite−peridotite massif: an example of subduction−related metasomatism[J]. Contributions to Mineralogy and Petrology, 134: 107−122. doi: 10.1007/s004100050472

    CrossRef Google Scholar

    [73] Zhang Z, Mao J, Chai F, et al. 2009. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, northwest China: implications for the genesis of magmatic Ni−Cu sulfide deposits[J]. Economic Geology, 104(2): 185−203. doi: 10.2113/gsecongeo.104.2.185

    CrossRef Google Scholar

    [74] Zheng Y F, Chen R X, Zhang S B, et al. 2007. Zircon Lu−Hf isotope study of ultrahigh−pressure eclogite and granitic gneiss in the Dabie orogen[J]. Acta Petrologica Sinica, 23(2): 317−330 (in Chinese with English abstract).

    Google Scholar

    [75] Zhu X H, Chen D L, Feng Y M, et al. 2022. Granitic magmatism and tectonic evolution in the Qilian Mountain range in NW China: A review[J]. Earth Science Frontiers, 29(2): 241−260 (in Chinese with English abstract).

    Google Scholar

    [76] Zindler A, Hart S R. 1986. Chemical Geodynamics[J]. Annual review of Earth and Planetary Sciences, 14: 493−571. doi: 10.1146/annurev.ea.14.050186.002425

    CrossRef Google Scholar

    [77] Zong K, Liu Y. 2018. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China[J]. Science China Earth Sciences, 61: 711−729. doi: 10.1007/s11430-017-9185-2

    CrossRef Google Scholar

    [78] 陈宣华, 邵兆刚, 熊小松, 等. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995−1020. doi: 10.12029/gc20190504

    CrossRef Google Scholar

    [79] 陈育晓, 夏小洪, 宋述光. 2012. 北祁连山西段志留纪高硅埃达克岩: 洋壳减压熔融的证据[J]. 科学通报, 57(22): 2072−2085.

    Google Scholar

    [80] 丛智超. 2017. 青海北祁连铜多金属矿床成矿规律研究[D]. 吉林大学博士学位论文.

    Google Scholar

    [81] 丁兴, 孙卫东. 2014. 地球深部过程的Nb/Ta分异及成岩成矿意义: 从微观到宏观[C]//2014年中国地球科学联合学术年会-专题44: 造山带深部地质过程论文集. 北京: 中国地球物理学会, 全国岩石学与地球动力学研讨会组委会, 中国地质学会构造地质学与地球动力学专业委员会, 中国地质学会区域地质与成矿专业委员会, 2014.

    Google Scholar

    [82] 段俊, 钱壮志, 焦建刚, 等. 2015. 甘肃龙首山岩带西井镁铁质岩体成因及其构造意义[J]. 吉林大学学报(地球科学版), 45(3): 832−846.

    Google Scholar

    [83] 段俊. 2012. 甘肃龙首山地区藏布台镁铁-超镁铁质岩体岩石成因及成矿潜力[D]. 长安大学硕士学位论文.

    Google Scholar

    [84] 樊新祥, 孔维琼, 杨镇熙, 等. 2020. 北祁连造山带西段车路沟岩体U−Pb年代学、地球化学特征及岩石成因[J]. 中国地质, 47(3): 755−766. doi: 10.12029/gc20200314

    CrossRef Google Scholar

    [85] 葛肖虹, 刘俊来. 1999. 北祁连造山带的形成与背景[J]. 地学前缘, (4): 223−230. doi: 10.3321/j.issn:1005-2321.1999.04.004

    CrossRef Google Scholar

    [86] 龚振中, 杨镇熙, 赵吉昌, 等. 2023. 北祁连造山带西段首次发现中型岩浆熔离型镍矿床[J/OL]. 中国地质: 1-3[2025-03-17]. http://kns.cnki.net/kcms/detail/11.1167.p.20230220.1509.002.html.

    Google Scholar

    [87] 龚振中, 杨镇熙, 周登峰, 等. 2024. 北祁连西段红川铜镍矿超基性岩体锆石U−Pb年龄[J]. 中国地质: 51(01): 364−365.

    Google Scholar

    [88] 李世金. 2011. 祁连造山带地球动力学演化与内生金属矿产成矿作用研究[D]. 吉林大学博士学位论文.

    Google Scholar

    [89] 李文渊. 2004. 祁连山主要矿床组合及其成矿动力学分析[J]. 地球学报, 25(3): 313−320. doi: 10.3321/j.issn:1006-3021.2004.03.007

    CrossRef Google Scholar

    [90] 李文渊. 2022. 中国岩浆铜镍钴硫化物矿床成矿理论创新和找矿突破[J]. 地质力学学报, 28(5): 793−820. doi: 10.12090/j.issn.1006-6616.20222810

    CrossRef Google Scholar

    [91] 李长民. 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 32(3): 161−174.

    Google Scholar

    [92] 刘懿馨, 沙鑫, 马蓁, 等. 2018. 北祁连西段双龙镁铁质-超镁铁质岩地球化学特征及构造意义[J]. 岩石学报, 34(2): 383−397.

    Google Scholar

    [93] 秦海鹏, 吴才来, 王次松, 等. 2014. 北祁连下古城花岗岩体LA−ICP−MS锆石U−Pb年代学及岩石化学特征[J]. 地质学报, 88(10): 1832−1842.

    Google Scholar

    [94] 秦克章, 唐冬梅, 苏本勋, 等. 2012. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J]. 西北地质, 45(4): 83−116. doi: 10.3969/j.issn.1009-6248.2012.04.009

    CrossRef Google Scholar

    [95] 沙鑫, 陈世强, 何兆祥, 等. 2016. 北祁连西段卡瓦铁矿的地球化学特征及其地质意义[J]. 地质与勘探, 52(4): 657−666.

    Google Scholar

    [96] 唐冬梅, 秦克章, 孙赫, 等. 2009. 天宇铜镍矿床的岩相学、锆石U−Pb年代学、地球化学特征: 对东疆镁铁—超镁铁质岩体源区和成因的制约[J]. 岩石学报, 25(4): 817−831.

    Google Scholar

    [97] 王润民, 刘德权, 殷定泰. 1987. 新疆哈密土墩—黄山一带铜镍硫化物矿床成矿控制条件及找矿方向的研究[J]. 矿物岩石, 7(1): 1−152.

    Google Scholar

    [98] 王玉玺, 蒲万峰, 李通国, 等. 2024. 甘肃省主要岩浆作用金矿床类型及其成矿作用[J]. 地质通报, 43(6): 869−884. doi: 10.12097/gbc.2022.12.012

    CrossRef Google Scholar

    [99] 吴福元, 李献华, 郑永飞, 等. 2007. Lu−Hf同位素体系及其岩石学应用[J]. 岩石学报, (2): 185−220. doi: 10.3969/j.issn.1000-0569.2007.02.001

    CrossRef Google Scholar

    [100] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [101] 夏林圻, 夏祖春, 徐学义. 1996. 南秦岭中—晚元古代火山岩性质与前寒武纪大陆裂解[J]. 中国科学(D辑), (3): 237−243.

    Google Scholar

    [102] 夏小洪, 宋述光. 2010. 北祁连山肃南九个泉蛇绿岩形成年龄和构造环境[J]. 科学通报, 55(15): 1465−1473.

    Google Scholar

    [103] 薛胜超, 刘金宇, 周翊, 等. 2024. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 40(1): 60−78.

    Google Scholar

    [104] 杨合群, 赵东宏, 王永和, 等. 2009. 北祁连西段镜铁山式铜矿预测要素及预测模型[J]. 现代地质, 23(2): 269−276.

    Google Scholar

    [105] 余吉远, 李向民, 王国强, 等. 2010. 青海红沟地区哈曼大阪花岗岩体锆石LA−ICP−MS测年——对红沟铜矿床形成时代和成因的认识[J]. 地质与勘探, 46(4): 592−598.

    Google Scholar

    [106] 郑永飞, 陈仁旭, 张少兵, 等. 2007. 大别山超高压榴辉岩和花岗片麻岩中锆石Lu−Hf同位素研究[J]. 岩石学报, 23(2): 317−330.

    Google Scholar

    [107] 朱小辉, 陈丹玲, 冯益民, 等. 2022. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 29(2): 241−260.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(170) PDF downloads(21) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint