| Citation: | SHAO Weiwei, YANG Zhihua, WU Ruian, GUO Changbao, SHI Honglian, YU Pengfei, MAI Ximao. 2025. Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity. Geological Bulletin of China, 44(6): 1076-1086. doi: 10.12097/gbc.2023.11.034 |
This paper optimizes landslide samples based on landslide activity to improve the accuracy of landslide susceptibility evaluation.
The terrain and landforms in the upper of Jinsha River are complex, with strong tectonic activity and the developed landslide disasters. The Baiyu−Batang section of the upper Jinsha River is selected as the key research area, and remote sensing interpretation, InSAR deformation detection, and field investigation techniques are used to identify and analyze landslide activity. All landslides were divided into two datasets: A (active landslides) and B (active landslides and inactive landslides). Eight factors, such as elevation, slope angle, slope direction, engineering geological units, distance to fault, seismic peak ground acceleration, distance to river and NDVI, were selected to complete the landslide susceptibility evaluation by weighted information model.
The results show that the AUC based on A and B datasets are 0.855 and 0.810, respectively, indicating that satisfied landslide susceptibility results have been achieved. The very high and high landslide susceptibility is mainly distributed along the Jinsha River and Jiangqu River, and show an obvious band distribution trend along water systems. The middle landslide susceptibility is mainly distributed in the areas between the longitudinal valleys, and the low landslide susceptibility is mainly distributed in flat areas.
The accuracy of landslide susceptibility based on A dataset is higher than that of B dataset, and the identification ability of very high and high landslide susceptibility areas is relatively improved. So, landslide activity can effectively improve the landslide susceptibility accuracy, and is an important factor to be considered in the landslide susceptibility evaluation model. The proposed study ideas and methods provide an important reference for promoting landslide susceptibility evaluation in alpine gorge areas.
| [1] | Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibilty mapping using GIS−based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan[J]. Landslides, 1(1): 73−81. doi: 10.1007/s10346-003-0006-9 |
| [2] | Brabb E E. 1985. Innovative approaches to landslide hazard and risk mapping[C]//International Landslide Symposium Proceedings, Japan: 17−22. |
| [3] | Chen J P, Li H Z. 2016. Genetic mechanism and disasters features of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River[J]. Journal of Jilin University(Earth Science Edition), 46(4): 1153−1167(in Chinese with English abstract). |
| [4] | Chen J, Zhou W, Cui Z J, et al. 2018. Formation process of a large paleolandslide−dammed lake at Xuelongnang in the upper Jinsha River, SE Xizang Plateau: constraints from OSL and 14C dating[J]. Landslides, 15(12): 2399−2412. doi: 10.1007/s10346-018-1056-3 |
| [5] | Fan X M, Xu Q. 2019. Successive landsliding and damming of the Jinsha River in eastern Xizang, China: Prime investigation, early warning, and emergency response[J]. Landslides, 16(5): 1003−1020. doi: 10.1007/s10346-019-01159-x |
| [6] | Guo C B, Zhang Y S. 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Xizang Plateau, China[J]. Geomorphology, 248(Nova.1): 93−110. |
| [7] | Huang F M, Yin K L, Jiang S H, et al. 2018. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156−167(in Chinese with English abstract). |
| [8] | Huang R Q. 2007. Large−scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433−454(in Chinese with English abstract). |
| [9] | Lan H X, Wang L J, Zhou C H. 2002. Study on GIS−aided model for analysis of landslide hazard[J]. Journal of Engineering Geology, 10(4): 421−427(in Chinese with English abstract). |
| [10] | Lee S W, Kim G, Yune C Y, et al. 2013. Development of landslide−risk assessment model for mountainous regions in Eastern Korea[J]. Disaster Advances, 6(6): 70−79. |
| [11] | Li L P, Lan H X, Guo C B, et al. 2017. Geohazard susceptibility assessment along the Sichuan−Xizang railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 31(5): 911−929(in Chinese with English abstract). |
| [12] | Liu C Z. 2014. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 60(4): 858−868(in Chinese with English abstract). |
| [13] | Mei S Y, Chen S S, Zhong Q M, et al. 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching[J]. Landslides, 19(12): 2925−2949. doi: 10.1007/s10346-022-01952-1 |
| [14] | Ouyang C J, An H C, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China[J]. Landslides, 16(7): 1397−1414. doi: 10.1007/s10346-019-01177-9 |
| [15] | Peng J B, Ma R Y, Lu Q Z, et al. 2004. Geological hazards effects of uplift of qinghai−Xizang plateau[J]. Advance in Earth Sciences, 19(3): 457−466(in Chinese with English abstract). |
| [16] | Regmi A D, Devkota K C, Yoshida K, et al. 2014. Application of frequency ratio, statistical index, and weights−of−evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya[J]. Arabian Journal of Geosciences, 7(2): 725−742. doi: 10.1007/s12517-012-0807-z |
| [17] | Wang S J. 2002. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 10(2): 115−117(in Chinese with English abstract). |
| [18] | Wu R A, Ma H S, Zhang J C, et al. 2021. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Ggology, 48(5): 120−128(in Chinese with English abstract). |
| [19] | Wu S R, Shi J S, Zhang C S, et al. 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995−1005(in Chinese with English abstract). |
| [20] | Xu C, Dai F C, Yao X, et al. 2009. GIS−based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 28(S2): 3978−3985(in Chinese with English abstract). |
| [21] | Xu C, Xu X W, Lee Y H, et al. 2012. The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling[J]. Environmental Earth Sciences, 66(6): 1603−1616. doi: 10.1007/s12665-012-1624-0 |
| [22] | Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3[J]. Journal of Engineering Geology, 26(6): 1534−1551(in Chinese with English abstract). |
| [23] | Xu Z M. 2011. Deposits of zhaizicun landslide−dammed lake along Jinsha River and its implication for the genesis of Xigeda formation[J]. Geological Review, 57(5): 675−686(in Chinese with English abstract). |
| [24] | Xue Q, Zhang M X, Li L. 2015. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an[J]. Geological Bulletin of China, 34(11): 2108−2115(in Chinese with English abstract). |
| [25] | Yang Z H, Guo C B, Wu R A, et al. 2024. Regional engineering geological condition evaluation in the Sichuan−Xizang traffic corridor[J]. Geological Bulletin of China, 43(9): 1650−1662(in Chinese with English abstract). |
| [26] | Yang Z H, Lan H X, Gao X, et al. 2015. Urgent landslide susceptibility assessment in the 2013 Lushan earthquake−mpacted area, Sichuan Province, China[J]. Natural Hazards, 75(3): 2467−2487. doi: 10.1007/s11069-014-1441-8 |
| [27] | Yang Z H, Zhang Y S, Guo C B, et al. 2018. Sensitivity analysis on causative factors of geohazards in eastern margin of Xizang Plateau[J]. Journal of Engineering Geology, 26(3): 673−683(in Chinese with English abstract). |
| [28] | Yao X, Tham L G, Dai F C. 2008. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 101(4): 572−582. doi: 10.1016/j.geomorph.2008.02.011 |
| [29] | Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Science. 61(4): 821−836. |
| [30] | Yin K L, Yan T Z. 1987. Distribution regularity of landslides and prediction of slope instability nearby Xunyang, Han River Valley[J]. Earth Science, 12(6): 631−638(in Chinese with English abstract). |
| [31] | Zhang L, Xiao T, He J, et al. 2019. Erosion−based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018[J]. Landslides, 16(10): 1965−1979. doi: 10.1007/s10346-019-01247-y |
| [32] | Zhang Y S, Guo C B, Yao X, et al. 2016. Research on the geohazard effect of active fault on the eastern margin of the Xizang Plateau[J]. Acta Geoscientica Sinica, 37(3): 277−286(in Chinese with English abstract). |
| [33] | 陈剑平, 李会中. 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理[J]. 吉林大学学报(地球科学版), 46(4): 1153−1167. |
| [34] | 黄发明, 殷坤龙, 蒋水华, 等. 2018. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 37(1): 156−167. |
| [35] | 黄润秋. 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433−454. |
| [36] | 兰恒星, 王苓涓, 周成虎. 2002. 地理信息系统支持下的滑坡灾害分析模型研究[J]. 工程地质学报, 10(4): 421−427. |
| [37] | 李郎平, 兰恒星, 郭长宝, 等. 2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 31(5): 911−929. doi: 10.3969/j.issn.1000-8527.2017.05.004 |
| [38] | 刘传正. 2014. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 60(4): 858−868. |
| [39] | 彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457−466. |
| [40] | 王思敬. 2002. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 10(2): 115−117. |
| [41] | 吴瑞安, 马海善, 张俊才, 等. 2021. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 48(5): 120−128. |
| [42] | 吴树仁, 石菊松, 张春山, 等. 2009. 地质灾害风险评估技术指南初论[J]. 地质通报, 28(8): 995−1005. |
| [43] | 徐则民. 2011. 金沙江寨子村滑坡坝堰塞湖沉积及其对昔格达组地层成因的启示[J]. 地质论评, 57(5): 675−686. |
| [44] | 许冲, 戴福初, 姚鑫, 等. 2009. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 28(S2): 3978−3985. |
| [45] | 许强, 郑光, 李为乐, 等. 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 26(6): 1534−1551. |
| [46] | 薛强, 张茂省, 李林. 2015. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 34(11): 2108−2115. |
| [47] | 杨志华, 张永双, 郭长宝, 等. 2018. 青藏高原东缘地质灾害影响因子敏感性分析[J]. 工程地质学报, 26(3): 673−683. |
| [48] | 杨志华, 郭长宝, 吴瑞安, 等. 2024. 川西藏东交通廊道区域工程地质条件评价[J]. 地质通报, 43(9): 1650−1662. |
| [49] | 殷坤龙, 晏同珍. 1987. 汉江河谷旬阳段区域滑坡规律及斜坡不稳定性预测[J]. 地球科学, 12(6): 631−638. |
| [50] | 张永双, 郭长宝, 姚鑫, 等. 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277−286. |
Geological background in the Baiyu−Batang section of upper Jinsha River
Idea of landslide susceptibility evaluation considering landslide activity
Landslide distribution in the Baiyu−Batang section of upper Jinsha River
Typical active landslides in the upper Jinsha River
Influencing factors of landslide development
ROC curve of landslide susceptibility evaluation results
Landslide susceptibility distribution in the Baiyu−Batang section of upper Jinsha River