2025 Vol. 44, No. 6
Article Contents

HUANG Shunsheng, ZHOU Qiang, ZHANG Ping, CUI Xiaodan, CAI Luming, LI Wenbo, XU Hongting. 2025. Distribution characteristics, influencing factors, and ecological and environmental effects of soil sulfur in Huai'an agricultural land. Geological Bulletin of China, 44(6): 1062-1075. doi: 10.12097/gbc.2023.05.026
Citation: HUANG Shunsheng, ZHOU Qiang, ZHANG Ping, CUI Xiaodan, CAI Luming, LI Wenbo, XU Hongting. 2025. Distribution characteristics, influencing factors, and ecological and environmental effects of soil sulfur in Huai'an agricultural land. Geological Bulletin of China, 44(6): 1062-1075. doi: 10.12097/gbc.2023.05.026

Distribution characteristics, influencing factors, and ecological and environmental effects of soil sulfur in Huai'an agricultural land

    Fund Project: Supported by Geological Survey Project of Jiangsu Provincial Department of Natural Resources "Huai’an Urban Geological Survey" (No. Sucaijian [2018] No. 96)
More Information
  • Author Bio: HUANG Shunsheng, male, born in 1975, master, professor-level senior engineer, mainly engaged in geochemical investigation and evaluation of land quality; E-mail: geohuangss@163.com
  • Objective

    The study area is located in the core area of the Northern Jiangsu Plain, characterized by complex geological settings. Under the combined influences of geological processes and anthropogenic activities, the spatial variability of soil sulfur exhibits significant heterogeneity. However, the key factors influencing its spatial distribution and its corresponding ecological environmental effects remain poorly understood.

    Methods

    The paper compares soil sulfur content under varying depths, soil types, landforms, and land uses, evaluates sulfur balance, identifies distribution patterns and driving factors, and preliminarily explores ecological environmental effects.

    Results

    The mean concentration of sulfur in topsoil is 388×10−6 and distinctly elevated compared with the mean background level of soil in Jiangsu province. The overall spatial distribution suggests that the southern part is higher than the northern one, and the vertical distribution gradually decreases with depth. The concentration of sulfur in different soil types is the highest in marsh soil, the second in paddy soil, and the lowest in fluvoaquic soil. Among different types of landforms, the fan edge lake marsh plain area is the highest, and the alluvial sand dam highland is the lowest. Based on the comparison of land use patterns, the concentration of soil sulfur is the highest in irrigated land and lowest in woodland. The concentrations of soil sulfur exhibit a significant positive relationship with the contents of organic matter(P<0.01). The evaluation results of soil sulfur balance in agricultural soil show that the net increase will be 58.21 kg/hm2 annually. Compared with the multi-target data in 2004, the content of sulfur in agricultural soil in the study area has been accumulated to some extent in the last 15 years.

    Conclusions

    The distribution characteristics of soil sulfur are closely related to soil depth, soil type, land use patterns, and organic matter content. Hotspots of sulfur accumulation correspond to areas with greenhouse agriculture (e.g., red pepper cultivation), primarily due to the extensive application of sulfur-containing fertilizers such as potassium sulfate compound fertilizers and organic fertilizers. These regions have shown a trend of soil acidification, contributing to sulfur loading in surrounding water bodies. Therefore, ecological risk monitoring is recommended.

  • 加载中
  • [1] An Y L, Yin X L, Jin A F, et al. 2023. Ecological stoichiometry and spatial variation characteristics of soil nutrients in a cultivation area of Zhangjiakou city, Hebei Province[J]. Geological Bulletin of China, 42(2/3): 443−459 (in Chinese with English abstract).

    Google Scholar

    [2] Chen B B, Sun Z G. 2020. Effects of nitrogen enrichment on variations of sulfur in plant−soil system of Suaeda salsa in coastal marsh of the Yellow River Estuary, China[J]. Ecological Indicators, 109: 541−551.

    Google Scholar

    [3] Chi Q H, Yan M C. 2007. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House: 92−93(in Chinese).

    Google Scholar

    [4] Cui S, Liu S R, Wang Y, et al. 2022. Soil available sulfur content in Jilin Province and its correlation with soil organic matter and soil total nitrogen[J]. Scientia Agricultural Sinica, 55(12): 2372−2383(in Chinese with English abstract).

    Google Scholar

    [5] Huai’an Municipal Bureau of Statistics. 2022. Huai’an municipal statistical yearbook[M]. Beijing: China Statistics Press: 56−57(in Chinese).

    Google Scholar

    [6] Huang S S, Hua M, Jin Y, et al. 2008. Concentrations and sources of heavy metal in atmospheric dustfall in the Nanjing city, East China[J]. Earth Science Frontiers, 15(5): 161−166(in Chinese with English abstract).

    Google Scholar

    [7] Huang Y A. 2004. Rapid determination of available P2O5 in SSP by one−step EDTA extraction[J]. Phosphate & Compound Fertilizer, 19(1): 70−71(in Chinese with English abstract).

    Google Scholar

    [8] Koprivova A, Kopriva S. 2016. Sulfur metabolism and its manipulation in crops[J]. Journal of Genetics and Genomics, 43(11): 623−629. doi: 10.1016/j.jgg.2016.07.001

    CrossRef Google Scholar

    [9] Lei W B, Lin X, Duan X X, et al. 2024. Source and migration of selenium in the soil[J]. Journal of Jilin University(Earth Science Editon), 54(1): 264−278(in Chinese with English abstract).

    Google Scholar

    [10] Li J, Lin Q, Chen Z C, et al. 2008. Sulfur balance and plentiful−lack of soil available sulfur in southeast of Fujian Province[J]. Acta Agriculturae Boreali−Sinica, 23(supplement): 178−181(in Chinese with English abstract).

    Google Scholar

    [11] Li L J, Qi S S, Sun L S, et al. 2003. Research progress on soil sulfur fertility and crop sulfur nutrition[J]. Journal of Anhui Agricultural Sciences, 31(2): 188−190(in Chinese with English abstract).

    Google Scholar

    [12] Li W T, Huang S S, Xu W W, et al. 2025. Spatiotemporal variation characteristics and influencing factors of soil pH in Huai’an City[J]. Soil and Fertilizer Sciences in China, 1: 1−14(in Chinese with English abstract).

    Google Scholar

    [13] Li X H, Liu J S, Sun Z G, et al. 2006. Change in soil sulfur under different land use in Sanjiang Plain[J]. Journal of Ecology and Rural Environment, 22(4): 80−82(in Chinese with English abstract).

    Google Scholar

    [14] Liao Q L, Liu C, Xu Y, et al. 2011. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China, 38(5): 1363−1378(in Chinese with English abstract).

    Google Scholar

    [15] Liu C Q, Cao S Q, Wu X J, et al. 1993. The status of soil sulfur and demand for sulfur in China[C]//Proceedings of the international symposium on the effects of sulfur, magnesium, and trace elements on crop balance. Chengdu: Chengdu University of Science and Technology Press: 10−18.

    Google Scholar

    [16] Liu C Q, Xu J X, Cao S Q, et al. 2000. Sulfur contents in rainfall and irrigation water and their effect on soil s status in Anhui, Guangdong, Jiangxi, and Sichuan Provinces[J]. Journal of Anhui Agricultural University, 27(supplement): 114−118(in Chinese with English abstract).

    Google Scholar

    [17] Liu N L, Ming C Z, Ma X H, et al. 2000. Soil sulfur status and sulfur fertilizer efficiency in Hunan Province[J]. Hunan Agricultural Sciences, 3: 22−23,25(in Chinese with English abstract).

    Google Scholar

    [18] Liu X X, Wan J, Ceng H. 2016. Spatial variation in surface soil sulfur in the temperate grasslands of China and environmental constraints[J]. Acta Ecologica Sinica, 36(24): 7919−7928(in Chinese with English abstract).

    Google Scholar

    [19] Liu Y J, Cao L M, Li Z L, et al. 1984. Element geochemistry[M]. Beijing: Science Press: 457(in Chinese).

    Google Scholar

    [20] Luo M L, Dou T Y, Xiang Q J, et al. 2019. Distribution characteristics and influencing factors of soil surphur in Chongqing farmlands[J]. Journal of Agricultural Resources and Environment, 36(3): 287−297(in Chinese with English abstract).

    Google Scholar

    [21] Luo S, Zhang D M, Lu D B, et al. 2021. Evaluation of trace elements abundance and deficiency in cultivated soil and its influencing factors in Bijie City of Wumeng Mountain[J]. Geological Bulletin of China, 40(9): 1570−1583(in Chinese with English abstract).

    Google Scholar

    [22] Lv H C, Xue S G, Fang Z W, et al. 2004. Influence of different land use patterns upon nitrogen and phosphorus loss in the Qiandaohu drainage area[J]. Geology in China, 31(supplement): 112−117(in Chinese with English abstract).

    Google Scholar

    [23] Ma Y J, Ni Y C, Yang Y Z, et al. 2014. Analysis on fertilizer input and nutrient balance of farmland in Huai’an City[J]. Modern Agricultural Sciences and Technology, 1: 229−236(in Chinese).

    Google Scholar

    [24] Mao L, Sun Z G, Li Y Q, et al. 2023. Spatial distribution of inorganic sulfur and its key influencing factors in wetland sediments in Fuzhou reach of the Min River[J]. Acta Scientiae Circumstantiae, 43(4): 467−477(in Chinese with English abstract).

    Google Scholar

    [25] Ministry of Natural Resources of the People’s Republic of China. 2016. Specification of land quality geochemical assessment(DZ/T 0295−2016)[S]. Beijing: Geological Publishing House: 43(in Chinese).

    Google Scholar

    [26] Ministry of Natural Resources of the People’s Republic of China. 2015. Specification of geochemical reconnaissance survey(1∶50000): DZ/T 0011—2015[S]. Beijing: Geological Publishing House: 14-16(in Chinese).

    Google Scholar

    [27] Mu W Y, Chu H X, Huang N, et al. 2022. Relationship between grain yield and sulfur requirement characteristics of wheat cultivars (lines) in main wheat production regions of China[J]. Acta Agronomica Sinica, 48(12): 3192−3202(in Chinese with English abstract).

    Google Scholar

    [28] Sha C, Wang M L, Jiang Y L. et al. 2018. Interactions between pH and other physicochemical properties of mangrove sediments: A review[J]. China Sciencal Bulletin, 63(26): 2745−2756(in Chinese with English abstract). doi: 10.1360/N972018-00369

    CrossRef Google Scholar

    [29] Sun A, Duan B H, Wang F, et al. 2022. Geochemical distributions and influencing factors of soil elements in Xianfeng county, Western Hubei Province, China[J]. Soils, 54(3): 637−645(in Chinese with English abstract).

    Google Scholar

    [30] Teng X F. 2000. Composition of soil sulfur and its availability to plants[D]. Master Thesis of Northeast Agricultural University: 26−33(in Chinese with English abstract).

    Google Scholar

    [31] Wang F, Zhu Y J, Lu L. 2007. Sulfur in soil and its transformation[J]. Chinese Agricultural Science Bulletin, 23(5): 249−253(in Chinese with English abstract).

    Google Scholar

    [32] Wang L H. 2011. Effect of potassium sulfate compound fertilizer on plastic house hot pepper in Huai’an[J]. Journal of Changjiang Vegetables, 12: 49−50(in Chinese with English abstract).

    Google Scholar

    [33] Wei X R, Shao M A, Gao J L, et al. 2008. Relationships between soil organic carbon and environmental factors in gully watershed of the loess plateau[J]. Environmental Science, 29(10): 2879−2884(in Chinese with English abstract).

    Google Scholar

    [34] Wu N N, Ma Z Q, Tan B, et al. 2019. Research progress of nutrient content, flour properties, cooking and sensory quality of rice with different milling degree[J]. Science and Technology of Cereals, Oils and Foods, 27(6): 40−45(in Chinese with English abstract).

    Google Scholar

    [35] Xiao H J. 2003. Study on soil sulfur status and crop response to sulfur fertilization in Guizhou[D]. Master Thesis of Southwest Agricultural University: 15−21(in Chinese with English abstract).

    Google Scholar

    [36] Yang J F, Wei L X, Shi T C, et al. 2022. Geochemical characteristics and source analysis of soil sulfur in Shizuishan area[J]. Journal of Ningxia University(Natural Science Edition), 3(1): 85−89(in Chinese with English abstract).

    Google Scholar

    [37] Yang Z F. 2009. Research on the Current Status of Sulfur Content in Agricultural Soil in Mile, Southeast Yunnan[J]. Tillage and Cultivation, 5: 35−36(in Chinese).

    Google Scholar

    [38] Zhang Y, Xie W X, Dun Y H, et al. 2016. Rearch advances in distribution characteristics and influence mechanism of the wetland soil surlfur[J]. Chinese Journal of Soil Science, 47(3): 763−767(in Chinese with English abstract).

    Google Scholar

    [39] Zhang Z X, Xu M X, Shi C D, et al. 2014. Scaling effect on spatial variability of soil organic carbon in different geomorphic units on the loess hilly region[J]. Journal of Natural Resources, 29(7): 1173−1182(in Chinese with English abstract).

    Google Scholar

    [40] Zhao C, Sun B B, Zhou G H, et al. 2023. Investigation on the characteristics nutrient content and prediction of available nutrients content in soil of Longhai, Fujian Province[J]. Geological Bulletin of China, 42(10): 1784−1791(in Chinese with English abstract).

    Google Scholar

    [41] Zhao K L, Fu W J, Ye Z Q, et al. 2016. Spatial variation of soil heavy metals in an E−waste dismantling area and their distribution characteristics[J]. Environmental Science, 37(8): 3151−3159(in Chinese with English abstract).

    Google Scholar

    [42] Zheng S Z, Liu Z L. 2015. Advances on the availability of sulfur fertilizers for soil quality and biology[J]. Journal of Shangdong Agricultural University (Natural Science Edition), 46(5): 688−693(in Chinese with English abstract).

    Google Scholar

    [43] Zhu B L, Li X Q, Liu N, et al. 2010. Migration behavior of sulfate irons in aquitard[J]. Global Geology, 29(4): 658−662(in Chinese with English abstract).

    Google Scholar

    [44] 安永龙, 殷秀兰, 金爱芳, 等. 2023. 河北张家口市某种植区土壤营养元素生态化学计量与空间分异特征[J]. 地质通报, 42(2/3): 443−459. doi: 10.12097/j.issn.1671-2552.2023.2-3.021

    CrossRef Google Scholar

    [45] 迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 92−93.

    Google Scholar

    [46] 崔帅, 刘烁然, 王寅, 等. 2022. 吉林省旱地土壤有效硫含量及其与土壤有机质和全氮的关系[J]. 中国农业科学, 55(12): 2372−2383. doi: 10.3864/j.issn.0578-1752.2022.12.009

    CrossRef Google Scholar

    [47] 淮安市统计局. 2022. 淮安统计年鉴[M]. 北京: 中国统计出版社: 56−57.

    Google Scholar

    [48] 黄顺生, 华明, 金洋, 等. 2008. 南京市大气降尘重金属含量特征及来源研究[J]. 地学前缘, 15(5): 161−166. doi: 10.3321/j.issn:1005-2321.2008.05.017

    CrossRef Google Scholar

    [49] 黄玉安. 2004. EDTA一步提取法快速测定过磷酸钙中有效五氧化二磷含量[J]. 磷肥与复肥, 19(1): 70−71.

    Google Scholar

    [50] 江苏省地质调查研究院. 2007. 江苏省1∶250 000多目标区域地球化学调查报告[R].

    Google Scholar

    [51] 江苏省地质调查研究院. 2021. 淮安城市地质调查报告[R].

    Google Scholar

    [52] 雷万彬, 林鑫, 段星星, 等. 2024. 土壤中硒元素来源和迁移作用研究现状[J]. 吉林大学学报(地球科学版), 54(1): 264−278.

    Google Scholar

    [53] 李娟, 林琼, 陈子聪, 等. 2008. 闽东南耕地土壤硫素平衡及有效硫丰缺状况研究[J]. 华北农学报, 23(增刊): 178−181. doi: 10.7668/hbnxb.2008.S1.043

    CrossRef Google Scholar

    [54] 李录久, 戚士胜, 孙礼胜, 等. 2003. 土壤硫肥力与作物硫营养研究进展[J]. 安徽农业科学, 31(2): 188−190. doi: 10.3969/j.issn.0517-6611.2003.02.008

    CrossRef Google Scholar

    [55] 李文婷, 黄顺生, 许伟伟, 等. 2025. 淮安市土壤pH时空变化特征及影响因素[J]. 中国土壤与肥料, 1: 1−14. doi: 10.11838/sfsc.1673-6257.24239

    CrossRef Google Scholar

    [56] 李新华, 刘景双, 孙志高, 等. 2006. 三江平原不同土地利用方式下土壤硫含量变化特征[J]. 生态与农村环境学报, 22(4): 80−82. doi: 10.3969/j.issn.1673-4831.2006.04.017

    CrossRef Google Scholar

    [57] 廖启林, 刘聪, 许艳, 等. 2011. 江苏省土壤元素地球化学基准值[J]. 中国地质, 38(5): 1363−1378. doi: 10.3969/j.issn.1000-3657.2011.05.023

    CrossRef Google Scholar

    [58] 刘崇群, 曹淑卿, 吴锡军, 等. 1993. 中国土壤硫素状况和对硫的需求[C]//硫、镁和微量元素在作物影响平衡中的作用国际学术研讨会论文集. 成都: 成都科技大学出版社: 10−18.

    Google Scholar

    [59] 刘崇群, 徐俊祥, 曹淑卿, 等. 2000. 南方某些省份降水和灌溉水的含硫量及其对土壤供硫的影响[J]. 安徽农业大学学报, 27(增刊): 114−118. doi: 10.3969/j.issn.1672-352X.2000.z1.019

    CrossRef Google Scholar

    [60] 刘念龙, 明承州, 马晓华, 等. 2000. 湖南省土壤硫素状况及硫肥肥效[J]. 湖南农业科学, 3: 22−23,25. doi: 10.3969/j.issn.1006-060X.2000.03.013

    CrossRef Google Scholar

    [61] 刘潇潇, 王钧, 曾辉. 2016. 中国温带草地土壤硫的分布特征及其与环境因子的关系[J]. 生态学报, 36(24): 7919−7928.

    Google Scholar

    [62] 刘英俊, 曹励明, 李兆麟, 等. 1984. 元素地球化学[M]. 北京: 科学出版社: 457.

    Google Scholar

    [63] 罗曼琳, 窦添元, 向秋洁, 等. 2019. 重庆农田土壤硫分布特征及其影响因素[J]. 农业资源与环境学报, 36(3): 287−297.

    Google Scholar

    [64] 骆珊, 张德明, 卢定彪, 等. 2021. 乌蒙山毕节市耕地土壤微量元素丰缺评价及其影响因素[J]. 地质通报, 40(9): 1570−1583. doi: 10.12097/j.issn.1671-2552.2021.09.016

    CrossRef Google Scholar

    [65] 吕唤春, 薛生国, 方志文, 等. 2004. 千岛湖流域不同土地利用方式对氮和磷流失的影响[J]. 中国地质, 31(增刊): 112−117. doi: 10.3969/j.issn.1000-3657.2004.z1.018

    CrossRef Google Scholar

    [66] 马玉军, 倪言成, 杨用钊, 等. 2014. 淮安市农田肥料投入与养分平衡分析[J]. 现代农业科技, 1: 229−236. doi: 10.3969/j.issn.1007-5739.2014.20.137

    CrossRef Google Scholar

    [67] 毛立, 孙志高, 李亚勤, 等. 2023. 闽江福州段湿地沉积物无机硫沿程分布特征及其影响因素[J]. 环境科学学报, 43(4): 467−477.

    Google Scholar

    [68] 牟文燕, 褚宏欣, 黄宁, 等. 2022. 中国主要麦区小麦品种(系)产量与需硫特征关系分析[J]. 作物学报, 48(12): 3192−3202.

    Google Scholar

    [69] 沙聪, 王木兰, 姜玥璐, 等. 2018. 红树林土壤pH和其他土壤理化性质之间的相互作用[J]. 科学通报, 63(26): 2745−2756.

    Google Scholar

    [70] 孙奥, 段碧辉, 王芳, 等. 2022. 鄂西咸丰地区土壤元素地球化学分布及其影响因素[J]. 土壤, 54(3): 637−645.

    Google Scholar

    [71] 滕险峰. 2000. 土壤中硫的组成及其对植物的有效性研究[D]. 东北农业大学硕士学位论文: 26−33.

    Google Scholar

    [72] 王凡, 朱云集, 路玲. 2007. 土壤中的硫素及其转化研究综述[J]. 中国农学通报, 23(5): 249−253. doi: 10.3969/j.issn.1000-6850.2007.05.057

    CrossRef Google Scholar

    [73] 王立华. 2011. 硫酸钾复合肥对淮安大棚辣椒产量的影响[J]. 长江蔬菜, 12: 49−50. doi: 10.3865/j.issn.1001-3547.2011.06.018

    CrossRef Google Scholar

    [74] 魏孝荣, 邵明安, 高建伦, 等. 2008. 黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J]. 环境科学, 29(10): 2879−2884. doi: 10.3321/j.issn:0250-3301.2008.10.034

    CrossRef Google Scholar

    [75] 吴娜娜, 马占倩, 谭斌, 等. 2019. 不同加工精度稻米的营养物质含量、米粉特性及米饭品质研究进展[J]. 粮油食品科技, 27(6): 40−45.

    Google Scholar

    [76] 肖厚军. 2003. 贵州主要耕地土壤硫素状况及硫肥效应研究[D]. 西南农业大学硕士学位论文: 15−21.

    Google Scholar

    [77] 杨建锋, 魏丽馨, 石天池, 等. 2022. 宁夏石嘴山地区土壤中硫的地球化学特征及其来源分析[J]. 宁夏大学学报(自然科学版), 3(1): 85−89.

    Google Scholar

    [78] 杨宗飞, 2009. 滇东南弥勒农业土壤S含量现状研究[J]. 耕作与栽培, 5: 35−36.

    Google Scholar

    [79] 张艳, 谢文霞, 杜云鸿, 等. 2016. 湿地土壤硫分布及其影响机制研究进展[J]. 土壤通报, 47(3): 763−767.

    Google Scholar

    [80] 张志霞, 许明祥, 师晨迪, 等. 2014. 黄土丘陵区不同地貌单元土壤有机碳空间变异的尺度效应[J]. 自然资源学报, 29(7): 1173−1182. doi: 10.11849/zrzyxb.2014.07.008

    CrossRef Google Scholar

    [81] 赵辰, 孙彬彬, 周国华, 等. 2023. 福建龙海市土壤营养元素全量特征及有效量预测[J]. 地质通报, 42(10): 1784−1791. doi: 10.12097/j.issn.1671-2552.2023.10.014

    CrossRef Google Scholar

    [82] 赵科理, 傅伟军, 叶正钱, 等. 2016. 电子垃圾拆解区土壤重金属空间异质性及分布特征[J]. 环境科学, 37(8): 3151−3159.

    Google Scholar

    [83] 郑诗樟, 刘志良. 2015. 硫肥对土壤质量和生物有效性的研究进展[J]. 山东农业大学学报(自然科学版), 46(5): 688−693.

    Google Scholar

    [84] 中国地质调查局. 2005. 生态地球化学评价样品分析技术要求(试行)(DD2005—03)[S]. 北京: 中国标准出版社: 5−30.

    Google Scholar

    [85] 中国地质调查局. 2014. 多目标区域地球化学调查规范(1∶250 000)(DZ/T 0258—2014)[S]. 北京: 中国标准出版社: 3−15.

    Google Scholar

    [86] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 2016. 耕地质量等级(GB/T 33469—2016)[S]. 北京: 中国标准出版社: 28-44.

    Google Scholar

    [87] 中华人民共和国国土资源部. 2015. 地球化学普查规范(1∶50 000): DZ/T 0011—2015[S]. 北京: 中国地质出版社: 14-16.

    Google Scholar

    [88] 中华人民共和国国土资源部. 2016. 土地质量地球化学评价规范(DZ/T 0295—2016)[S]. 北京: 地质出版社: 43.

    Google Scholar

    [89] 朱博麟, 李绪谦, 刘娜, 等. 2010. 硫酸根离子在弱透水层中的迁移行为[J]. 世界地质, 29(4): 658−662. doi: 10.3969/j.issn.1004-5589.2010.04.019

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(278) PDF downloads(97) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint