2024 Vol. 43, No. 9
Article Contents

PEI Xiaolong, ZHU Xiaosong, FENG Xin, LIU Hang, YU Weiwei, WU Tong, NI Shubo. 2024. Research on ground substrate modeling, classification and survey based on unified management of natural resources. Geological Bulletin of China, 43(9): 1530-1543. doi: 10.12097/gbc.2023.11.001
Citation: PEI Xiaolong, ZHU Xiaosong, FENG Xin, LIU Hang, YU Weiwei, WU Tong, NI Shubo. 2024. Research on ground substrate modeling, classification and survey based on unified management of natural resources. Geological Bulletin of China, 43(9): 1530-1543. doi: 10.12097/gbc.2023.11.001

Research on ground substrate modeling, classification and survey based on unified management of natural resources

More Information
  • Based on the needs of unified management of natural resources, the Ministry of Natural Resources of China has put forward the concept of "ground substrate" and has organized a pilot survey of surface substrate in typical areas. At present, the three−level classification system of ground substrate has not yet formed a unified understanding and standard, which seriously restricts the work of ground substrate data investigation, field mapping and application of results. In view of this, this paper clarifies the theoretical significance and application value of ground substrate by analyzing the connotation of ground substrate, comprehensively considers the data utilization needs of national urban space, ecological space and agricultural spatial planning, and establishes a spatial hierarchy model of ground substrate based on survey−classification−application, which can realize the organic combination with four types of ground substrate data: rock substrate, gravel substrate, soil substrate and mud substrate, and then proposes a three−level classification system scheme. Based on the secondary type of the Ground Substrate Classification Scheme, this scheme is fully connected with the existing classification system, and based on the existing research basis and current technical standards, it abides by the convention of natural science terminology in naming, and forms a scientific, unified, operational, applicable and normative three−level system through scientific numbering, which has the feasibility of application and can provide reference for the theoretical research and investigation and application of ground substrate.

  • 加载中
  • [1] An P J, Zhang Z Q, Wang L W. 2016. Review of earth critical zone research[J]. Advances in Earth Science, 31(12): 1228−1234 (in Chinese with English abstract).

    Google Scholar

    [2] Chang X, Zhang Y, Song J N. 2018. Looking at the new era of land spatial planning from the establishment of the Ministry of Natural Resources[J]. China Land, (5): 25−27 (in Chinese with English abstract).

    Google Scholar

    [3] Chen G G, Zhang X D, Zhang J, et al. 2020. Discussion on natural resources classification system[J]. East China Geology, 41(3): 209−214 (in Chinese with English abstract).

    Google Scholar

    [4] Chen J, Wu H, Zhang J X, et al. 2022. Building natural resources surveying and monitoring technological system: Direction and research agenda[J]. Acta Geographica Sinica, 77(5): 1041−1055 (in Chinese with English abstract).

    Google Scholar

    [5] Chen Y F, Dong M. 2003. Spatial heterogeneity in ecological systems[J]. Acta Ecologica Sinica, (2): 346−352 (in Chinese with English abstract).

    Google Scholar

    [6] Chorover J, Troch P A, Rasmussen C, et al. 2011. How water, carbon, and energy drive critical zone evolution: The Jemez−Santa Catalina Critical Zone Observatory[J]. Vadose Zone Journal, 10(3): 884−899. doi: 10.2136/vzj2010.0132

    CrossRef Google Scholar

    [7] Deng S Q. 1986. Suggestions to amend and supplement the classification system of soil texture in China[J]. Soils, 18(6): 304−311 (in Chinese).

    Google Scholar

    [8] Ding G Y, Kao W M, Huang S Y, et al. 1964. Colour characteristics of quaternary sediments from the North China Plain and their geological significance[J]. Scientia Geologica Sinica, (2): 143−159 (in Chinese).

    Google Scholar

    [9] Fu S H, Lu B J, Ye Z H. 2010. Effects of rock fragments on runoff and soil erosion[J]. Journal of Soil and Water Conservation, 24(2): 15−18 (in Chinese with English abstract).

    Google Scholar

    [10] Ge L S, Hou H X, Xia R. 2022. Construction of Technical System for Ground Substrate Survey of Natural Resources[J]. Geomatics World, 29(5): 20−27 (in Chinese with English abstract).

    Google Scholar

    [11] Ge L S, Xia R. 2023. High−standard farmland construction: Ground substrate survey−based solutions[J]. Natural Resource Economics of China, 36(5): 4−13 (in Chinese with English abstract).

    Google Scholar

    [12] Ge L S, Yang G C. 2020. New field of natural resources survey and monitoring: Ground substrate survey[J]. Natural Resource Economics of China, 33(9): 4−11, 67 (in Chinese with English abstract).

    Google Scholar

    [13] Hahm W J, Riebe C S, Lukens C E. 2014. Bedrock composition regulates mountain ecosystems and landscape evolution[J]. Proceedings of the National Academy of Sciences, 111(9): 3338−3343. doi: 10.1073/pnas.1315667111

    CrossRef Google Scholar

    [14] Hao A B, Yin Z Q, Peng L, et al. 2020. A discussion of the classification of natural resources based on the combination of academic−legal principles and management[J]. Hydrogeology & Engineering Geology, 47(6): 1−7 (in Chinese with English abstract).

    Google Scholar

    [15] Hong M M, Wang F F, Yang H, et al. 2008. Application of attribute hierarchical model on soil quality assessment[J]. Environmental Science Survey, (2): 72−75 (in Chinese with English abstract).

    Google Scholar

    [16] Huang Q, Zeng Y, Jiang Q. 2015. Progress and prospect of the study on “making great efforts to promote ecological civilization construction”[J].China Population, Resources and Environment, 25(2): 111−120 (in Chinese with English abstract).

    Google Scholar

    [17] Huang X J. 2019. Unified management of natural resources: A new era, new characteristics, and new trend[J]. Resources Science, 41(1): 1−8 (in Chinese with English abstract).

    Google Scholar

    [18] Jia L, Liu H, O Y Y, et al. 2022. Division scheme of surface substrate mapping units of mountainous−hilly area in South China based on geological formations research: example from Xinhui−Taishan area in Pearl River Delta[J]. Northwestern Geology, 55(4): 140−157 (in Chinese with English abstract).

    Google Scholar

    [19] Li B G, Li W D, Shi Y C. 1998. Some distribution features of textural layers of regional soils in a fluviogenic plain[J]. Acta Pedologica Sinica, (4): 433−440 (in Chinese with English abstract).

    Google Scholar

    [20] Li Y, Gao M, Wei C F, et al. 2006. Spatial distribution of rock fragment and its influences on soil hydrological processes[J]. Chinese Agricultural Science Bulletin, (5): 271−276 (in Chinese with English abstract).

    Google Scholar

    [21] Lin J, Wu Y X, Wu J Y, et al. 2018. Construction of the spatial planning system: with discussions on the relationship between spatial planning, territorial spatial regulation, and natural resources supervision[J]. City Planning Review, 42(5): 9−17 (in Chinese with English abstract).

    Google Scholar

    [22] Liu Q J, Liu Y X, Wang Y, et al. 2023. A proposed scheme for third−level classification of ground substrate[J]. Urban Geology, 18(1): 1−8 (in Chinese with English abstract).

    Google Scholar

    [23] Liu Z F, Fu B J, Liu G H, et al. 2006. Soil quality: concept, indicators and its assessment[J]. Acta Ecologica Sinica, (3): 901−913 (in Chinese with English abstract).

    Google Scholar

    [24] Lukasz P, Jonathan D P, Pavel S. 2016. Root, rock, and regolith: Biomechanical and biochemical weathering by treesand its impact on hillslopes−A critical literature review[J]. Earth−Science Reviews, 159: 142−159. doi: 10.1016/j.earscirev.2016.06.002

    CrossRef Google Scholar

    [25] Luo Z B, Fan J, Shao M A. 2022. Progresses of weathered bedrock ecohydrology in the Earth’s critical zone[J]. Chinese Science Bulletin, 67(27): 3311−3323 (in Chinese with English abstract). doi: 10.1360/TB-2022-0046

    CrossRef Google Scholar

    [26] Martin J B, Covington M, Toran L, et al. 2021. Carbonate Critical Zone Research Coordination Network Workshop Report[R]. Virginia: Karst Waters Institute, Leesburg.

    Google Scholar

    [27] Ministry of Natural Resources. 2020a. Notice of the ministry of natural resources on issuing the overall plan for the construction of the Natural Resources Investigation and Monitoring System [EB/OL]. (2020−01−17)[2024−01−09]. http://gi.mnr.gov.cn/202001/t20200117_2498071.html (in Chinese).

    Google Scholar

    [28] Ministry of Natural Resources. 2020b. Notice of the general office of the ministry of natural resources printing and distributing “The ground substrate classification scheme (trial)”[EB/OL]. (2020−12−22) [2024−01−09]. http://gi.mnr.gov.cn/202012/t202012222596025.html (in Chinese).

    Google Scholar

    [29] Pei X L, Han X L, Qian J L, et al. 2020. Soil fertility assessment indicators from the perspective of natural resources comprehensive observation[J]. Resources Science, 42(10): 1953−1964 (in Chinese with English abstract).

    Google Scholar

    [30] Peng L, Wang Y N, Yin Z Q, et al. 2022. Current status of natural resources classification and unified classification of natural resources for the future[J]. Geological Bulletin of China, 41(12): 2106−2113 (in Chinese with English abstract).

    Google Scholar

    [31] Pu J B. 2022. Earth's critical zone and karst critical zone: Structure, characteristic and bottom boundary[J]. Bulletin of Geological Science and Technology, 41(5): 230−241.

    Google Scholar

    [32] Qian F K, Zhang L L, Jia L, et al. 2016. Site condition assessment during prime farmland demarcating[J]. Journal of Natural Resources, 31(3): 447−456 (in Chinese with English abstract).

    Google Scholar

    [33] Rasmussen C, Pelletier D J, Troch A P, et al. 2015. Quantifying topographic and vegetation effects on the transfer of energy and mass to the critical zone[J]. Vadose Zone Journal, 14(11): 1−16.

    Google Scholar

    [34] State Council of the People's Republic of China. 2022. Circular of the State Council on the third national soil census[OL]. (2022−02−16)[2024−5−9]. https://www.gov.cn/zhengce/content/2022−02/16/content_5673906.htm (in Chinese).

    Google Scholar

    [35] Sun X Y, Xu W, Wang M J. 2022. Investigation and study on stratification and classification of ground substrate layer[J]. China Land, (7): 34−36 (in Chinese with English abstract).

    Google Scholar

    [36] Wang D L, Yuan G D, Gong Z T. 1988. Some insights on soil systematic classification and soil survey[J]. Soils, (1): 49−52 (in Chinese).

    Google Scholar

    [37] Wang J B, Wei X F, Zhang H Q, et al. 2020. The eco−geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611−1624 (in Chinese with English abstract).

    Google Scholar

    [38] Wang J J, Chen C R, Yu Y C, et al. 2011. Advances in application of models in soil quality evaluation[J]. Guizhou Agricultural Sciences, 39(7): 115−118 (in Chinese with English abstract).

    Google Scholar

    [39] Wu K N, Zhao R. 2019. Soil texture classification and its application in China[J]. Acta Pedologica Sinica, 56(1): 227−241 (in Chinese with English abstract).

    Google Scholar

    [40] Xu J X. 1997. Areal variation in the relation between chemical and mechanical denudations in the monsoon−influenced eastern China[J]. Scientia Geographica Sinica, (3): 10−16 (in Chinese with English abstract).

    Google Scholar

    [41] Yan X B. 2006. Ecological environment construction and water resources protection and utilisation in Silt River Basin[J]. Shanxi Water Resources, (1): 38−39 (in Chinese with English abstract).

    Google Scholar

    [42] Yang J L, Zhang G L, Huang L M. 2013. Rock weathering and soil formation rates of a forested watershed in the typical subtropical granite area[J]. Acta Pedologica Sinica, 50(2): 253−259 (in Chinese with English abstract).

    Google Scholar

    [43] Yang S H, Song X D, Wu H Y, et al. 2024. A review and discussion on the Earth's Critical Zone research: status quo and prospect[J]. Acta Pedologica Sinica, 61(2): 308−318 (in Chinese with English abstract).

    Google Scholar

    [44] Yao X F, Yang J F, Zuo L Y, et al. 2022. Discussion on connotation and survey strategy of the ground substrate[J]. Geological Bulletin of China, 41(12): 2097−2105 (in Chinese with English abstract).

    Google Scholar

    [45] Yin Z Q, Qin X G, Zhang S J, et al. 2020. Preliminary study on classification and investigation of surface substrate[J]. Hydrogeology & Engineering Geology, 47(6): 8−14 (in Chinese with English abstract).

    Google Scholar

    [46] Yuan G L, Hou H X, Liu J Y, et al. 2023. Introduction to the methods of ecology−geological survey for servicing ecological civilization: Example from ecology−supporting sphere survey[J]. Northwestern Geology, 56(3): 30−38 (in Chinese with English abstract).

    Google Scholar

    [47] Yue W Z, Wang T Y, Zhen Y L. 2020. Unified zoning of territorial space use control derived from the core concept of "Three types of spatial zones and alert−lines"[J]. China Land Science, 34(5): 52−59,68 (in Chinese with English abstract).

    Google Scholar

    [48] Zhang F R. 2021. Supporting the technical system for the unified survey of natural resources: An analysis of “The Surface Substrate Classification Scheme (Trial)”[N]. China Natural Resources News, 2021−1−8(3) (in Chinese).

    Google Scholar

    [49] Zhang F R. 2023. On key survey elements and priority areas for the surface substrate layer[J]. China Land, (2): 40−41 (in Chinese with English abstract).

    Google Scholar

    [50] Zhang F Y, Zhang W Y, Zhang X Y, et al. 2012. Key technique and scheme of classification and nomenclature for deep sea sediments[J]. Earth Science(Journal of China University of Geosciences), 37(1): 93−104 (in Chinese with English abstract).

    Google Scholar

    [51] Zhang G L, Wang Q B, Zhang F R, et al. 2013. Criteria for establishment of soil family and soil series in Chinese soil taxonomy[J]. Acta Pedologica Sinica, 50(4): 826−834 (in Chinese with English abstract).

    Google Scholar

    [52] Zhang X F, Wang C S, Li M. 2019. Demarcating ecological space and ecological protection red line under the framework of territory spatial planning[J]. Geographical Research, 38(10): 2430−2446 (in Chinese with English abstract).

    Google Scholar

    [53] Zhang Y L, Luan Q L, Xiong C S, et al. 2021. Spatial heterogeneity evaluation and zoning of production−living−ecological space based on multi−source spatial data[J]. Transactions of the Chinese Society of Agricultural Engineering, 37(10): 214−223 (in Chinese with English abstract).

    Google Scholar

    [54] Zhou K, Li J Y, Wang Q. 2021. Evaluation on agricultural production space and layout optimization based on resources and environmental carrying capacity: A case study of Fujian Province[J]. Scientia Geographica Sinica, 41(2): 280−289 (in Chinese with English abstract).

    Google Scholar

    [55] Zhu W, Min F L, Lu Y Y, et al. 2013. Subject of "mud science and application technology" and its research progress[J]. Rock and Soil Mechanics, 34(11): 3041−3054 (in Chinese with English abstract).

    Google Scholar

    [56] Zhu X S, Pei X L, Wang W, et al. 2024. Spatial heterogeneity characteristics of ground substrate in hilly area and its impact on vegetation ecology[J]. Geological Bulletin of China, 43(9): 1544−1554 (in Chinese with English abstract).

    Google Scholar

    [57] 安培浚, 张志强, 王立伟. 2016. 地球关键带的研究进展[J]. 地球科学进展, 31(12): 1228−1234.

    Google Scholar

    [58] 常新, 张杨, 宋家宁. 2018. 从自然资源部的组建看国土空间规划新时代[J]. 中国土地, (5): 25−27.

    Google Scholar

    [59] 陈国光, 张晓东, 张洁, 等. 2020. 自然资源分类体系探讨[J]. 华东地质, 41(3): 209−214.

    Google Scholar

    [60] 陈军, 武昊, 张继贤, 等. 2022. 自然资源调查监测技术体系构建的方向与任务[J]. 地理学报, 77(5): 1041−1055. doi: 10.11821/dlxb202205001

    CrossRef Google Scholar

    [61] 陈玉福, 董鸣. 2003. 生态学系统的空间异质性[J]. 生态学报, 23(2): 346−352. doi: 10.3321/j.issn:1000-0933.2003.02.019

    CrossRef Google Scholar

    [62] 邓时琴. 1986. 关于修改和补充我国土壤质地分类系统的建议[J]. 土壤, 18(6): 304−311.

    Google Scholar

    [63] 丁国瑜, 高維明, 黄述银, 等. 1964. 华北平原第四纪沉积物的颜色特征及其地质意义[J]. 地质科学, (2): 143−159.

    Google Scholar

    [64] 符素华, 路炳军, 叶芝菡. 2010. 地表砾石对降雨径流及土壤侵蚀的影响[J]. 水土保持学报, 24(2): 15−18.

    Google Scholar

    [65] 葛良胜, 侯红星, 夏锐. 2022. 自然资源地表基质调查技术体系构建[J]. 地理信息世界, 29(5): 20−27. doi: 10.3969/j.issn.1672-1586.2022.05.005

    CrossRef Google Scholar

    [66] 葛良胜, 夏锐. 2023. 高标准农田建设: 基于地表基质调查的解决方案[J]. 中国国土资源经济, 36(5): 4−13.

    Google Scholar

    [67] 葛良胜, 杨贵才. 2020. 自然资源调查监测工作新领域: 地表基质调查[J]. 中国国土资源经济, 33(9): 4−11.

    Google Scholar

    [68] 国务院. 2022. 国务院关于开展第三次全国土壤普查的通知[OL]. (2022−02−16)[2024−5−9]. https://www.gov.cn/zhengce/content/2022−02/16/content_5673906.htm.

    Google Scholar

    [69] 郝爱兵, 殷志强, 彭令, 等. 2020. 学理与法理和管理相结合的自然资源分类刍议[J]. 水文地质工程地质, 47(6): 1−7.

    Google Scholar

    [70] 洪棉棉, 王菲凤, 杨晖, 等. 2008. 属性层次模型在土壤环境质量评价中的应用[J]. 环境科学导刊, (2): 72−75. doi: 10.3969/j.issn.1673-9655.2008.02.023

    CrossRef Google Scholar

    [71] 黄勤, 曾元, 江琴. 2015. 中国推进生态文明建设的研究进展[J]. 中国人口·资源与环境, 25(2): 111−120. doi: 10.3969/j.issn.1002-2104.2015.02.015

    CrossRef Google Scholar

    [72] 黄贤金. 2019. 自然资源统一管理: 新时代、新特征、新趋向[J]. 资源科学, 41(1): 1−8.

    Google Scholar

    [73] 贾磊, 刘洪, 欧阳渊, 等. 2022. 基于地质建造的南方山地−丘陵区地表基质填图单元划分方案——以珠三角新会台山地区为例[J]. 西北地质, 55(4): 140−157.

    Google Scholar

    [74] 李保国, 李卫东, 石元春. 1998. 冲积平原上区域土壤质地层次的某些分布特征[J]. 土壤学报, 35(4): 433−440. doi: 10.3321/j.issn:0564-3929.1998.04.001

    CrossRef Google Scholar

    [75] 李燕, 高明, 魏朝富, 等. 2006. 土壤砾石的分布及其对水文过程的影响[J]. 中国农学通报, 22(5): 271−276. doi: 10.3969/j.issn.1000-6850.2006.05.072

    CrossRef Google Scholar

    [76] 林坚, 吴宇翔, 吴佳雨, 等. 2018. 论空间规划体系的构建——兼析空间规划、国土空间用途管制与自然资源监管的关系[J]. 城市规划, 42(5): 9−17.

    Google Scholar

    [77] 刘清俊, 刘雨鑫, 王颖, 等. 2023. 地表基质三级分类方案探讨[J]. 城市地质, 18(1): 1−8. doi: 10.3969/j.issn.1007-1903.2023.01.001

    CrossRef Google Scholar

    [78] 刘占锋, 傅伯杰, 刘国华, 等. 2006. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 26(3): 901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036

    CrossRef Google Scholar

    [79] 骆占斌, 樊军, 邵明安. 2022. 地球关键带基岩风化层生态水文研究进展[J]. 科学通报, 67(27): 3311−3323.

    Google Scholar

    [80] 裴小龙, 韩小龙, 钱建利, 等. 2020. 自然资源综合观测视角下的土壤肥力评价指标. 资源科学, 42(10): 1953−1964.

    Google Scholar

    [81] 彭令, 王英男, 殷志强, 等. 2022. 自然资源分类现状与面向未来的统一分类研究[J]. 地质通报, 41(12): 2106−2113. doi: 10.12097/j.issn.1671-2552.2022.12.003

    CrossRef Google Scholar

    [82] 蒲俊兵. 2022. 地球关键带与岩溶关键带: 结构、特征、底界[J]. 地质科技通报, 41(5): 230−241.

    Google Scholar

    [83] 钱凤魁, 张琳琳, 贾璐, 等. 2016. 基本农田划定中的耕地立地条件评价研究[J]. 自然资源学报, 31(3): 447−456. doi: 10.11849/zrzyxb.20150218

    CrossRef Google Scholar

    [84] 孙禧勇, 许玮, 王明建. 2022. 地表基质层分层分类调查研究[J]. 中国土地, (7): 34−36.

    Google Scholar

    [85] 王敦领, 袁国栋, 龚子同. 1988. 关于土壤系统分类和土壤调查的某些见解[J]. 土壤, (1): 49−52.

    Google Scholar

    [86] 王纪杰, 陈昌仁, 俞元春, 等. 2011. 不同模型在土壤质量评价中的应用研究进展[J]. 贵州农业科学, 39(7): 115−118. doi: 10.3969/j.issn.1001-3601.2011.07.034

    CrossRef Google Scholar

    [87] 王京彬, 卫晓锋, 张会琼, 等. 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611−1624. doi: 10.12029/gc20200601

    CrossRef Google Scholar

    [88] 吴克宁, 赵瑞. 2019. 土壤质地分类及其在我国应用探讨[J]. 土壤学报, 56(1): 227−241. doi: 10.11766/trxb201803120129

    CrossRef Google Scholar

    [89] 许炯心. 1997. 地表物质迁移的构成特征及其地域变化[J]. 地理科学, 17(3): 10−16.

    Google Scholar

    [90] 闫晓兵. 2006. 淤泥河流域生态环境建设与水资源保护利用[J]. 山西水利, (1): 38−39. doi: 10.3969/j.issn.1004-7042.2006.01.020

    CrossRef Google Scholar

    [91] 杨金玲, 张甘霖, 黄来明. 2013. 典型亚热带花岗岩地区森林流域岩石风化和土壤形成速率研究[J]. 土壤学报, 50(2): 253−259. doi: 10.11766/trxb201204120128

    CrossRef Google Scholar

    [92] 杨顺华, 宋效东, 吴华勇, 等. 2024. 地球关键带研究评述: 现状与展望[J]. 土壤学报, 61(2): 308−318.

    Google Scholar

    [93] 姚晓峰, 杨建锋, 左力艳, 等. 2022. 地表基质的内涵辨析与调查思路[J]. 地质通报, 41(12): 2097−2105. doi: 10.12097/j.issn.1671-2552.2022.12.002

    CrossRef Google Scholar

    [94] 殷志强, 秦小光, 张蜀冀, 等. 2020. 地表基质分类及调查初步研究[J]. 水文地质工程地质, 47(6): 8−14.

    Google Scholar

    [95] 袁国礼, 侯红星, 刘建宇, 等. 2023. 服务生态文明的生态地质调查工作方法浅析——以地表基质调查为例[J]. 西北地质, 56(3): 30−38. doi: 10.12401/j.nwg.2023065

    CrossRef Google Scholar

    [96] 岳文泽, 王田雨, 甄延临. 2020. “三区三线”为核心的统一国土空间用途管制分区[J]. 中国土地科学, 34(5): 52−59.

    Google Scholar

    [97] 张凤荣. 2021. 支撑自然资源统一调查技术体系: 对《地表基质分类方案(试行)》的解析[N]. 中国自然资源报, 2021−01−08(3).

    Google Scholar

    [98] 张凤荣. 2023. 论地表基质层重点调查内容和优先调查区域[J]. 中国土地, (2): 40−41.

    Google Scholar

    [99] 张富元, 章伟艳, 张霄宇, 等. 2012. 深海沉积物分类与命名的关键技术和方案[J]. 地球科学(中国地质大学学报), 37(1): 93−104.

    Google Scholar

    [100] 张甘霖, 王秋兵, 张凤荣, 等. 2013. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 50(4): 826−834. doi: 10.11766/trxb201303180124

    CrossRef Google Scholar

    [101] 张雪飞, 王传胜, 李萌. 2019. 国土空间规划中生态空间和生态保护红线的划定[J]. 地理研究, 38(10): 2430−2446. doi: 10.11821/dlyj020171221

    CrossRef Google Scholar

    [102] 张永蕾, 栾乔林, 熊昌盛, 等. 2021. 基于多源空间数据的“三生”空间异质性评价与分区划定[J]. 农业工程学报, 37(10): 214−223. doi: 10.11975/j.issn.1002-6819.2021.10.026

    CrossRef Google Scholar

    [103] 周侃, 李九一, 王强. 2021. 基于资源环境承载力的农业生产空间评价与布局优化——以福建省为例[J]. 地理科学, 41(2): 280−289.

    Google Scholar

    [104] 朱伟, 闵凡路, 吕一彦, 等. 2013. “泥科学与应用技术”的提出及研究进展[J]. 岩土力学, 34(11): 3041−3054.

    Google Scholar

    [105] 祝晓松, 裴小龙, 王伟, 等. 2024. 山丘区地表基质空间异质性特征及其对植被生态影响[J]. 地质通报, 43(9): 1544−1554.

    Google Scholar

    [106] 自然资源部. 2020a. 自然资源部关于印发《自然资源调查监测体系构建总体方案》的通知[EB/OL]. (2020−01−17) [2024−01−09]. http://gi.mnr.gov.cn/202001/t20200117_2498071.html.

    Google Scholar

    [107] 自然资源部. 2020b. 自然资源部办公厅印发《地表基质分类方案(试行)》的通知[EB/OL]. (2020−12−22) [2024−01−09]. http://gi.mnr.gov.cn/202012/t202012222596025.html.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(8)

Article Metrics

Article views(399) PDF downloads(156) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint