2025 Vol. 44, No. 6
Article Contents

LI Mengxing, WANG Lijuan, LI Zhen, WANG Quan, LI Juan. 2025. Petrogenesis of the Mesozoic Malage complex pluton in Eastern Inner Mongolia and its enlightenment to the regional tectonic evolution. Geological Bulletin of China, 44(6): 1087-1105. doi: 10.12097/gbc.2022.06.030
Citation: LI Mengxing, WANG Lijuan, LI Zhen, WANG Quan, LI Juan. 2025. Petrogenesis of the Mesozoic Malage complex pluton in Eastern Inner Mongolia and its enlightenment to the regional tectonic evolution. Geological Bulletin of China, 44(6): 1087-1105. doi: 10.12097/gbc.2022.06.030

Petrogenesis of the Mesozoic Malage complex pluton in Eastern Inner Mongolia and its enlightenment to the regional tectonic evolution

    Fund Project: Supported by the China Geological Survey Project (No.1212010781033) and Ministry of Natural Resources Research Project (No. B201905)
More Information
  • Author Bio: LI Mengxing, male, born in 1985, master, senior engineer, mainly engaged in the exploration, investigation and evaluation of polymetallic ores; E−mail: 282665774@qq.com
  • Corresponding author: WANG Lijuan, female, born in 1981, master, senior engineer, mainly engaged in geochemical researchp; E-mail: 32737195@qq.com 
  • Objective

    This study investigates the Malage composite pluton in the southern Xing'an Block to clarify the spatiotemporal influence boundaries of two tectonic systems (Mongolia−Okhotsk Ocean and Paleo−Pacific) in Northeast China.

    Methods

    We conducted systematic sampling of lithologic units within the pluton, followed by petrographic analysis, zircon U−Pb geochronology, and whole−rock geochemical characterization.

    Results

    The Malage complex pluton comprises two granite phases. The early−stage assemblage (quartz monzonite diorite, monzogranite and alkali−feldspar granite)emplaced during the Late Triassic (225 ± 1 Ma and 220 ± 2 Ma), and granite porphyry intruded in the late Early Cretaceous (124 ± 1 Ma). Both phases represent high−K calc−alkaline I−type granites, though the Cretaceous porphyry exhibits higher differentiation. They are both characterized by enrichment of large ion lithophilic elements (Rb, Ba, K) and light rare−earth elements (LREE), different degrees of loss (Ta, Nb, P, Ti) in high field strength elements (HFSE) and heavy rare−earth elements (HREE), low total rare earths (ΣREE=34.25×10−6~217.91×10−6), variable negative Eu anomalies (δEu=0.40~0.84).

    Conclusions

    Integrated geological evidence suggests that Late Triassic Mongolian−Okhotsk Ocean subduction influenced the southern Xing'an Block, and late Early Cretaceous magmatism occurred under an extensional regime driven jointly by post−collisional relaxation after Mongolia−Okhotsk Ocean closure and Paleo−Pacific Plate rollback, with predominant control from the latter.

  • 加载中
  • [1] Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic process[J]. Earth and Plantary Science Letters, 38: 1−25. doi: 10.1016/0012-821X(78)90123-1

    CrossRef Google Scholar

    [2] Brown G C, Nordin G L. 1982. An epizootic model of an insect−fungal pathogen system[J]. Mathematical Biology, 44(5): 731−739. doi: 10.1016/S0092-8240(82)80011-6

    CrossRef Google Scholar

    [3] Chappell B W. 1999. Aluminium saturation in I−and S−type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 535−551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [4] Chen J S, Li W W, Shi Y, et al. 2022. Evolution of the eastern segment of the northern margin of the North China Craton in the Triassic: Evidence from the geochronology and geochemistry of magmatic rocks in Kaiyuan area, North Liaoning[J]. Acta Petrologica Sinica, 38(8): 2216−2248(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.03

    CrossRef Google Scholar

    [5] Condie K C. 1989. Geochemical changes in basalts and andesites across the Archean−Proterozoic boundary: identification and significance[J]. Lithos, 23: 1−18. doi: 10.1016/0024-4937(89)90020-0

    CrossRef Google Scholar

    [6] Feng Z Q, Dong L, Tong Y, et al. 2021. Impacts of the closure of eastern Mongolia−Okhotsk Ocean on formation and evolution of Songliao Basin[J]. Oil & Gas Geology, 42(2): 251−264(in Chinese with English abstract).

    Google Scholar

    [7] Fu A Z, Yang W P, Liu Y, et al. 2022. Discovery of Late Triassic Adakitic Rocks at Nianzishan in the Central Great Xing’an Range and Its Geological Significance[J]. Geoscience, 36(1): 266−281(in Chinese with English abstract).

    Google Scholar

    [8] Fu J Y, Na F C, Li Y C, et al. 2021. Southward subduction of the Mongo−Okhotsk Ocean: Middle Triassic magmatic records of the“Luomahu Group” in northwest of Lesser Khingan Mountains[J]. Geological Bulletin of China, 40(6): 889−904(in Chinese with English abstract).

    Google Scholar

    [9] Gorton M P J, Schandl E S. 2000. From continents to Island Arcs: a geochemical index of tectonic setting for arc−related and within−plate felsic to intermediate volcanic rocks[J]. Canadian Mineralogist, 38(5): 1065−1073. doi: 10.2113/gscanmin.38.5.1065

    CrossRef Google Scholar

    [10] Guo C L, Wang D H, Chen Y C, et al. 2007. SHRIMP U−Pb zircon ages and major element, trace element and Nd−Sr isotope geochemical studies of a Neoproterozoic granitic complex in western Sichuan: Petrogenesis and tectonic significance[J]. Acta Petrologica Sinica, (10): 2457−2470(in Chinese with English abstract).

    Google Scholar

    [11] Hao S Q, Rong X W, Wang L J, et al. 2022. Discovery of the Late Carboniferous alkali−feldspar granite from the Bulinmiao area in Inner Mongolia and its constraints on the evolution of the Paleo−Asian−Ocean[J]. Geological Bulletin of China, 41(9): 1613−1623(in Chinese with English abstract).

    Google Scholar

    [12] Huang S Q, Dong S W, Hu J M, et al. 2016. The formation and tectonic evolution of the Mongolia−Okhotsk belt[J]. Acta Geologica Sinica, 90(9): 2192−2205(in Chinese with English abstract).

    Google Scholar

    [13] Ji Z, Ge W C, Yang H, et al. 2018. The Late Triassic andean−type andesite from the central Great Xing'an Range: Products of the southward subduction of the Mongol−Okhotsk oceanic plate[J]. Acta Petrologica Sinica, 34(10): 2917−2930(in Chinese with English abstract).

    Google Scholar

    [14] King P L, White A J R, Chappell B W. 1997. Characterization and origin of aluminous A−type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 38(3): 371−391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [15] Le M R W. 2002. Igneous Rocks: A classification and glossary of terms(2nd Edition[M]. Cambridge University Press, 33−39.

    Google Scholar

    [16] Li Q, Cheng X Q, Chen W, et al. 2021. Discovery of Early−Middle Triassic andesite in Erguna massif and its indication of Southward Subduction of Mongol−Okhotsk Ocean Plate[J]. Earth Science, 46(8): 2768−2785(in Chinese with English abstract).

    Google Scholar

    [17] Li J Y, Liu J F, Qu J F, et al. 2019. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 35(10): 2989−3016(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.04

    CrossRef Google Scholar

    [18] Li T D, Liu Y, Ding X Z, et al. 2022. Ten advances in regional geological research of China in recent years[J]. Acta Geologica Sinica, 96(5): 1544−1581(in Chinese with English abstract).

    Google Scholar

    [19] Li Y, Ding L L, Xu W L, et al. 2015. Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the timing of closure of the Mongol−Okhotsk Ocean[J]. Acta Petrologica Sinica, 31(1): 56−66(in Chinese with English abstract).

    Google Scholar

    [20] Li Y, Li W Q, Sun J L. 2022. Geochronology and geochemistry of Late Triassic−Early Jurassic granites in Moerdaoga area, NE China and its tectonic implications[J]. Acta Petrologica Sinica, 38(10): 3021−3036(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.10.08

    CrossRef Google Scholar

    [21] Li R L, Zhu Q Q, Hou K J, et al. 2012. Zircon U−Pb dating and Hf isotopic compositions of granite porphyry and rhyolite porphyry from Jingniu basin in the Middle−Lower Yangtze River Belt and its geological significance[J]. Acta Petrologica Sinica, 28(10): 3347−3360(in Chinese with English abstract).

    Google Scholar

    [22] Li S C, Li Y F, Wang X A, et al. 2016. Delineation of the Late Triassic granitic pluton from the middle part of Greater Xing’an Mountains showing tetrad REE patterns and its geological implications[J]. Acta Petrologica Sinica, 32(9): 2793−2806(in Chinese with English abstract).

    Google Scholar

    [23] Li J Y, Guo F, Li C W, et al. 2014. Neodymium isotopic variations of Late Paleozoic to Mesozoic I−and Atype granitoids in NE China: Implications for tectonic evolution[J]. Acta Petrologica Sinica, 30(7): 1995−2008(in Chinese with English abstract).

    Google Scholar

    [24] Li W L, Yang X Q, Qian C, et al. 2022. Composition of the Fukeshan magmatic arc in the northern Great Xing' an Range: Constraints on the southward subduction of the Mongol−Okhotsk oceanic plate[J]. Earth Science Frontiers, 29(2): 146−163(in Chinese with English abstract).

    Google Scholar

    [25] Li W X, Li X H, Li Z X, et al. 2007. U−Pb zircon, geochemical and Sr−Nd−Hf isotopic constraints on age and origin of Jurassic I− and A−type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat−slab?[J]. Lithos, 96(1): 186−204.

    Google Scholar

    [26] Liu J F, Li J Y, Zhao S, et al. 2022. Crustal accretion and Paleo−Asian Ocean evolution during Late Paleozoic−Early Mesozoic in southeastern Central Asian Orogenic Belt: Evidence from magmatism in Linxi−Dongwuqi area, southeastern Inner Mongolia[J]. Acta Petrologica Sinica, 38(8): 2181−2215(in Chinese with English abstract). doi: 10.18654/1000-0569/2022.08.02

    CrossRef Google Scholar

    [27] Liu X W, Yang H, Dong Y, et al. 2015. Zircon U−Pb ages and geochemical characteristics of the Triassic granites from the Mingshui area in the Da Hinggan Mountains and their tectonic implications[J]. Acta Petrologica et Mineralogica, 34(2): 143−158(in Chinese with English abstract).

    Google Scholar

    [28] Liu Y S, Gao S, Hu Z C. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, hf isotopes and trace elements in zircons from Mantle Xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.

    Google Scholar

    [29] Ludwig K R. 2003. Isoplot 3.0: A geochronological toolkit for microsoft excel[M]. Berkeley Geochron Centre Special Publication, (4): 1−70.

    Google Scholar

    [30] Morrison W G. 1980. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 13(1): 97−108. doi: 10.1016/0024-4937(80)90067-5

    CrossRef Google Scholar

    [31] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [32] Na F C, Fu J Y, Song W M, et al. 2019. Petrological and Geochronological Study of Keluo Complex in Northwestern Lesser Xing'an Range[J]. Earth Science, 44(10): 3265−3278(in Chinese with English abstract).

    Google Scholar

    [33] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [34] Qiu J S, Hu J, Wang X L, et al. 2005. The Baishigang pluton in Heyuan, Guangdong Province: A highly fractionated I−type granite[J]. Acta Geologica Sinica, (4): 503−514(in Chinese with English abstract).

    Google Scholar

    [35] Rapp R P, Shimizu N, Norman M D, et al. 1999. Reaction between slab−derived melts and peridotite in the mantle wedge: experimental constrains at 3.8 GPa[J]. Chemical Geology, 160(4): 335−356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [36] Rudnick R L, Gao S. 2003. Composition of the continental crust[C]// Rudnick R L. Treatise on geochemistry. Oxford: Elsevier: 1−64.

    Google Scholar

    [37] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London, Specical Publications, 42(1): 313−345.

    Google Scholar

    [38] Tang Z Y, Sun D Y, Gou J. 2022. Triassic magmatism in Northeast China: Implications for spatiotemporal distribution, continental crustal accretion, and geodynamic evolution[J]. International Geology Review, 64(6): 770−798. doi: 10.1080/00206814.2021.1881919

    CrossRef Google Scholar

    [39] Tang J, Xu W L, Wang F. 2016. Rock associations and their spatial−temporal variations of the Early Mesozoic igneous rocks in the NE Asia: Constraints on the initial subduction timing of the Paleo−Pacific Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1181−1194 (in Chinese with English abstract).

    Google Scholar

    [40] Tang J, Xu W L, Wang F, et al. 2018. Subduction history of the Paleo−Pacific slab beneath Eurasian continent: Mesozoic−Paleogene magmatic records in Northeast Asia[J]. Earth Science, 48(5): 549−583(in Chinese with English abstract).

    Google Scholar

    [41] Tong Y, Hong D V, Wang T, et al. 2010. Spatial and temporal distribution of granitoids in the middle segment of the Sino−Mongolian border and its tectonic and metallogenic implications[J]. Acta Geoscientica Sinica, 31(3): 395−412(in Chinese with English abstract).

    Google Scholar

    [42] Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth Planet. Sci. Lett., 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [43] Wang X S, Bi X W, Leng CB, et al. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo−Cu−(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73−95. doi: 10.1016/j.oregeorev.2014.01.006

    CrossRef Google Scholar

    [44] Wang M, Wang C, Hu Y, et al. 2018. Geochemistry, geochronology, whole rock Sr−Nd and zircon Hf isotopes of the Wulansala granite pluton in Xiemisitai area, Xinjiang[J]. Acta Petrologica Sinica, 34(3): 618−636(in Chinese with English abstract).

    Google Scholar

    [45] Wang T, Zhang J J, Li X Z, et al. 2022. Distinctive spatial−temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences for identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontier, 29(2): 28−44(in Chinese with English abstract).

    Google Scholar

    [46] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Miner. Petrol., 95(4): 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [47] Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, (6): 1217−1238(in Chinese with English abstract).

    Google Scholar

    [48] Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 47(7): 745−765(in Chinese with English abstract).

    Google Scholar

    [49] Wu F Y, Jahn B M, Wilder S A, et al. 2003. Highly fractionated I−type granites in NE China (I): Geochronology and petrogenesis[J]. Lithos, 66(3/4): 241−273. doi: 10.1016/S0024-4937(02)00222-0

    CrossRef Google Scholar

    [50] Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [51] Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1069−1088.

    Google Scholar

    [52] Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary study on the pre−Mesozoic tectonic unit division of the Xing−Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).

    Google Scholar

    [53] Xu W L, Wang F, Pei F P, et al. 2013. Mesozoic tectonic regimes and regional ore−forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 29(2): 339−353(in Chinese with English abstract).

    Google Scholar

    [54] Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing’an−Mongolian orogenic belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).

    Google Scholar

    [55] Xu W L, Wang Y N, Wang F, et al. 2022. Evolution of western Pacific subduction zones: Constraints from accretionary complexes in NE Asian continental margin[J]. Geological Review, 68(1): 1−17(in Chinese with English abstract).

    Google Scholar

    [56] Zhang J, Zhang D J, Zheng Y J, et al. 2020. LA−ICP−MS U−Pb dating of detrital zircons and geological implications of Linxi Formation in Linxi County, Inner Mongolia[J]. Journal of Jilin University (Earth Science Edition), 50(4): 1090−1103(in Chinese with English abstract).

    Google Scholar

    [57] Zhang P C, Peng B, Zhao J Z, et al. 2022. Petrogenesis of the Syenogranite in the Xiaowulangou Area of Southern Great Xing’an Range: Constraints from Zircon LA−ICP−MS U−Pb Geochronology, Geochemistry and Hf Isotopes[J]. Earth Science, 47(8): 2889−2901(in Chinese with English abstract).

    Google Scholar

    [58] Zhang C, Guo W, Xu Z Y, et al. 2014. Study on geochronology, petrogenesis and tectonic implications of monzogranite from the Yanbian area, eastern Jilin Province[J]. Acta Petrologica Sinica, 30(2): 512−526(in Chinese with English abstract).

    Google Scholar

    [59] Zhao P, Appel E, Xu B, et al. 2020. First paleomagnetic results from the Early Permian volcanic rocks in Northeastern Mongolia: evolutional implication for the Paleo−Asian Ocean and the Mongol−Okhotsk Ocean[J]. Journal of Geophysical Research: Solid Earth, 125(2): E2019jb017338. doi: 10.1029/2019JB017338

    CrossRef Google Scholar

    [60] Zhao Y D, Che J Y, Xu F M, et al. 2018. Late Jurassic adakitic granites in northeastern Xing’an block: Geochronology and geochemical characteristics and tectonic significance[J]. Earth Science Frontier, 25(6): 240−253(in Chinese with English abstract).

    Google Scholar

    [61] Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 402/403: 10623.

    Google Scholar

    [62] Zhou J B, Pu X G, Hou H S, et al. 2018. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo−Pacific plate beneath the Eurasia[J]. Acta Petrologica Sinica, 34(10): 2845−2856(in Chinese with English abstract).

    Google Scholar

    [63] 陈井胜, 李崴崴, 时溢, 等. 2022. 华北板块北缘东段三叠纪构造演化——来自辽北开原岩浆岩年代学、地球化学的证据[J]. 岩石学报, 38(8): 2216−2248. doi: 10.18654/1000-0569/2022.08.03

    CrossRef Google Scholar

    [64] 符安宗, 杨文鹏, 刘渊, 等. 2022. 大兴安岭中段碾子山地区晚三叠世埃达克质侵入岩的发现及其地质意义[J]. 岩石学报, 36(1): 266−281.

    Google Scholar

    [65] 付俊彧, 那福超, 李仰春, 等. 2021. 蒙古-鄂霍茨克洋南向俯冲: 小兴安岭西北部落马湖群中三叠世岩浆记录[J]. 地质通报, 40(6): 889−904. doi: 10.12097/j.issn.1671-2552.2021.06.006

    CrossRef Google Scholar

    [66] 冯志强, 董立, 童英, 等. 2021. 蒙古-鄂霍茨克洋东段关闭对松辽盆地形成与演化的影响[J]. 石油与天然气地质, 42(2): 251−264.

    Google Scholar

    [67] 郭春丽, 王登红, 陈毓川, 等. 2007. 川西新元古代花岗质杂岩体的锆石SHRIMP U−Pb年龄、元素和Nd−Sr同位素地球化学研究: 岩石成因与构造意义[J]. 岩石学报, 23(10): 2457−2470. doi: 10.3969/j.issn.1000-0569.2007.10.014

    CrossRef Google Scholar

    [68] 郝书清, 戎秀伟, 王丽娟, 等. 2022. 内蒙古布林庙晚石炭世碱长花岗岩的发现及其对古亚洲洋演化的制约[J]. 地质通报, 41(9): 1613−1623. doi: 10.12097/j.issn.1671-2552.2022.09.010

    CrossRef Google Scholar

    [69] 黄始琪, 董树文, 胡健民, 等. 2016. 蒙古-鄂霍次克构造带的形成与演化[J]. 地质学报, 90(9): 2192−2205. doi: 10.3969/j.issn.0001-5717.2016.09.008

    CrossRef Google Scholar

    [70] 纪政, 葛文春, 杨浩, 等. 2018. 大兴安岭中段晚三叠世安第斯安山岩: 蒙古-鄂霍茨克大洋板片南向俯冲的产物[J]. 岩石学报, 34(10): 2917−2930.

    Google Scholar

    [71] 李锦轶, 刘建峰, 曲军峰, 等. 2019. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016.

    Google Scholar

    [72] 李强, 程学芹, 陈伟, 等. 2021. 额尔古纳地块早—中三叠世安山岩的发现及其对蒙古-鄂霍茨克大洋板片南向俯冲的指示[J]. 地球科学, 46(8): 2768−2785.

    Google Scholar

    [73] 李廷栋, 刘勇, 丁孝忠, 等. 2022. 中国区域地质研究的十大进展[J]. 地质学报, 96(5): 1544−1581. doi: 10.3969/j.issn.0001-5717.2022.05.004

    CrossRef Google Scholar

    [74] 李宇, 丁磊磊, 许文良, 等. 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 31(1): 56−66.

    Google Scholar

    [75] 李宇, 李文庆, 孙金龙, 等. 2022. 内蒙古莫尔道嘎地区晚三叠世—早侏罗世花岗岩的年代学、地球化学及其地质意义[J]. 岩石学报, 38(10): 3021−3036. doi: 10.18654/1000-0569/2022.10.08

    CrossRef Google Scholar

    [76] 李瑞玲, 朱乔乔, 侯可军. 2012. 长江中下游金牛盆地花岗斑岩和流纹斑岩的锆石U−Pb年龄、Hf同位素组成及其地质意义[J]. 岩石学报, 28(10): 3347−3360.

    Google Scholar

    [77] 李世超, 李永飞, 王兴安, 等. 2016. 大兴安岭中段晚三叠世四分组效应花岗岩的厘定及其地质意义[J]. 岩石学报, 32(9): 2793−2806.

    Google Scholar

    [78] 李竞妍, 郭峰, 李超文, 等. 2014. 东北地区晚古生代—中生代I型和A型花岗岩Nd同位素变化趋势及其构造意义[J]. 岩石学报, 30(7): 1995−2008.

    Google Scholar

    [79] 李文龙, 杨晓平, 钱程, 等. 2022. 大兴安岭北段富克山岩浆弧的组成: 对蒙古-鄂霍茨克洋向南俯冲的制约[J]. 地学前缘, 29(2): 146−163.

    Google Scholar

    [80] 刘建峰, 李锦轶, 赵硕, 等. 2022. 中亚造山带东南部晚古生代—早中生代地壳增生和古亚洲洋演化: 来自内蒙古东南部林西-东乌旗地区岩浆岩的证据[J]. 岩石学报, 38(8): 2181−2215. doi: 10.18654/1000-0569/2022.08.02

    CrossRef Google Scholar

    [81] 刘希雯, 杨浩, 董玉, 等. 2015. 大兴安岭明水地区三叠纪花岗岩的锆石U−Pb年龄、地球化学特征及构造意义[J]. 岩石矿物学杂志, 34(2): 143−158. doi: 10.3969/j.issn.1000-6524.2015.02.002

    CrossRef Google Scholar

    [82] 那福超, 付俊彧, 宋维民, 等. 2019. 小兴安岭西北部科洛杂岩的岩石学与年代学[J]. 地球科学, 44(10): 3265−3278.

    Google Scholar

    [83] 内蒙古自治区地质局. 1979.1: 20万贺斯格乌拉牧场幅区域地质调查报告[R].

    Google Scholar

    [84] 邱检生, 胡建, 王孝磊, 等. 2008. 广东河源白石冈岩体: 一个高分异的I 型花岗岩[J]. 地质学报, 79(4): 503−514.

    Google Scholar

    [85] 山西省地质调查院. 2012.1∶5万勃洛浑迪等四幅区域地质调查报告[R].

    Google Scholar

    [86] 唐杰, 许文良, 王枫, 等. 2016. 东北亚早中生代火成岩组合的时空变异: 对古太平洋板块俯冲开始时间的制约[J]. 矿物岩石地球化学通报, 35(6): 1181−1194. doi: 10.3969/j.issn.1007-2802.2016.06.009

    CrossRef Google Scholar

    [87] 唐杰, 许文良, 王枫, 等. 2018. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代—古近纪岩浆记录[J]. 中国科学: 地球科学, 48(5): 549−583.

    Google Scholar

    [88] 童英, 洪大卫, 王涛, 等. 2010. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 31(3): 395−412.

    Google Scholar

    [89] 王敏, 王居里, 胡洋, 等. 2018. 新疆谢米斯台地区乌兰萨拉岩体的地球化学、年代学及全岩Sr−Nd和锆石Hf同位素研究[J]. 岩石学报, 34(3): 618−636.

    Google Scholar

    [90] 王涛, 张建军, 李舢, 等. 2022. 东北亚晚古生代—中生代岩浆时空演化: 多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 29(2): 28−44.

    Google Scholar

    [91] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [92] 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.

    Google Scholar

    [93] 徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857.

    Google Scholar

    [94] 许文良, 王枫, 裴福萍, 等. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 29(2): 339−353.

    Google Scholar

    [95] 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    Google Scholar

    [96] 许文良, 王旖旎, 王枫, 等. 2022. 西太平洋俯冲带的演变: 来自东北亚陆缘增生杂岩的制约[J]. 地质论评, 68(1): 1−17.

    Google Scholar

    [97] 张健, 张德军, 郑月娟, 等. 2020. 内蒙古林西上二叠统林西组碎屑锆石LA−ICP−MS年代学及其构造意义[J]. 吉林大学学报(地球科学版), 50(4): 1090−1103.

    Google Scholar

    [98] 章培春, 彭勃, 赵金忠, 等. 2022. 大兴安岭南段小乌兰沟正长花岗岩成因: 锆石LA−ICP−MS U−Pb年代学、地球化学及Hf同位素的制约[J]. 地球科学, 47(8): 2889−2901. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208017

    CrossRef Google Scholar

    [99] 张超, 郭巍, 徐仲元, 等. 2014. 吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究[J]. 岩石学报, 30(2): 515−526.

    Google Scholar

    [100] 赵院冬, 车继英, 许逢明, 等. 2018. 兴安地块东北部晚侏罗世C型埃达克质花岗岩年代学、地球化学特征及构造环境意义[J]. 地学前缘, 25(6): 240−253.

    Google Scholar

    [101] 周建波, 蒲先刚, 侯贺晟, 等. 2018. 东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约[J]. 岩石学报, 34(10): 2845−2856.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(251) PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint