2025 Vol. 44, No. 6
Article Contents

REN Meiqiao, LI Zhenzhen, XU Jian, XU Wentan, SUN Zhenjun, REN Peng, ZHAO Yongchun, ZHANG Shixin, ZHAO Junxing, ZHANG Xin. 2025. Short-wave infrared spectroscopy characteristics of alteration minerals and discovery of Be mineralization from Baiyinwula W−Sn deposit in Inner Mongolia. Geological Bulletin of China, 44(6): 1033-1047. doi: 10.12097/gbc.2024.03.043
Citation: REN Meiqiao, LI Zhenzhen, XU Jian, XU Wentan, SUN Zhenjun, REN Peng, ZHAO Yongchun, ZHANG Shixin, ZHAO Junxing, ZHANG Xin. 2025. Short-wave infrared spectroscopy characteristics of alteration minerals and discovery of Be mineralization from Baiyinwula W−Sn deposit in Inner Mongolia. Geological Bulletin of China, 44(6): 1033-1047. doi: 10.12097/gbc.2024.03.043

Short-wave infrared spectroscopy characteristics of alteration minerals and discovery of Be mineralization from Baiyinwula W−Sn deposit in Inner Mongolia

    Fund Project: Supported by National Natural Science Foundation of China (No. 42272105), Natural Science Foundation of Hebei Province (No. D2023512031), and Comprehensive research project of Keshiketeng Banner Yinda Mining Company Limited. (No.GS2022094)
More Information
  • Author Bio: REN Meiqiao, female, born in 2000, master candidate, mainly engaged in resources and environment study; E−mail: 1134468990@qq.com
  • Corresponding author: LI Zhenzhen, female, born in 1984, Ph.D., associate professor, mainly engaged in teaching and research work in mineral deposit science, mineral survey and exploration; E−mail: windylizhenzhen@163.com 
  • Objective

    Baiyinwula deposit is located in the tungsten−tin polymetallic mineralization belt in the southern section of Great Xing’an Range, which has good prospecting of rare metals. However, in the process of mineral exploration, there have been problems such as unclear hydrothermal mineralization centers and insufficient understanding of the genesis of mineral deposits, which have affected the effectiveness of mineral exploration.

    Methods

    In this paper, the alteration mineral types and relative contents in this deposit were analyzed by using short−wave infrared spectroscopy.

    Results

    The results show that the alteration minerals are dominated by muscovite, phengite, illite, chlorite, biotite, topaz and tourmaline, with small amounts of kaolinite, dickite, montmorillonite and calcite. Based on the alteration mineral mapping, two alteration zones are recognized in this deposit: a strong greisenization zone (quartz−phengite−topaz−chlorite−fluorite±biotite±tourmaline) in the middle and deep parts, and a muscovite−chlorite zone (quartz−chlorite−muscovite±biotite±tourmaline) in the shallow parts and the periphery. The spatial relationship between greisenization zone and biotite granite indicate that the hydrothermal fluids derived from the biotite granite and the strong greisenization zone represent the hydrothermal and mineralization center. The characteristic spectral parameters of white−mica group minerals show that the Pos2200 and IC values are relatively high within the strong greisenization zone, and decrease further away from the zone. The increase in Pos2200 is influenced by the composition of the ore−forming fluid, the properties of the surrounding rock, and temperature, while the IC value is mainly related to the temperature of hydrothermal fluid.

    Conclusions

    High IC value (>2) of muscovite can be used as indicator for prospecting in this deposit. Short wave infrared spectroscopy technology is a very effective exploration method in F−rich granitic magma hydrothermal systems with greisenization. The rapid identification of F−rich topaz may also suggest good exploration potential for Li and Be. The discovery of magmatic−hydrothermal Be mineralization dominated by Beryl in this deposit demonstrates the good application prospects of short wave infrared spectroscopy technology, and also reveals the diversity of Be mineralization types in Great Xing’an Range, implying good potential for Be exploration in the region. It has certain enlightening significance for future exploration targets and directions of rare metals in this region.

  • 加载中
  • [1] Barton M D, Yong S. 2002. Non−pegmatitic deposits of beryllium: Mineralogy, geology, phase equilibria and origin[J]. Reviews in Mineralogy and Geochemistry, 50(1): 591−691. doi: 10.2138/rmg.2002.50.14

    CrossRef Google Scholar

    [2] Chang Z S, Hedenquist J W, White N C, et al. 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion−centered Cu−Au district, Luzon, Philippines[J]. Economic Geology, 106: 1365−1398. doi: 10.2113/econgeo.106.8.1365

    CrossRef Google Scholar

    [3] Chang Z S, Yang Z M. 2012. Evaluation of inter−instrument variations among Short Wavelength Infrared (SWIR) devices[J]. Economic Geology, 107(7): 1479−1488. doi: 10.2113/econgeo.107.7.1479

    CrossRef Google Scholar

    [4] Chen H Y, Zhang S T, Chu G B, et al. 2019. The short wave infrared (SWIR) spectral characteristics of alteration of alteration minerals and applications for ore exploration in the typical skarn−porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 35(12): 3629−3643 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.04

    CrossRef Google Scholar

    [5] Chen Z, Zhou J B, Li G Y, et al. 2023. The nature and spatial–temporal evolution of suture zones in Northeast China[J]. Earth−Science Reviews, 241: 104437. doi: 10.1016/j.earscirev.2023.104437

    CrossRef Google Scholar

    [6] Chen X K, Zhou Z H. 2023. Deposit types, metallogenesis and resource prospect of Li−Be−Nb−Ta deposits in the Great Xing’an Range[J]. Acta Petrologica Sinica, 39(7): 1973−1991 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.07.06

    CrossRef Google Scholar

    [7] Ding L L, Mao Q G, Wang Y W. 2022. Comparison on the Characteristics of Cassiterite−Bearing and Barren Granites in the Beidashan Region, Southern Great Xing’an Range[J]. Earth Science, 47(9): 3371−3388 (in Chinese with English abstract).

    Google Scholar

    [8] Doublier M P, Roache A, Potel S. 2010. Application of SWIR spectroscopy in very low−grade metamorphic environments: A comparison with XRD methods[J]. Geological Survey of Western Australia, 7: 61.

    Google Scholar

    [9] Du L H, Huang Y, Gao X, et al. 2025. Characteristics of strong reducing metallogenic porphyry and its constraints on the genesis of the rare metal-tin-polymetallic deposit in Weilasituo, Inner Mongolia[J]. Geological Bulletin of China, 44(4): 633−648(in Chinese with English abstract).

    Google Scholar

    [10] Duke E F. 1994. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing[J]. Geology, 22(7): 621−624. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2

    CrossRef Google Scholar

    [11] Hao J Y, Duan L A, Zhang Y, et al. 2024. Machine learning on white mica short−wave infrared (SWIR) spectral data in the Tengjia Au deposit, Jiaodong peninsula (Eastern China): A prospecting indicator for lode gold deposits[J]. Ore Geology Reviews, 173: 106230. doi: 10.1016/j.oregeorev.2024.106230

    CrossRef Google Scholar

    [12] Harraden C L, Mcnulty B A, Gregory M J, et al. 2013. Shortwave infrared spectral analysis of hydrothermal alteration associated with the Pebble porphyry copper−gold−molybdenum deposit, Iliamna, Alaska[J]. Economic Geology, 108: 483−494. doi: 10.2113/econgeo.108.3.483

    CrossRef Google Scholar

    [13] Herrmann W, Blake M, Doyle M, et al. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and western Tharsis, Tasmania, and highway−reward, Queensland[J]. Economic Geology, 96: 939−955.

    Google Scholar

    [14] Hou X Z, Liu Z N, Han W, et al. 2017. The occurrence state of tin and beryllium in polymetallic ore from Huanggangliang area, Hexigten County, Inner Mongolia, China[J]. Acta Mineralogica Sinica, 37(6): 807−812 (in Chinese with English abstract).

    Google Scholar

    [15] Hou Z D, Zhao Z, Liu Z J, et al. 2023. Metallogenetic regularity and prospecting direction of granite related Li−Be−Nb−Ta deposit in the Nanling region, South China[J]. Acta Petrologica Sinica, 39(7): 1950−1972 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.07.05

    CrossRef Google Scholar

    [16] Hu S X, Ye Y, Fang C Q. 2004. Petrology of accounted altered rocks and its significance in finding minerals[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [17] Jiang S Y, Zhao K D, Jiang H, et al. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposit in China: An overview[J]. Chin Sci Bull., 65: 3730−3745 (in Chinese with English abstract).

    Google Scholar

    [18] Laakso K, Rivard B, Peter J M, et al. 2015. Application of airborne, laboratory, and field hyperspectral methods to mineral exploration in the Canadian arctic: Recognition and characterization of volcanogenic massive sulfide−associated hydrothermal alteration in the Izok Lake deposit area, Nunavut, Canada[J]. Economic Geology, 110: 925−941. doi: 10.2113/econgeo.110.4.925

    CrossRef Google Scholar

    [19] Launay G, Branquet Y, Sizaret S, et al. 2023. How greisenization could trigger the formation of large vein−and−greisen Sn−W deposits: A numerical investigation applied to the Panasqueira deposit[J]. Ore Geology Reviews, 153: 105299. doi: 10.1016/j.oregeorev.2023.105299

    CrossRef Google Scholar

    [20] Lecumberri−Sanchez P, Vieira R, Heinrich C A, et al. 2017. Fluid−rock interaction is decisive for the formation of tungsten deposits[J]. Geology, 45: 579−582.

    Google Scholar

    [21] Li J K, Zou T R, Wang D H, et al. 2017. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 36(4): 951−978 (in Chinese with English abstract).

    Google Scholar

    [22] Li Z Z, Qin K Z, Zhao J X, et al. 2019. Basic characteristics, research progresses and prospects of Sn−Ag−base metal metallogenic system[J]. Acta Petrologica Sinica, 35(7): 1979−1998 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.03

    CrossRef Google Scholar

    [23] Li Z Z, Qin K Z, Pei B, et al. 2020. Mineralogical features of tourmaline in Baiyinchagan Sn−Ag−Pb−Zn deposit, southern Great Xing’an Range, and its implications for magmatic−hydrothermal evolution[J]. Acta Petrologica Sinica, 36(12): 3797−3812 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.14

    CrossRef Google Scholar

    [24] Li X F, Wu F Y, Wei X L, et al. 2022. Metallogenic potential and prospcting prospect of volcanic−hosted beryllium−uranium deposit in eastern China[J]. Acta Petrologica Sinica, 38(7): 1861−1878 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.03

    CrossRef Google Scholar

    [25] Lian Y C, Zhang G, Yuan C H, et al. 2005. Application of short−wave infrared spectrometry mineralogical measurement technology in hydrothermal alteration mineral mapping−A case study of the Toiya porphyry copper deposit[J]. Geology in China, 32(3): 483−495 (in Chinese with English abstract).

    Google Scholar

    [26] Liu X, Wang J B, Zhu X Y, et al. 2017a. Mineralization process of the Baiyinchagan tin polymetallic deposit in Inner Mongolia I: Metallic mineral assemblage and metallogenic mechanism[J]. Mineral Exploration, 8(6): 967−980 (in Chinese with English abstract).

    Google Scholar

    [27] Liu X, Li X G, Zhu X Y, et al. 2017b. Mineralization process of the Baiyinchagan tin polymetallic deposit in Inner Mongolia II: Chronology of ore−bearing porphyry, geochemical characteristics and geological implications of the granite porphyry[J]. Mineral Exploration, 8(6): 981−996 (in Chinese with English abstract).

    Google Scholar

    [28] Liu Y J, Li W M, Feng Z W, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [29] Liu Y J, Li W M, Ma Y F, et al. 2021. An orocline in the wastern Central Asian orogenic belt[J]. Earth Science Reviews, 221: 103808. doi: 10.1016/j.earscirev.2021.103808

    CrossRef Google Scholar

    [30] Mao J W, Li H Y, B Guy, et al. 1996. Geology and mineralization of Kakizhuyuan silica−dacite−type W−Sn−Mo−Bi deposits, Hunan, China[J]. Mineral Deposits, 15(1): 1−15 (in Chinese with English abstract).

    Google Scholar

    [31] Mao J W, Zhou Z H, Wu G, et al. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 716−730 (in Chinese with English abstract).

    Google Scholar

    [32] Mao J W, Ouyang H G, Song S W, et al. 2019. Geology and metallogeny of tungsten and tin deposits in China[J]. Economic Geology, SEG Special Publications, 22: 411−482.

    Google Scholar

    [33] Mao X X, Peng H J, Zhang Y L, et al. 2023. Short wave infrared spectrum characteristics of sericite and its application to mineral exploration[J]. Mineral Deposits, 42(3): 646−659 (in Chinese with English abstract).

    Google Scholar

    [34] Ni P, Pan J Y, Han L, et al. 2023. Large−scale granite−related tungsten and tin mineralization in South China: Temporal and spatial distribution, metallogenic models and exploration[J]. Acta Geologica Sinica, 97(11): 3497−3544 (in Chinese with English abstract).

    Google Scholar

    [35] Ouyang H G, Mao J W, Zhou Z H, et al. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, Northeastern China[J]. Gondwana Research, 27(3): 1153−1172. doi: 10.1016/j.gr.2014.08.010

    CrossRef Google Scholar

    [36] Qin K Z, Zhai M G, Li G M, et al. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China[J]. Acta Petrologica Sinica, 33(2): 305−325 (in Chinese with English abstract).

    Google Scholar

    [37] Rao C, Wang R C, Che X D, et al. 2022. Metallogenic mechanism and prospect of key metal beryllium[J]. Acta Petrologica Sinica, 38(7): 1848−1860 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.02

    CrossRef Google Scholar

    [38] Rao C, Wang R C, Che X D, et al. 2025. Discovery of hydrothermal beryllium deposit in the Changshan area of Northwest Zhejiang Province[J]. Geological Bulletin of China, 44(1): 33−41(in Chinese with English abstract).

    Google Scholar

    [39] Shao J A, Tian W, Tang K D, et al. 2018. Preliminary discussion on the role of microcontinental blocks in the evolution of the Central Asian orogenic belt: taking the Xilinhaote microcontinental block as an example[J]. Earth Science Frontiers, 25(4): 1−10 (in Chinese with English abstract).

    Google Scholar

    [40] Shi G H, Liu D Y, Zhang F Q, et al. 2003. SHRIMP U−Pb zircon geochronology and its implications on the Xilin Gol complex, Inner Mongolia, China[J]. Chinese Science Bulletin, 48(24): 2742−2748. doi: 10.1007/BF02901768

    CrossRef Google Scholar

    [41] Shi R Z, Zhao J X, Noreen J E, et al. 2021. Temporal−spatial variations in Li−Fe mica compositions from the Weilasituo Sn−polymetallic deposit (NE China): Implications for deposit−scale fluid evolution[J]. Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration, 134(1): 104132.

    Google Scholar

    [42] Sun Y Y, Seccombe P K, Yang K. 2001. Application of short−wave infrared spectroscopy to define alteration zones associated with the Elura zinc−lead−silver deposit, NSW, Australia[J]. Journal of Geochemical Exploration, 73: 11−26. doi: 10.1016/S0375-6742(01)00167-4

    CrossRef Google Scholar

    [43] Sun Y, Lai Y, Shu Q H. 2012. Study on the relationship between the degree of magma crystallization and the mineralization of Be by magmatic fluids−−Taking the example of Tailai granite−type Be−Ta deposits in the southern section of the Daxing'anling Mountains[J]. Mineral Deposits, 31(S1): 345−346 (in Chinese with English abstract).

    Google Scholar

    [44] Tang N, Qin Z P, Li Y B, et al. 2022. Mineralogical characteristics and short−wave infrared spectra of chlorite as indicators of hydrothermal centers: A case study of the gaint porphyry copper−molybdenum deposit at Qulong, Xizang[J]. Acta Geologica Sinica (English Edition), 96(2): 490−505. doi: 10.1111/1755-6724.14809

    CrossRef Google Scholar

    [45] Wang J B, Wang Y W, Wang L J, et al. 2001. Tin−polymetallic mineralization in the southern part of the Da Hinggan Mountains, China[J]. Resource Geology, 51(4): 283−291. doi: 10.1111/j.1751-3928.2001.tb00102.x

    CrossRef Google Scholar

    [46] Wang J B, Wang Y W, Wang L J. 2005. Tin polymetallic mineralization series in the southern setion of Great Xing’an Range[J]. Geology and Prospecting, 41(6): 18−23 (in Chinese with English abstract).

    Google Scholar

    [47] Wang L J, Wang J B, Wang Y W, et al. 2015. Metallogenic mechanism of fluid and prospecting forecast of Dajing Sn−Cu polymetallic deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 31(4): 991−1001 (in Chinese with English abstract).

    Google Scholar

    [48] Wang L, Percival J B, Hedenquist J W, et al. 2021. Alteration mineralogy of the Zhengguang epithermal Au−Zn deposit, Northeast China: Interpretation of shortwave infrared analyses during mineral exploration and assessment[J]. Economic geology and the bulletin of the Society of Economic Geologists, 116(2): 389−406. doi: 10.5382/econgeo.4792

    CrossRef Google Scholar

    [49] Wang L, Qin K Z, Song G X, et al. 2019. A review of intermediate sulfidation epithermal deposits and subclassification[J]. Ore Geology Reviews, 107: 434−456. doi: 10.1016/j.oregeorev.2019.02.023

    CrossRef Google Scholar

    [50] Wang Q F, Deng J, Zhao H S, et al. 2019. Review on Orogenic Gold Deposits[J]. Earth Science, 44(6): 2155−2186(in Chinese with English abstract).

    Google Scholar

    [51] Wang T, Zhang J J, Li S, et al. 2022. Distinctive spatial−temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences for identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontiers, 29(2): 28−44 (in Chinese with English abstract).

    Google Scholar

    [52] Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [53] Wu F Y, Guo C L, Hu F Y, et al. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China[J]. Acta Petrologica Sinica, 39(1): 1−36(in Chinese with English abstract).

    Google Scholar

    [54] Wu G, Liu R L, Chen G Z, et al. 2021. Mineralization of the Weilasituo rare metal−tin−polymetallic ore deposit in Inner Mongolia: Insights from fractional crystallization of gtanitic magmas[J]. Acta Petrologica Sinica, 37(3): 637−664 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.01

    CrossRef Google Scholar

    [55] Wu H H, Huang H, Zhang Z C, et al. 2020. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb−Ta deposit in the northern margin of the North China Craton, China[J]. Ore Geology Review, 125: 103692. doi: 10.1016/j.oregeorev.2020.103692

    CrossRef Google Scholar

    [56] Wu H R, Yang H, Ge W C, et al. 2022. Formation age and genesis of the Nasigatu greisen−type beryllium mineralization in the southern Great Xing’an Range: Monazite chronological and geochemical evidence[J]. Acta Petrologica Sinica, 38(7): 1915−1936 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.07.07

    CrossRef Google Scholar

    [57] Xu C, Chen H Y, Noel W, et al. 2017. Alteration and mineralization of Xinan Cu−Mo ore deposit in Zijinshan orefield, Fujian Province, and application of short wavelength infra−red technology (SWIR) to exploration[J]. Mineral Deposits, 36(5): 1013−1038 (in Chinese with English abstract).

    Google Scholar

    [58] Xu J X, Zeng Z L, Wang D H, et al. 2008. New type of tungsten ore in Gannan and the “five−story + basement” mineral search model[J]. Acta Geologica Sinica, 82(7): 880−887 (in Chinese with English abstract).

    Google Scholar

    [59] Yang F, Wu G, Chen G Z, et al. 2024. Petrogenesis and implications for tin mineralization of the Beidashan granitic pluton, southern Great Xing’an Range, NE China: Constraints from whole−rock and accessory mineral geochemistry[J]. Journal of Asian Earth Sciences, 259: 105883. doi: 10.1016/j.jseaes.2023.105883

    CrossRef Google Scholar

    [60] Yang K, Lian C, Huntington J F, et al. 2005. Infra red spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu−Au deposit Xinjiang China[J]. Mineralium Deposita, 40: 324−336.

    Google Scholar

    [61] Yang S Y, Jiang S Y, Zhao K D, et al. 2015. Tourmaline as a recorder of magmatic−hydrothermal evolution: An in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China[J]. Contributions to Mineralogy and Petrology, 170(5/6): 42. doi: 10.1007/s00410-015-1195-7

    CrossRef Google Scholar

    [62] Yang Z M, Hou Z Q, Yang Z S, et al. 2012. Application of short wavelength infrared (SWIR) technique in exploration of poorly eroded porphyry Cu district: A case study of Niancun ore district, Xizang[J]. Mineral Deposits, 31(4): 699−717 (in Chinese with English abstract).

    Google Scholar

    [63] Yao L, Lü Z C, Ye T Z, et al. Zircon U−Pb age, geochemical and Nd−Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing’an Range, China[J]. Acta Petrologica Sinica, 33(10): 3183−3199 (in Chinese with English abstract).

    Google Scholar

    [64] Yao L, Lü Z C, Ye T Z, et al. 2021. Geological and Sr−Nd−S−Pb isotopic constraints on the genesis of the Baiyinchagan tin polymetallic deposit, southern Great Xing’an Range, China[J]. Acta Petrologica Sinica, 37(6): 1731−1748 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.06.06

    CrossRef Google Scholar

    [65] Zhai D G, Williams−Jones A E, Liu J J, et al. 2020. The Genesis of the Giant Shuangjianzishan Epithermal Ag−Pb−Zn Deposit, Inner Mongolia, Northeastern China[J]. Economic Geology, 115(1): 101−128. doi: 10.5382/econgeo.4695

    CrossRef Google Scholar

    [66] Zhang S T, Chen H Y, Zhang X B, et al. 2017. Application of short wavelength infrared ( SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu−Fe−Au deposit, Edongnan (southeast Hubei) ore concentration area[J]. Mineral Deposits, 36(6): 1263−1288 (in Chinese with English abstract).

    Google Scholar

    [67] Zhang X H, Yuan L L, Xue F H, et al. 2015. Early Permian A−type granites from central Inner Mongolia, North China: Magmatic tracer of post−collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 28(1): 311−327. doi: 10.1016/j.gr.2014.02.011

    CrossRef Google Scholar

    [68] Zhao C, Qin K Z, Song G X, et al. 2019. Early Palaeozoic high−Mg basalt−andesite suite in the Duobaoshan porphyry Cu deposit NE China: Constraints on petrogenesis, mineralization, and tectonic setting[J]. Gondwana Research, 71: 91−116. doi: 10.1016/j.gr.2019.01.015

    CrossRef Google Scholar

    [69] Zhao H T, Zhang Y, Xu Y B, et al. 2024. Machine learning model for deep exploration: Utilizing short wavelength infrared (SWIR) of hydrothermal alteration minerals in the Qianchen gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 168: 106060. doi: 10.1016/j.oregeorev.2024.106060

    CrossRef Google Scholar

    [70] Zhao L X, Dai J J, Lin B, et al. 2023. Short−wave−thermal infrared spectra characteristics of altered minerals from the Jiama 3000m deep borehole in Xizang[J]. Acta Geologica Sinica, 97(4): 1342−1359 (in Chinese with English abstract).

    Google Scholar

    [71] Zheng S L, Wu S, Zheng Y Y, et al. 2022. Identifying potential porphyry copper mineralization at the Zhu’nuo ore−cluster district in western Gangdese, southern Xizang: Insights from shortwave infrared (SWIR) spectrometry and geochemical anomalies[J]. Ore Geology Reviews, 151: 105202. doi: 10.1016/j.oregeorev.2022.105202

    CrossRef Google Scholar

    [72] Zhou Y, Chen S Z, Li L M, et al. 2023. Mapping hydrothermal alteration of the Au−Cu deposits in the Zhenghe magmatic−hydrothermal mineralization system, SE China, using short wavelength infrared (SWIR) reflectance spectroscopy[J]. Journal of Geochemical Exploration, 244: 107113. doi: 10.1016/j.gexplo.2022.107113

    CrossRef Google Scholar

    [73] Zhou Z H, Chen Z. 2023. Assembly processes in the eastern Northern Orogenic Belt and implications for the spatiotemporal transition of major tectonic domains in Northeast Asia[J]. Science China Earth Sciences, 66(11): 2648−2652 (in Chinese with English abstract). doi: 10.1007/s11430-023-1192-4

    CrossRef Google Scholar

    [74] Zhou Z H, Mao J W. 2022. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range[J]. Earth Science Frontiers, 29(1): 176−199 (in Chinese with English abstract).

    Google Scholar

    [75] Zhu X Y, Zhang Z H, Fu X, et al. 2016. Geological and geochemical characteristics of the Weilasituo Sn−Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188−208 (in Chinese with English abstract).

    Google Scholar

    [76] 陈华勇, 张世涛, 初高彬, 等. 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 35(12): 3629−3643. doi: 10.18654/1000-0569/2019.12.04

    CrossRef Google Scholar

    [77] 陈新凯, 周振华. 2023. 大兴安岭锂-铍-铌-钽等关键金属矿床类型、成矿规律与资源展望[J]. 岩石学报, 39(7): 1973−1991. doi: 10.18654/1000-0569/2023.07.06

    CrossRef Google Scholar

    [78] 丁磊磊, 毛启贵, 王玉往, 等. 2022. 大兴安岭南段北大山含锡石与不含锡石花岗岩特征对比[J]. 地球科学, 47(9): 3371−3388. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209017

    CrossRef Google Scholar

    [79] 杜立华, 黄宇, 高雄, 等. 2025. 内蒙古维拉斯托稀有金属-锡多金属矿床强还原性成矿斑岩特征及其对矿床成因的约束[J]. 地质通报, 44(4): 633−648.

    Google Scholar

    [80] 侯晓志, 刘占宁, 韩炜, 等. 2017. 内蒙古克什克腾旗黄岗梁多金属矿锡、铍的赋存状态[J]. 矿物学报, 37(6): 807−812.

    Google Scholar

    [81] 侯占德, 赵正, 柳振江, 等. 2023. 南岭花岗岩区锂铍铌钽成矿规律与找矿方向[J]. 岩石学报, 39(7): 1950−1972. doi: 10.18654/1000-0569/2023.07.05

    CrossRef Google Scholar

    [82] 胡受奚, 叶瑛, 方长泉. 2004. 交代蚀变岩岩石学及其找矿意义[M]. 北京: 地质出版社.

    Google Scholar

    [83] 蒋少涌, 赵葵东, 姜海, 等. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 65(33): 3730−3745.

    Google Scholar

    [84] 李建康, 邹天人, 王登红, 等. 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951−978.

    Google Scholar

    [85] 李真真, 秦克章, 赵俊兴, 等. 2019. 锡-银多金属成矿系统的基本特征、研究进展与展望[J]. 岩石学报, 35(7): 1979−1998. doi: 10.18654/1000-0569/2019.07.03

    CrossRef Google Scholar

    [86] 李真真, 秦克章, 裴斌, 等. 2020. 大兴安岭南段白音查干Sn−Ag−Zn−Pb矿床电气石矿物学特征及对岩浆-热液演化过程的启示[J]. 岩石学报, 36(12): 3797−3812. doi: 10.18654/1000-0569/2020.12.14

    CrossRef Google Scholar

    [87] 李晓峰, 吴福元, 韦星林, 等. 2022. 中国东部火山岩型铍铀矿床成矿潜力与找矿远景[J]. 岩石学报, 38(7): 1861−1878. doi: 10.18654/1000-0569/2022.07.03

    CrossRef Google Scholar

    [88] 连长云, 章革, 元春华, 等. 2005. 短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 32(3): 483−495. doi: 10.3969/j.issn.1000-3657.2005.03.019

    CrossRef Google Scholar

    [89] 刘新, 李学刚, 祝新友, 等. 2017a. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅱ: 成矿花岗斑岩年代学、地球化学特征及地质意义[J]. 矿产勘查, 8(6): 981−996. doi: 10.3969/j.issn.1674-7801.2017.06.008

    CrossRef Google Scholar

    [90] 刘新, 王京彬, 祝新友, 等. 2017b. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅰ: 金属矿物组合及其成因机制[J]. 矿产勘查, 8(6): 967−980. doi: 10.3969/j.issn.1674-7801.2017.06.007

    CrossRef Google Scholar

    [91] 毛景文, 李红艳, Guy B, 等. 1996. 湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用[J]. 矿床地质, 15(1): 1−15.

    Google Scholar

    [92] 毛景文, 周振华, 武广, 等. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 32(4): 716−730. doi: 10.3969/j.issn.0258-7106.2013.04.006

    CrossRef Google Scholar

    [93] 毛星星, 彭惠娟, 张云龙, 等. 2023. 绢云母短波红外光谱特征及其在矿产勘查中的应用[J]. 矿床地质, 42(3): 646−659.

    Google Scholar

    [94] 倪培, 潘君屹, 韩亮, 等. 2023. 华南与花岗岩有关大规模钨锡成矿作用的时空分布、成矿模式及找矿方向[J]. 地质学报, 97(11): 3497−3544.

    Google Scholar

    [95] 秦克章, 翟明国, 李光明, 等. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系[J]. 岩石学报, 33(2): 305−325.

    Google Scholar

    [96] 饶灿, 王汝成, 车旭东, 等. 2022. 关键金属铍的成矿机制与找矿前景[J]. 岩石学报, 38(7): 1848−1860. doi: 10.18654/1000-0569/2022.07.02

    CrossRef Google Scholar

    [97] 饶灿, 王汝成, 车旭东, 等. 2025. 浙西北常山地区新发现热液型铍矿[J]. 地质通报, 44(1): 33−41.

    Google Scholar

    [98] 邵济安, 田伟, 唐克东, 等. 2018. 初论微陆块在中亚造山带演化中的作用: 以锡林浩特微陆块为例[J]. 地学前缘, 25(4): 1−10.

    Google Scholar

    [99] 孙艺, 赖勇, 舒启海. 2012. 岩浆结晶程度与岩浆流体Be成矿关系研究——以大兴安岭南段台来花花岗岩型Be−Ta矿床为例[J]. 矿床地质, 31(S1): 345−346.

    Google Scholar

    [100] 王京彬, 王玉往, 王莉娟. 2005. 大兴安岭南段锡多金属成矿系列[J]. 地质与勘探, (6): 18−23. doi: 10.3969/j.issn.0495-5331.2005.06.003

    CrossRef Google Scholar

    [101] 王莉娟, 王京彬, 王玉往, 等. 2015. 内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测[J]. 岩石学报, 31(4): 991−1001.

    Google Scholar

    [102] 王庆飞, 邓军, 赵鹤森, 等. 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用[J]. 地球科学, 44(6): 2155−2186.

    Google Scholar

    [103] 王涛, 张建军, 李舢, 等. 2022. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 29(2): 28−44.

    Google Scholar

    [104] 武广, 刘瑞麟, 陈公正, 等. 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示[J]. 岩石学报, 37(3): 637−664.

    Google Scholar

    [105] 吴福元, 郭春丽, 胡方泱, 等. 2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1): 1−36.

    Google Scholar

    [106] 吴浩然, 杨浩, 葛文春, 等. 2022. 大兴安岭南段那斯嘎吐云英岩型铍矿化的形成时代和成因探讨: 独居石年代学和地球化学证据[J]. 岩石学报, 38(7): 1915−1936.

    Google Scholar

    [107] 许建祥, 曾载淋, 王登红, 等. 2008. 赣南钨矿新类型及“五层楼+地下室”找矿模型[J]. 地质学报, 82(7): 880−887. doi: 10.3321/j.issn:0001-5717.2008.07.003

    CrossRef Google Scholar

    [108] 许超, 陈华勇, Noel W, 等. 2017. 福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究[J]. 矿床地质, 36(5): 1013−1038.

    Google Scholar

    [109] 杨志明, 侯增谦, 杨竹森, 等. 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例[J]. 矿床地质, 31(4): 699−717.

    Google Scholar

    [110] 姚磊, 吕志成, 叶天竺, 等. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U−Pb年龄、地球化学和Nd−Hf同位素特征及地质意义[J]. 岩石学报, 33(10): 3183−3199.

    Google Scholar

    [111] 姚磊, 吕志成, 叶天竺, 等. 2021. 大兴安岭南段白音查干Sn多金属矿床成因: 矿床地质特征及Sr−Nd、S、Pb同位素证据[J]. 岩石学报, 37(6): 1731−1748. doi: 10.18654/1000-0569/2021.06.06

    CrossRef Google Scholar

    [112] 张世涛, 陈华勇, 张小波, 等. 2017. 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例[J]. 矿床地质, 36(6): 1263−1288.

    Google Scholar

    [113] 赵龙贤, 代晶晶, 林彬, 等. 2023. 西藏甲玛3000m深钻蚀变矿物短波-热红外光谱特征[J]. 地质学报, 97(4): 1342−1359. doi: 10.3969/j.issn.0001-5717.2023.04.022

    CrossRef Google Scholar

    [114] 周振华, 毛景文. 2022. 大兴安岭南段锡多金属矿床成矿规律与矿床模型[J]. 地学前缘, 29(1): 176−199.

    Google Scholar

    [115] 周建波, 陈卓. 2023. 北方造山带东段聚合过程及其对东北亚三大构造域时空转换的启示[J]. 中国科学: 地球科学, 53(11): 2682−2686.

    Google Scholar

    [116] 祝新友, 张志辉, 付旭, 等. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 43(1): 188−208. doi: 10.12029/gc20160114

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(252) PDF downloads(55) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint