2025 Vol. 44, No. 6
Article Contents

SHAO Weiwei, YANG Zhihua, WU Ruian, GUO Changbao, SHI Honglian, YU Pengfei, MAI Ximao. 2025. Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity. Geological Bulletin of China, 44(6): 1076-1086. doi: 10.12097/gbc.2023.11.034
Citation: SHAO Weiwei, YANG Zhihua, WU Ruian, GUO Changbao, SHI Honglian, YU Pengfei, MAI Ximao. 2025. Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity. Geological Bulletin of China, 44(6): 1076-1086. doi: 10.12097/gbc.2023.11.034

Landslide susceptibility evaluation in the Baiyu-Batang section of upper Jinsha River considering landslide activity

    Fund Project: Supported by the Opening Foundation of the State Key Laboratory of Resources and Environmental Information System, National Natural Science Foundation of China (No. 42277180), and China Geological Survey project (No. DD20221816)
More Information
  • Author Bio: SHAO Weiwei, male, born in 1997, master's degree, mainly engaged in geological hazard assessment; E−mail: sww97222@163.com
  • Corresponding author: YANG Zhihua, male, born in 1982, Ph.D., associate researcher, mainly engaged in geological hazard assessment; E−mail: yangzh99@163.com 
  • Objective

    This paper optimizes landslide samples based on landslide activity to improve the accuracy of landslide susceptibility evaluation.

    Methods

    The terrain and landforms in the upper of Jinsha River are complex, with strong tectonic activity and the developed landslide disasters. The Baiyu−Batang section of the upper Jinsha River is selected as the key research area, and remote sensing interpretation, InSAR deformation detection, and field investigation techniques are used to identify and analyze landslide activity. All landslides were divided into two datasets: A (active landslides) and B (active landslides and inactive landslides). Eight factors, such as elevation, slope angle, slope direction, engineering geological units, distance to fault, seismic peak ground acceleration, distance to river and NDVI, were selected to complete the landslide susceptibility evaluation by weighted information model.

    Results

    The results show that the AUC based on A and B datasets are 0.855 and 0.810, respectively, indicating that satisfied landslide susceptibility results have been achieved. The very high and high landslide susceptibility is mainly distributed along the Jinsha River and Jiangqu River, and show an obvious band distribution trend along water systems. The middle landslide susceptibility is mainly distributed in the areas between the longitudinal valleys, and the low landslide susceptibility is mainly distributed in flat areas.

    Conclusions

    The accuracy of landslide susceptibility based on A dataset is higher than that of B dataset, and the identification ability of very high and high landslide susceptibility areas is relatively improved. So, landslide activity can effectively improve the landslide susceptibility accuracy, and is an important factor to be considered in the landslide susceptibility evaluation model. The proposed study ideas and methods provide an important reference for promoting landslide susceptibility evaluation in alpine gorge areas.

  • 加载中
  • [1] Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibilty mapping using GIS−based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan[J]. Landslides, 1(1): 73−81. doi: 10.1007/s10346-003-0006-9

    CrossRef Google Scholar

    [2] Brabb E E. 1985. Innovative approaches to landslide hazard and risk mapping[C]//International Landslide Symposium Proceedings, Japan: 17−22.

    Google Scholar

    [3] Chen J P, Li H Z. 2016. Genetic mechanism and disasters features of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River[J]. Journal of Jilin University(Earth Science Edition), 46(4): 1153−1167(in Chinese with English abstract).

    Google Scholar

    [4] Chen J, Zhou W, Cui Z J, et al. 2018. Formation process of a large paleolandslide−dammed lake at Xuelongnang in the upper Jinsha River, SE Xizang Plateau: constraints from OSL and 14C dating[J]. Landslides, 15(12): 2399−2412. doi: 10.1007/s10346-018-1056-3

    CrossRef Google Scholar

    [5] Fan X M, Xu Q. 2019. Successive landsliding and damming of the Jinsha River in eastern Xizang, China: Prime investigation, early warning, and emergency response[J]. Landslides, 16(5): 1003−1020. doi: 10.1007/s10346-019-01159-x

    CrossRef Google Scholar

    [6] Guo C B, Zhang Y S. 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Xizang Plateau, China[J]. Geomorphology, 248(Nova.1): 93−110.

    Google Scholar

    [7] Huang F M, Yin K L, Jiang S H, et al. 2018. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156−167(in Chinese with English abstract).

    Google Scholar

    [8] Huang R Q. 2007. Large−scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433−454(in Chinese with English abstract).

    Google Scholar

    [9] Lan H X, Wang L J, Zhou C H. 2002. Study on GIS−aided model for analysis of landslide hazard[J]. Journal of Engineering Geology, 10(4): 421−427(in Chinese with English abstract).

    Google Scholar

    [10] Lee S W, Kim G, Yune C Y, et al. 2013. Development of landslide−risk assessment model for mountainous regions in Eastern Korea[J]. Disaster Advances, 6(6): 70−79.

    Google Scholar

    [11] Li L P, Lan H X, Guo C B, et al. 2017. Geohazard susceptibility assessment along the Sichuan−Xizang railway and its adjacent area using an improved frequency ratio method[J]. Geoscience, 31(5): 911−929(in Chinese with English abstract).

    Google Scholar

    [12] Liu C Z. 2014. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 60(4): 858−868(in Chinese with English abstract).

    Google Scholar

    [13] Mei S Y, Chen S S, Zhong Q M, et al. 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching[J]. Landslides, 19(12): 2925−2949. doi: 10.1007/s10346-022-01952-1

    CrossRef Google Scholar

    [14] Ouyang C J, An H C, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China[J]. Landslides, 16(7): 1397−1414. doi: 10.1007/s10346-019-01177-9

    CrossRef Google Scholar

    [15] Peng J B, Ma R Y, Lu Q Z, et al. 2004. Geological hazards effects of uplift of qinghai−Xizang plateau[J]. Advance in Earth Sciences, 19(3): 457−466(in Chinese with English abstract).

    Google Scholar

    [16] Regmi A D, Devkota K C, Yoshida K, et al. 2014. Application of frequency ratio, statistical index, and weights−of−evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya[J]. Arabian Journal of Geosciences, 7(2): 725−742. doi: 10.1007/s12517-012-0807-z

    CrossRef Google Scholar

    [17] Wang S J. 2002. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, 10(2): 115−117(in Chinese with English abstract).

    Google Scholar

    [18] Wu R A, Ma H S, Zhang J C, et al. 2021. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Ggology, 48(5): 120−128(in Chinese with English abstract).

    Google Scholar

    [19] Wu S R, Shi J S, Zhang C S, et al. 2009. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China, 28(8): 995−1005(in Chinese with English abstract).

    Google Scholar

    [20] Xu C, Dai F C, Yao X, et al. 2009. GIS−based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering, 28(S2): 3978−3985(in Chinese with English abstract).

    Google Scholar

    [21] Xu C, Xu X W, Lee Y H, et al. 2012. The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling[J]. Environmental Earth Sciences, 66(6): 1603−1616. doi: 10.1007/s12665-012-1624-0

    CrossRef Google Scholar

    [22] Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige village on Octorber 11 and November 3[J]. Journal of Engineering Geology, 26(6): 1534−1551(in Chinese with English abstract).

    Google Scholar

    [23] Xu Z M. 2011. Deposits of zhaizicun landslide−dammed lake along Jinsha River and its implication for the genesis of Xigeda formation[J]. Geological Review, 57(5): 675−686(in Chinese with English abstract).

    Google Scholar

    [24] Xue Q, Zhang M X, Li L. 2015. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an[J]. Geological Bulletin of China, 34(11): 2108−2115(in Chinese with English abstract).

    Google Scholar

    [25] Yang Z H, Guo C B, Wu R A, et al. 2024. Regional engineering geological condition evaluation in the Sichuan−Xizang traffic corridor[J]. Geological Bulletin of China, 43(9): 1650−1662(in Chinese with English abstract).

    Google Scholar

    [26] Yang Z H, Lan H X, Gao X, et al. 2015. Urgent landslide susceptibility assessment in the 2013 Lushan earthquake−mpacted area, Sichuan Province, China[J]. Natural Hazards, 75(3): 2467−2487. doi: 10.1007/s11069-014-1441-8

    CrossRef Google Scholar

    [27] Yang Z H, Zhang Y S, Guo C B, et al. 2018. Sensitivity analysis on causative factors of geohazards in eastern margin of Xizang Plateau[J]. Journal of Engineering Geology, 26(3): 673−683(in Chinese with English abstract).

    Google Scholar

    [28] Yao X, Tham L G, Dai F C. 2008. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 101(4): 572−582. doi: 10.1016/j.geomorph.2008.02.011

    CrossRef Google Scholar

    [29] Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Science. 61(4): 821−836.

    Google Scholar

    [30] Yin K L, Yan T Z. 1987. Distribution regularity of landslides and prediction of slope instability nearby Xunyang, Han River Valley[J]. Earth Science, 12(6): 631−638(in Chinese with English abstract).

    Google Scholar

    [31] Zhang L, Xiao T, He J, et al. 2019. Erosion−based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018[J]. Landslides, 16(10): 1965−1979. doi: 10.1007/s10346-019-01247-y

    CrossRef Google Scholar

    [32] Zhang Y S, Guo C B, Yao X, et al. 2016. Research on the geohazard effect of active fault on the eastern margin of the Xizang Plateau[J]. Acta Geoscientica Sinica, 37(3): 277−286(in Chinese with English abstract).

    Google Scholar

    [33] 陈剑平, 李会中. 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理[J]. 吉林大学学报(地球科学版), 46(4): 1153−1167.

    Google Scholar

    [34] 黄发明, 殷坤龙, 蒋水华, 等. 2018. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 37(1): 156−167.

    Google Scholar

    [35] 黄润秋. 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433−454.

    Google Scholar

    [36] 兰恒星, 王苓涓, 周成虎. 2002. 地理信息系统支持下的滑坡灾害分析模型研究[J]. 工程地质学报, 10(4): 421−427.

    Google Scholar

    [37] 李郎平, 兰恒星, 郭长宝, 等. 2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 31(5): 911−929. doi: 10.3969/j.issn.1000-8527.2017.05.004

    CrossRef Google Scholar

    [38] 刘传正. 2014. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 60(4): 858−868.

    Google Scholar

    [39] 彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457−466.

    Google Scholar

    [40] 王思敬. 2002. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, 10(2): 115−117.

    Google Scholar

    [41] 吴瑞安, 马海善, 张俊才, 等. 2021. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 48(5): 120−128.

    Google Scholar

    [42] 吴树仁, 石菊松, 张春山, 等. 2009. 地质灾害风险评估技术指南初论[J]. 地质通报, 28(8): 995−1005.

    Google Scholar

    [43] 徐则民. 2011. 金沙江寨子村滑坡坝堰塞湖沉积及其对昔格达组地层成因的启示[J]. 地质论评, 57(5): 675−686.

    Google Scholar

    [44] 许冲, 戴福初, 姚鑫, 等. 2009. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报, 28(S2): 3978−3985.

    Google Scholar

    [45] 许强, 郑光, 李为乐, 等. 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 26(6): 1534−1551.

    Google Scholar

    [46] 薛强, 张茂省, 李林. 2015. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 34(11): 2108−2115.

    Google Scholar

    [47] 杨志华, 张永双, 郭长宝, 等. 2018. 青藏高原东缘地质灾害影响因子敏感性分析[J]. 工程地质学报, 26(3): 673−683.

    Google Scholar

    [48] 杨志华, 郭长宝, 吴瑞安, 等. 2024. 川西藏东交通廊道区域工程地质条件评价[J]. 地质通报, 43(9): 1650−1662.

    Google Scholar

    [49] 殷坤龙, 晏同珍. 1987. 汉江河谷旬阳段区域滑坡规律及斜坡不稳定性预测[J]. 地球科学, 12(6): 631−638.

    Google Scholar

    [50] 张永双, 郭长宝, 姚鑫, 等. 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277−286.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(166) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint