| Citation: | DU Shitao, YANG Shuguang, LI Ruiming, WANG Gang, LIAO Fangxing, SHAN Bin, ZHAO Ming, LIANG Peng, CHEN Fei, ZHANG Tete. 2025. Challenges and strategies for the exploration and development of coalbed methane technology in Xinjiang region. Geological Bulletin of China, 44(6): 1021-1032. doi: 10.12097/gbc.2023.11.031 | 
This paper aims to elucidate the constraints impeding the enhancement of coalbed methane reserves and production in the Xinjiang region, and to formulate targeted strategies to overcome these hurdles, thereby facilitating the timely achievement of the coalbed methane industry’s objectives during the "14th Five−Year Plan".
By reviewing the exploration and development conditions, current state, unresolved challenges, and achievements of coalbed methane during the "13th Five−Year Plan" in Xinjiang, alongside the development opportunities presented by policies, funding, and specialized institutions in the early to mid−period of the "14th Five−Year Plan",
it is believed that the misalignment in the exploration and development of thin coal seams and the utilization of coal and coalbed methane is a primary factor undermining capacity; complex geological structures present an objective constraint on efficient large−scale development in the region; inadequate attention to the comprehensive gas contribution of coal series in exploration limits single−well output; and a low degree of control over deep coalbed methane geological conditions is a direct factor restricting the increase in reserves and production.
Drawing on domestic and international coalbed methane development experiences, Xinjiang’s exploration and development achievements, and practical insights, four strategies are proposed: firstly, the integrated exploration and extraction of thin coal seams, shale gas, tight sandstone gas, and main thick coalbed methane layers to enhance single well utilization and productivity; secondly, through data integration and in−depth research, improving the adaptation of process technology to special geological conditions to achieve engineering−geology integration and deep coalbed methane development; thirdly, creatively leveraging flexible frameworks for the low−cost enhancement of old (depleted) wells; and fourthly, adopting the concepts of "upper coal lower gas" and "gas before coal" to foster coordinated development of gas management and coalbed methane extraction. This comprehensive strategy aims to directly boost production, solve technical constraints on coalbed methane wells, conserve costs, and scientifically plan energy use, thereby swiftly revitalizing the coalbed methane industry in Xinjiang.
 
		                | [1] | Cheng J P, Wang X L, Ni Y Y, et al. 2019. Genetic type and source of natural gas in the southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 46(3): 461−473(in Chinese with English abstract). | 
| [2] | China United Coalbed Methane Co., LTD. 2023. Investigation report of 7 coalbed methane cases in Xinjiang [R] (in Chinese). | 
| [3] | Du S T, An Q, Chang Z T, et al. 2023. The exploration and development of coalbed methane in Xinjiang are entering a new stage[J]. Unconventional Oil & Gas, 10(6): 1−7(in Chinese with English abstract). | 
| [4] | Du S T, Liao Q Z, Huang C S, et al. 2022. Geological characteristics of Jurassic shale gas and identification of potential exploration areas in Junggar Basin[J]. Unconventional Oil & Gas, 9(5): 43−50(in Chinese with English abstract). | 
| [5] | Du S T, Zhao M, Liao F X, et al. 2024. Thinking of CBM exploration with high dip angle and “open air” dual characteristics: A case of Xinjiang CBM reservoir[J]. Unconventional Oil & Gas, 11(2): 18(in Chinese with English abstract). | 
| [6] | Du S T, Tian J J, Li Z T, et al. 2018. Permian shale gas reservoir characterization and favorable area identification in Junggar Basin[J]. Special Oil and Gas Reservoirs, 25(2): 49−55,69(in Chinese with English abstract). | 
| [7] | Fan S, Lu Y H, Li L, et al. 2022. Geochemical characteristics, distribution and petroleum geological significance of Triassic-Jurassic source rocks in the Tugeerming and surrounding areas of Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 33(12): 2074−2086(in Chinese with English abstract). | 
| [8] | Guo X J, Zhi D M, Mao X J, et al. 2021. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration, 26(6): 38−49(in Chinese with English abstract). | 
| [9] | Gong D Y, Zhao C Y, He W J, et al. 2022. Genetic types and exploration potential of natural gas at northwestern margin of Junggar Basin[J]. Oil & Gas Geology, 43(1): 161−174(in Chinese with English abstract). | 
| [10] | Huo C. 2020. Research on distribution characteristics and exploration and development layout of coal resources in Xinjiang[J]. China Coal, 46(10): 16−21(in Chinese with English abstract). | 
| [11] | Jiang S H, Shi S Z, Zhao K, et al. 2023. Exploration prospect and development direction of deep coal and coalbed methane[J]. Science and Technology Review, 41(7): 106−113(in Chinese with English abstract). | 
| [12] | Kang L C, Wen S M, Li S X, et al. 2022. Accumulation mechanism and exploration breakthrough of low-rank CBM in the Tuha-Santanghu Basin[J]. Natural Gas Industry, 42(6): 33−42(in Chinese with English abstract). | 
| [13] | Li E T, Jin J, Wang J, et al. 2022. Geochemical characteristics and genesis of mid-to-shallow natural gas on the periphery of Shawan Sag, Junggar Basin[J]. Oil & Gas Geology, 43(1): 175−185(in Chinese with English abstract). | 
| [14] | Li R M, Zhou Z X. 2022. Development status and thoughts on coalbed methane industry in Xinjiang[J]. Coal Geology & Exploration, 50(3): 23−29(in Chinese with English abstract). | 
| [15] | Liu D M, Jia Q F, Cai Y D. 2022. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology, 50(1): 196−203(in Chinese with English abstract). | 
| [16] | Qin Y, Shen J, Shi R. 2022. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society, 47(1): 371−387(in Chinese with English abstract). | 
| [17] | Shi X. 2000. Geological and geochemical characteristics of coal-derived hydrocarbons in the Kuqa Depression of the Tarim Basin[D]. Doctoral Dissertation of Petroleum Exploration and Development Research Institute: 42–58(in Chinese with English abstract). | 
| [18] | Tang D Z, Yang S G, Tang S L, et al. 2021. Advance on exploration-development and geological research of coalbed methane in the Junggar Basin[J]. Journal of China Coal Society, 46(8): 2412−2425(in Chinese with English abstract). | 
| [19] | Tu Z M, Wang X G, Che Y Q, et al. 2021. Controlling factors on CBM accumulation in low rank coal in Santanghu Basin[J]. Xinjiang Petroleum Geology, 42(6): 683−689(in Chinese with English abstract). | 
| [20] | Wang E Y, Zhang G R, Zhang C L, et al. 2022. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Joumal of China Coal Society, 47(1): 297−322(in Chinese with English abstract). | 
| [21] | Wang E Y, Li Z H, Li B L, et al. 2022. Big data monitoring and early warning cloud platform for coal mine gasdisaster risk and potential danger and its application[J]. Coal Science and Technology, 50(1): 142−150(in Chinese with English abstract). | 
| [22] | Wu B, An Q, Du S T. 2020. Adaptability analysis and well type optimization of coalbed methane production wells in Kubai coalfield[J]. Unconventional Oil & Gas, 7(2): 94−102(in Chinese with English abstract). | 
| [23] | Xinjiang Coal Geology Bureau. 2010. Evaluation report of Xinjiang coal resources potential[R](in Chinese). | 
| [24] | Xinjiang Coal Geology Bureau. 2017. Exploration of coalbed methane resources in Kubai coalfield, Xinjiang[R](in Chinese). | 
| [25] | Xu F Y, Yan X, Lin Z P, et al. 2022. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration, 50(3): 1−14(in Chinese with English abstract). | 
| [26] | Yang L W, Cui Y H, Wang G L. 2021. Analysis of technical and regulational aspects affecting China CBM progresses[J]. Journal of China Coal Society, 46(8): 2400−2411(in Chinese with English abstract). | 
| [27] | Zhang B, Li Y, Jia Y T, et al. 2023. Characteristics and commingled natural gas production breakthrough of thin and ultra-thin coal beds in the Panhe Block of the Qinshui Basin[J]. Natural Gas Industry, 43(10): 83−93(in Chinese with English abstract). | 
| [28] | Zhang D Y, Zhu J, Zhao X L, et al. 2018. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society, 43(6): 1598−1604(in Chinese with English abstract). | 
| [29] | Zhang Y, Zhu G H, Zheng Q G, et al. 2022. Distribution characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas, 9(4): 1−8,45(in Chinese with English abstract). | 
| [30] | Zou C N, Yang Z, Huang S P, et al. 2019. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 46(3): 433−442(in Chinese with English abstract). | 
| [31] | 陈建平, 王绪龙, 倪云燕, 等. 2019. 准噶尔盆地南缘天然气成因类型与气源[J]. 石油勘探与开发, 46(3): 461−473. | 
| [32] | 陈尚斌, 侯晓伟, 屈晓荣, 等. 2023. 煤系气叠置含气系统与天然气成藏特征——以沁水盆地榆社—武乡示范区为例[J]. 天然气工业, 43(5): 12−22. | 
| [33] | 杜世涛, 廖清志, 黄传松, 等. 2022. 准噶尔盆地侏罗系页岩气地质特征及勘探潜力区识别[J]. 非常规油气, 9(5): 43−50. | 
| [34] | 杜世涛, 田继军, 李沼鹈, 等. 2018. 准噶尔盆地二叠系页岩气储层特征及潜力区优选[J]. 特种油气藏, 25(2): 49−55,69. | 
| [35] | 杜世涛, 安庆, 常智泰, 等. 2023. 新疆煤层气勘探开发迈向新阶段[J]. 非常规油气, 10(6): 1−7. | 
| [36] | 杜世涛, 赵明, 廖方兴, 等. 2024. 高倾角和“通天”双重特征煤层气勘探思考——以新疆煤层气储层为例[J]. 非常规油气, 11(2): 1−8. | 
| [37] | 凡闪, 卢玉红, 李玲, 等. 2022. 塔里木盆地库车坳陷吐格尔明及周缘地区三叠系—侏罗系烃源岩地球化学特征、分布规律与油气地质意义[J]. 天然气地球科学, 33(12): 2074−2086. | 
| [38] | 龚德瑜, 赵长永, 何文军, 等. 2022. 准噶尔盆地西北缘天然气成因来源及勘探潜力[J]. 石油与天然气地质, 43(1): 161−174. | 
| [39] | 郭绪杰, 支东明, 毛新军, 等. 2021. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探, 26(6): 38−49. | 
| [40] | 霍超. 2020. 新疆煤炭资源分布特征与勘查开发布局研究[J]. 中国煤炭, 46(10): 16−21. doi: 10.3969/j.issn.1006-530X.2020.10.002 | 
| [41] | 蒋曙鸿, 师素珍, 赵康, 等. 2023. 深部煤及煤层气勘探前景及发展方向[J]. 科技导报, 41(7): 106−113. | 
| [42] | 匡立春, 温声明, 李树新, 等. 2022. 低煤阶煤层气成藏机制与勘探突破——以吐哈−三塘湖盆地为例[J]. 天然气工业, 42(6): 33−42. | 
| [43] | 李二庭, 靳军, 王剑, 等. 2022. 准噶尔盆地沙湾凹陷周缘中、浅层天然气地球化学特征及成因[J]. 石油与天然气地质, 43(1): 175−185. | 
| [44] | 李瑞明, 周梓欣. 2022. 新疆煤层气产业发展现状与思考[J]. 煤田地质与勘探, 50(3): 23−29. | 
| [45] | 刘大锰, 贾奇锋, 蔡益栋. 2022. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术, 50(1): 196−203. | 
| [46] | 秦勇, 申建, 史锐. 2022. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 47(1): 371−387. | 
| [47] | 石昕. 2000. 塔里木盆地库车坳陷煤成烃地质地球化学特征[D]. 石油勘探开发科学研究院博士学位论文: 42-58. | 
| [48] | 汤达祯, 杨曙光, 唐淑玲, 等. 2021. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报, 46(8): 2412−2425. | 
| [49] | 涂志民, 王兴刚, 车延前, 等. 2021. 三塘湖盆地低阶煤煤层气成藏主控因素[J]. 新疆石油地质, 42(6): 683−689. | 
| [50] | 王恩元, 李忠辉, 李保林, 等. 2022. 煤矿瓦斯灾害风险隐患大数据监测预警云平台与应用[J]. 煤炭科学技术, 50(1): 142−150. | 
| [51] | 王恩元, 张国锐, 张超林, 等. 2022. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 47(1): 297−322. | 
| [52] | 吴斌, 安庆, 杜世涛. 2020. 库拜煤田煤层气生产井适应性分析及井型优选[J]. 非常规油气, 7(2): 94−102. doi: 10.3969/j.issn.2095-8471.2020.02.014 | 
| [53] | 新疆煤田地质局. 2010. 新疆煤炭资源潜力评价报告[R]. | 
| [54] | 新疆煤田地质局. 2017. 新疆库拜煤田煤层气资源勘查[R]. | 
| [55] | 徐凤银, 闫霞, 林振盘, 等. 2022. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 50(3): 1−14. | 
| [56] | 杨陆武, 崔玉环, 王国玲. 2021. 影响中国煤层气产业发展的技术和非技术要素分析[J]. 煤炭学报, 46(8): 2400−2411. | 
| [57] | 张兵, 李勇, 贾雨婷, 等. 2023. 薄—超薄煤层特征及天然气合层开发突破——以沁水盆地潘河区块为例[J]. 天然气工业, 43(10): 83−93. | 
| [58] | 张道勇, 朱杰, 赵先良, 等. 2018. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报, 43(6): 1598−1604. | 
| [59] | 张懿, 朱光辉, 郑求根, 等. 2022. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气, 9(4): 1−8,45. | 
| [60] | 中联煤层气公司. 2023. 新疆7宗煤层气调研报告[R]. | 
| [61] | 邹才能, 杨智, 黄士鹏, 等. 2019. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发, 46(3): 433−442. | 
 
			            
			            
			            
			        Distribution of CBM exploration and development zones in Xinjiang
CBM resources of China (a) and Xinjiang (b)
Cross sections of coal seam occurrence in the Tabei coal belt
Coal production (a) and coal-mine gas extraction and utilization (b) in Xinjiang over the years
Illustrates the comprehensive development strategy for coalbed methane in Xinjiang
Technological breakthrough ideas and methods
Schematic diagram of coalbed methane depleted well reconstruction