2025 Vol. 44, No. 6
Article Contents

LIU Shehu, SHI Yamin, GAO guangpu, ZHU Wei, XIE Tao, XU Hailong, WANG Zhaohui, LYU Du. 2025. Soil Water erosion status and its impact on the ecological environment in Yulin during coal exploitation over the recent 30 years based on the RUSLE model. Geological Bulletin of China, 44(6): 1048-1061. doi: 10.12097/gbc.2023.08.040
Citation: LIU Shehu, SHI Yamin, GAO guangpu, ZHU Wei, XIE Tao, XU Hailong, WANG Zhaohui, LYU Du. 2025. Soil Water erosion status and its impact on the ecological environment in Yulin during coal exploitation over the recent 30 years based on the RUSLE model. Geological Bulletin of China, 44(6): 1048-1061. doi: 10.12097/gbc.2023.08.040

Soil Water erosion status and its impact on the ecological environment in Yulin during coal exploitation over the recent 30 years based on the RUSLE model

    Fund Project: Supported by Scientific Research Project of Shaanbei Mining Company, Shaanxi Coal Chemical Group"Study on the Impact of Yulin Coal Development on Soil and Water Conservation" and Shaanxi Province 2021 Key R&D Program Project "Key Technology Research on High-Precision Remote Sensing Mapping of Vegetation Types in the Qinling Region Based on Remote Sensing Big Data" (No. 2021SF2-01)
More Information
  • Author Bio: LIU Shehu, born in 1965, male, senior engineer, engaged in coalfield geological exploration and remote sensing application research. E−mail: liushehu029@163.com
  • Objectives

    Yulin City, an important coal industry and chemical base in China, is also one of the regions with the most severe soil erosion in the middle and upper reaches of the Yellow River. Studying soil water erosion and its impacts on the ecological environment during coal development in Yulin City is crucial for promoting high−quality regional development.

    Methods

    This study uses multi−source data and the Revised Universal Soil Loss Equation (RUSLE) to estimate the amount of soil water erosion in Yulin City from 1990 to 2020, and analyzes its spatio−temporal variation characteristics and potential impacts on the ecological environment.

    Results

    The results show that the soil water erosion modulus in Yulin City has gradually decreased, with the erosion intensity shifting to lower grades. The soil water erosion modulus in coal development areas is lower and has a faster decline rate. Coal development has promoted the implementation of the "returning farmland to forest" policy and soil and water conservation measures by driving regional economic development, leading to significant reductions in the vegetation coverage factor (C) and soil and water conservation measure factor (P), an increase in vegetation coverage, and an overall improvement in the ecological environment.

    Conclusions

    The study reveals that coal development in this region has minimal negative impacts on soil and water conservation. Through reasonable ecological protection measures, a benign interaction between resource development and the ecological environment can be achieved, which is of important practical significance for ecological environmental protection and sustainable development in the city.

  • 加载中
  • [1] Beasley D B, Huggins L F, Monke E J. 1980. Answers: A model for watershed planning[J]. Transactions of the ASAE–American Society of Agricultural Engineers, 23(4): 938−944. doi: 10.13031/2013.34692

    CrossRef Google Scholar

    [2] Cai C F, Ding S W, Shi Z H, et al. 2000. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil Water Conservation, 14(2): 19−24(in Chinese with English abstract).

    Google Scholar

    [3] Cao W, Liu L L, Wu D. 2018. Soil erosion changes and driving factors in the Three−River Headwaters region[J]. Acta Prataculturae Sinica, 27(6): 10−22(in Chinese with English abstract).

    Google Scholar

    [4] Chen F, Li H B. 2021. Spatial−temporal variations of soil erosion in Southern Yunnan Mountainous Area using GlS and RUSLE: A case study in Yuanyang County, Yunnan Province, China[J]. Chinese Journal of Applied Ecology, 32(2): 629−637(in Chinese with English abstract).

    Google Scholar

    [5] Chen H. 2019. Spatial and temporal changes of soil erosion and its drivingfactors before and after the “Grain for Green” project in the Loess Plateau[D]. Doctoral Dissertation of Northwest A&F University of China(in Chinese with English abstract).

    Google Scholar

    [6] Chen J, Liao A P, Tong X H, et al. 2015. Global land covermapping at 30m resolution: A POK−based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7−27. doi: 10.1016/j.isprsjprs.2014.09.002

    CrossRef Google Scholar

    [7] De Roo A P J. 1996. The lisem project: An introduction[J]. Hydrological Prochydrological Processes, (10): 1021−1025.

    Google Scholar

    [8] Flanagan D C, Ascough J C, Nicks A D. 1995. Overview of the WEPP erosion prediction mode[J]. USCD–Water Erosion Prediction Project.

    Google Scholar

    [9] Fu S H, Liu B Y, Zhou Y G. 2015. Calculation tool of topographic factors[J]. Science of Soil and Water Conservation, 13(5): 105−110 (in Chinese with English abstract).

    Google Scholar

    [10] Guo S Q, Han L, Zhao Y H, et al. 2019. Temporal and spatial changes of soil erosion and landscape pattern in the Qinling area[J]. Chinese Journal of Ecology, 38(7): 2167(in Chinese with English abstract).

    Google Scholar

    [11] Hu Z Q, Li Y, Chen Y. 2020. The mechanism and key technology of the Yellow River sediment in ecological rehabilitation[J]. Journal of China University of Mining & Technology, 51(1): 1−15(in Chinese with English abstract).

    Google Scholar

    [12] Li B Y, Ren Z Y, Yi L. 2015. Dynamic change trend of soil erosion in Yulin City from 2001 to 2010[J]. Arid Zone Research, 32(5): 918−925(in Chinese with English abstract).

    Google Scholar

    [13] Li G Z, Fu S H, Liu B Y. 2012. Sampling program of water erosion inventory in the first national water resource survey[J]. Science of Soil and Water Conservation, 10(1): 77−81(in Chinese with English abstract).

    Google Scholar

    [14] Li T H, Zheng L N. 2012. Soil erosion changes in the Yanhe watershed from 2001 to 2010 based on RUSLE mode[J]. Journal of Natural Resources, 27(7): 1164−1175(in Chinese with English abstract).

    Google Scholar

    [15] Liu B Y, Nearing M A, Risse L M. 1994. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the ASAE, 37(6): 1835−1840. doi: 10.13031/2013.28273

    CrossRef Google Scholar

    [16] Liu B Y, Nearing M A, Shi P J, et al. 2000. Slope length effects on soil loss for steep slopes[J]. Soil Science Society of America Journal, 64: 1759−1763. doi: 10.2136/sssaj2000.6451759x

    CrossRef Google Scholar

    [17] Liu G B, Shang Z P, Yao W Y, et al. 2017. Ecological effects of ecological projects on the Loess Plateau[J]. Bulletin of the Chinese Academy of Sciences, 32: 11−19(in Chinese with English abstract).

    Google Scholar

    [18] Liu Y, Wei J L, Yue H, et al. 2020. Analysis on temporal and spatial characteristics and driving factors of soil erosion in Shendong mining area[J]. Science of Surveying and Mapping, 47(1): 142−153(in Chinese with English abstract).

    Google Scholar

    [19] Nachtergaele F O, Velthuizen, Verelst L, et al. 2012. Harmonized World Soil Database (version 1.2)[DS]. International Soil Reference and Information Centre.

    Google Scholar

    [20] Peng S, Ding Y, Liu W, et al. 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 11(4): 1931−1946. doi: 10.5194/essd-11-1931-2019

    CrossRef Google Scholar

    [21] Qin J X, Wang Z L. 2011. Research on predicting soil erosion in Conghua City based on GIS and RUSLE[J]. Pearl River, 32(2): 37−41(in Chinese with English abstract).

    Google Scholar

    [22] Tao H B, Wang W F. 2018. Analysis of nitrogen and phosphorus losses in soil erosion process based on GIS——Taking Dingxi City Anding District as an example[J]. Journal of Green Science and Technology, (24): 15−17(in Chinese with English abstract).

    Google Scholar

    [23] Wang B W, Yang Q K, Liu Z H, et al. 2007. Extraction of topographic factor values of the modified universal soil loss equation based on DEM and GIS[J]. Science of Soil and Water Conservation in China, 5(2): 18−23(in Chinese with English abstract).

    Google Scholar

    [24] Wang D H, Fang Y H, Li J L, et al. 2022. Analysis of precipitation characteristics and precipitation prediction in Yulin area[J]. Yellow River, 44(5): 30−34(in Chinese with English abstract).

    Google Scholar

    [25] Wang W Z, Jiao J Y. 1996. Qutantitative evaluation on factors influencing soil erosion in China[J]. Bulletin of Soil and Water Conservation, (5): 1−20(in Chinese with English abstract).

    Google Scholar

    [26] Wang Z Y, Chen X Y, Ma C S, et al. 2021. Changes in soil erosion and ecological service value before and after the conversion of farmland to forest in Yulin City, Northern Shaanxi[J]. Journal of Northwest Forestry University, 36(3): 59−67(in Chinese with English abstract).

    Google Scholar

    [27] Wei J M, Li C B, Wu L, et al. 2021. Study on soil erosion in Northwestern Sichuan and Southern Gansu (NSSG) based on USLE[J]. Journal of Soil and Water Conservation, 35(2): 31−37,46(in Chinese with English abstract).

    Google Scholar

    [28] Williams J R, Renard K G, Dyke P T. 1983. EPIC: A new method for assessing erosion's effect on soil productivity[J]. Journal of Soil & Water Conservation, 38(5): 381−383.

    Google Scholar

    [29] Wischmeier W H. 1971. A soil erodibility nomograph for farmland and construction sites[J]. Journal of Soil and Water Conservation, 26: 189−193.

    Google Scholar

    [30] Xu Y H, Li J Y, Ren C, et al. 2020. Dynamic evolution and prediction of soil erosion in Yulin City, Shaanxi Province[J]. Journal of Anhui Agricultural Sciences, 48(13): 63−69,77(in Chinese with English abstract).

    Google Scholar

    [31] Yang R, Li Y C. 2013. The study on the standards of ecoligical compensation for coal resources development in the north of Shaanxi—Taking Yulin as an example[J]. Journal of Xi'an Shiyou University (Social Science Edition), 22(2): 1−6(in Chinese with English abstract).

    Google Scholar

    [32] Yang Y K, Xiao P F, Feng X Z, et al. 2017. Accuracy assessment of seven global land cover datasets over China[J]. ISPRS Journal of Photogrammetry and Rmote Sensing, 125: 156−173. doi: 10.1016/j.isprsjprs.2017.01.016

    CrossRef Google Scholar

    [33] Zhang E W, Peng S Y, Feng H M. 2020. Sensitivity assessment of soil erosion and its spatial pattern evolution in Dianchi Lake Basin based on GIS and RUSLE[J]. Journal of Soil and Water Conservation, 34(2): 115−122 (in Chinese with English abstract).

    Google Scholar

    [34] Zhang K L, Cai Y M, Liu B Y, et al. 2001. Study on soil erodibility and its application in the Loess Plateau area[J]. Acta Ecologica Sinica, 21(10): 1687−1695(in Chinese with English abstract).

    Google Scholar

    [35] Zhang Z, Ren Z Y. 2011. Temporal and spatial differences and its trends in vegetation cover change over the Loess Plateau[J]. Resources Science, Resourves Science, 33(11): 2143–2149(in Chinese with English abstract).

    Google Scholar

    [36] Zhou L H, Wang P T, Cao R C. 2022. Analysis of driving factors of soil erosion and evaluation of ecological security in Yan'an City from 2000 to 2022[J]. Journal of Ecology and Rural Environment, 38(4): 512−520(in Chinese with English abstract).

    Google Scholar

    [37] Zhu Q M, Wang N, Liu J E, et al. 2023. Changes in soil water erosion and driving factors in the ecologically fragile area of northern Shaanxi − A case study of Yulin City[J]. Research of Soil and Water Conservation, 30(5): 41−51,60(in Chinese with English abstract).

    Google Scholar

    [38] Zou Y D, He L, Zhang X P, et al. 2021. Characteristics of land use structure change in Beiluo River Basin during 1970–2019 based on Google Erath engine[J]. Journal of Soil and Water Conservation, 41(6): 209−219(in Chinese with English abstract).

    Google Scholar

    [39] 蔡崇法, 丁树文, 史志华, 等. 2000. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, (2): 19−24. doi: 10.3321/j.issn:1009-2242.2000.02.005

    CrossRef Google Scholar

    [40] 曹巍, 刘璐璐, 吴丹. 2018. 三江源区土壤侵蚀变化及驱动因素分析[J]. 草业学报, 27(6): 10−22. doi: 10.11686/cyxb2017359

    CrossRef Google Scholar

    [41] 陈峰, 李红波. 2021. 基于GIS和RUSLE的滇南山区土壤侵蚀时空演变-以云南省元阳县为例[J]. 应用生态学报, 32(2): 629−637.

    Google Scholar

    [42] 陈浩. 2019. 黄土高原退耕还林前后流域土壤侵蚀时空变化及驱动因素研究[D]. 西北农林科技大学博士学位论文.

    Google Scholar

    [43] 符素华, 刘宝元, 周贵云, 等. 2015. 坡长坡度因子计算工具[J]. 中国水土保持科学, 13(5): 105−110. doi: 10.3969/j.issn.1672-3007.2015.05.016

    CrossRef Google Scholar

    [44] 郭思琪, 韩磊, 赵永华, 等. 2019. 秦岭地区土壤侵蚀时空变化及景观格局[J]. 生态学杂志, 38(7): 2167.

    Google Scholar

    [45] 胡振琪, 李勇, 陈洋. 2022. 黄河泥沙在生态修复中的作用机理与关键技术[J]. 中国矿业大学学报, 51(1): 1−15. doi: 10.3969/j.issn.1000-1964.2022.1.zgkydxxb202201001

    CrossRef Google Scholar

    [46] 李柏延, 任志远, 易浪. 2015. 2001—2010年榆林市土壤侵蚀动态变化趋势[J]. 干旱区研究, 32(5): 918−925.

    Google Scholar

    [47] 李天宏, 郑丽娜. 2012. 基于RUSLE模型的延河流域2001—2010年土壤侵蚀动态变化[J]. 自然资源学报, 27(7): 1164−1175. doi: 10.11849/zrzyxb.2012.07.008

    CrossRef Google Scholar

    [48] 李智广, 符素华, 刘宝元. 2012. 我国水力侵蚀抽样调查方法[J]. 中国水土保持科学, 10(1): 77−81. doi: 10.3969/j.issn.1672-3007.2012.01.013

    CrossRef Google Scholar

    [49] 刘国彬, 上官周平, 姚文艺, 等. 2017. 黄土高原生态工程的生态成效[J]. 中国科学院院刊, 32: 11−19.

    Google Scholar

    [50] 刘英, 魏嘉莉, 岳辉, 等. 2022. 神东矿区土壤侵蚀时空特征及驱动力分析[J]. 测绘科学, 47(1): 142−153.

    Google Scholar

    [51] 覃杰香, 王兆礼. 2011. 基于GIS和RUSLE的从化市土壤侵蚀量预测研究[J]. 人民珠江, 32(2): 37−41. doi: 10.3969/j.issn.1001-9235.2011.02.012

    CrossRef Google Scholar

    [52] 陶鸿斌, 汪文飞. 2018. 基于GIS分析土壤侵蚀过程中氮磷流失分布-以定西市安定区为例[J]. 绿色科技, (24): 15−17,19.

    Google Scholar

    [53] 汪邦稳, 杨勤科, 刘志红, 等. 2007. 基于DEM和GlS的修正通用土壤流失方程地形因子值的提取[J]. 中国水土保持科学, 5(2): 18−23. doi: 10.3969/j.issn.1672-3007.2007.02.004

    CrossRef Google Scholar

    [54] 王大浩, 方亚宏, 李金龙, 等. 2022. 榆林地区降水特征分析及降水量预测[J]. 人民黄河, 44(5): 30−34. doi: 10.3969/j.issn.1000-1379.2022.05.007

    CrossRef Google Scholar

    [55] 王万忠, 焦菊英. 1996. 中国的土壤侵蚀因子定量评价研究[J]. 水土保持通报, (5): 1−20.

    Google Scholar

    [56] 王泽宇, 陈旭阳, 马彩诗, 等. 2021. 陕北榆林市退耕还林前后土壤侵蚀及生态服务价值变化[J]. 西北林学院学报, 36(3): 59−67. doi: 10.3969/j.issn.1001-7461.2021.03.09

    CrossRef Google Scholar

    [57] 魏健美, 李常斌, 武磊, 等. 2021. 基于USLE的甘南川西北土壤侵蚀研究[J]. 水土保持学报, 35(2): 31−37,46.

    Google Scholar

    [58] 徐云环, 李景宜, 任冲, 等. 2020. 陕西省榆林市土壤侵蚀动态演变及预测[J]. 安徽农业科学, 48(13): 63−69,77. doi: 10.3969/j.issn.0517-6611.2020.13.019

    CrossRef Google Scholar

    [59] 杨嵘, 李颖超. 2013. 陕北煤炭资源开发生态补偿标准研究——以榆林市为例[J]. 西安石油大学学报(社会科学版), 22(2): 1−6.

    Google Scholar

    [60] 张翀, 任志远. 2011. 黄土高原地区植被覆盖变化的时空差异及未来趋势[J]. 资源科学, 33(11): 2143−2149.

    Google Scholar

    [61] 张恩伟, 彭双云, 冯华梅. 2020. 基于GIS和RUSLE的滇池流域土壤侵蚀敏感性评价及其空间格局演变[J]. 水土保持学报, 34(2): 115−122.

    Google Scholar

    [62] 周璐红, 王盼婷, 曹瑞超. 2022. 2000—2020年延安市土壤侵蚀驱动因素分析及生态安全评价[J]. 生态与农村环境学报, 38(4): 512−520.

    Google Scholar

    [63] 邹亚东, 何亮, 张晓萍, 等. 2021. 基于GEE数据平台的北洛河流域1970—2019年土地利用结构变化特征[J]. 水土保持通报, 41(6): 209−219. doi: 10.3969/j.issn.1000-288X.2021.6.stbctb202106028

    CrossRef Google Scholar

    [64] 张科利, 蔡永明, 刘宝元, 等. 2001. 黄土高原地区土壤可蚀性及其应用研究[J]. 生态学报, 21(10): 1687−1695. doi: 10.3321/j.issn:1000-0933.2001.10.018

    CrossRef Google Scholar

    [65] 中华人民共和国水利部. 2007. 土壤侵蚀分类分级标准SL190—2007[S]. 中华人民共和国水利部.

    Google Scholar

    [66] 朱启明, 王宁, 刘俊娥, 等. 2023. 陕北生态脆弱区土壤水蚀变化及驱动因子——以榆林市为例[J]. 水土保持研究, 30(5): 41−51,60.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(6)

Article Metrics

Article views(189) PDF downloads(46) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint