2024 Vol. 43, No. 9
Article Contents

ZHU Xiaosong, PEI Xiaolong, WANG Wei, ZHANG Zhongyue, SUN Weitao, NI Shubo, GONG Weixin. 2024. Spatial heterogeneity characteristics of ground substrate in hilly area and its impact on vegetation ecology. Geological Bulletin of China, 43(9): 1544-1554. doi: 10.12097/gbc.2023.08.035
Citation: ZHU Xiaosong, PEI Xiaolong, WANG Wei, ZHANG Zhongyue, SUN Weitao, NI Shubo, GONG Weixin. 2024. Spatial heterogeneity characteristics of ground substrate in hilly area and its impact on vegetation ecology. Geological Bulletin of China, 43(9): 1544-1554. doi: 10.12097/gbc.2023.08.035

Spatial heterogeneity characteristics of ground substrate in hilly area and its impact on vegetation ecology

More Information
  • The ground substrate is the basic material of the Earth's surface layer that nurtures and supports various natural resources such as forests, grasslands, water and wetlands, etc. Influenced by the spatial structure of the Earth's key zones and elemental characteristics, the ground substrate of the hill area presents obvious spatial heterogeneity characteristics, and significantly influences the spatial distribution of the vegetation belonging to it and its ecological evolution.The study of the spatial heterogeneity characteristics of the ground substrate and its impact on vegetation ecology is of great significance for further understanding the structure and surface process laws of the Earth's critical zone, and supporting the restoration of the national territorial space ecological environment. Taking the ground substrate of Ningbo hill area as the research object, this paper analyzes the spatial heterogeneity of three typical surface matrices, namely granite, rhyolite and basalt, from the perspective of the spatial structure and elemental characteristics of the ground substrate by adopting the methods of sectional research and sample testing. It was found that the granite group is characterized by coarse soil and high permeability, the rhyolite group is characterized by coarser soil and good shallow−surface permeability, and the basalt group is characterized by fine soil and poor aeration. In addition, the main trace elements of granite type are deficient, rhyolite type is rich in Mo and Zn, basalt type is rich in Fe, Mg, Co, Cu and Zn, and the CIA value of basalt is significantly higher than that of granite and rhyolite. The results showed that the spatial heterogeneity of the ground substrate in the hilly area was mainly influenced by the structure and elemental composition of the bedrock, and had obvious ecological effects on the growth of vegetation. The spatial structure of the ground substrate mainly affects the distribution and transportation of water, and the elemental characteristics affect the distribution of nutrients, and the resulting differences in the spatial distribution and abundance of water and nutrients have a direct impact on the growth of vegetation.

  • 加载中
  • [1] Banwart S A, Chorver J, Gaillardet G, et al. 2013. Sustaining earth’s critical zone basic science and interdisciplinary solutions for global challenges[R]. United Kingdom: The University of Sheffield.

    Google Scholar

    [2] Bao Z W. 1992. A geochemical study of the granitoid weathering crust in Southeast China[J]. Geochimica, 21(2): 166−174 (in Chinese with English abstract).

    Google Scholar

    [3] Clair J S, Moon S, Holbrook W S, et al. 2015. Geophysical imaging reveals topographic stress control of bedrock weathering[J]. Science, 350(6260): 534−538. doi: 10.1126/science.aab2210

    CrossRef Google Scholar

    [4] Ding Y J, Zhang S Q, Han T D, et al. 2014. Opportunities and challenges of studies across land surface processes to land surface system sciences[J]. Advances in Earth Science, 29(4): 443−455 (in Chinese with English abstract).

    Google Scholar

    [5] Ge L S, Yang G C. 2020. New field of natural resources survey and monitoring: Ground substrate survey[J]. Natural Resource Economics of China, 33(9): 4−11 (in Chinese with English abstract).

    Google Scholar

    [6] Gu S Y, Wan G J, Miao J Q. 2003. Chemical weathering for dacite in Pingxiang, Guangxi[J]. Geochimica, 32(4): 328−334 (in Chinese with English abstract).

    Google Scholar

    [7] Hu Z L, Pan G X, Li L Q, et al. 2009. Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China[J]. Acta Ecologica Sinica, 29(8): 4187−4195 (in Chinese with English abstract).

    Google Scholar

    [8] Huang J T, Hou G C, Tao Z P, et al. 2008. Vegetation ecological areas of the Ordos Plateau and their hydrogeological significance[J]. Geological Bulletin of China, 27(8): 1330−1334 (in Chinese with English abstract).

    Google Scholar

    [9] Jia L, Liu H, O Y Y, et al. 2022. Division scheme of surface substrate mapping units of mountainous−hilly area in South China based on geological formations research: example from Xinhui−Taishan area in Pearl River Delta[J]. Northwestern Geology, 55(4): 140−157 (in Chinese with English abstract).

    Google Scholar

    [10] Katemaher, Alexis N. 2019. Reactive transport processes that drive chemical weathering: frommaking space for water to dismantling continents[J]. Mineralogy and Geochemistry, 85(1): 349−380. doi: 10.2138/rmg.2018.85.12

    CrossRef Google Scholar

    [11] Lan X C, Cheng L. 2017. Study on the regionalization of soil and water conservation in Ningbo City[J]. Science of Soil and Water Conservation, 15(1): 141−147 (in Chinese with English abstract).

    Google Scholar

    [12] Li G, Henry L. 2016. Critical Zone research and observatories: Current status and future perspectives[J]. Vadose Zone Journal, 15(9): 1−14.

    Google Scholar

    [13] Li H, Reynolds J F, et al. 1995. On definition and quantification of heterogeneity[J]. Oikos, 73(2): 280−284. doi: 10.2307/3545921

    CrossRef Google Scholar

    [14] Li X R. 2005. The impact of spatial heterogeneity changes in arid sandy soil on vegetation restoration[J]. Scientia Sinica(Terrae), (4): 361−370 (in Chinese with English abstract).

    Google Scholar

    [15] Li X, Zhou X H, Xiang Z Q. 2023. Simply discussion on the work of ground substrate survey: Taking Hainan Island as an example[J]. Geological Bulletin of China, 42(1): 68−75 (in Chinese with English abstract).

    Google Scholar

    [16] Lin H. 2010. Earth’s Critical Zone and hydropedology: Concepts, characteristics, and advances[J]. Hydrol. Earth Syst. Sci., 14: 25−45. doi: 10.5194/hess-14-25-2010

    CrossRef Google Scholar

    [17] Liu C Y, He M C. 2011. Research on the sensitive chemical weathering indices to rock weathering[J]. Earth and Environment, 39(3): 349−354 (in Chinese with English abstract).

    Google Scholar

    [18] Liu C. 2015. The mechanisms by grazing on grassland plant and soil spatial heterogeneity and their correlation[D]. Doctoral Dissertation of Northeast Normal University (in Chinese with English abstract).

    Google Scholar

    [19] Liu L Y, Bian Z Q, Ding S Y. 2018. Effects of landscape spatial heterogeneity on the generation and provision of ecosystem services[J]. Acta Ecologica Sinica, 38(18): 6412−6421 (in Chinese with English abstract).

    Google Scholar

    [20] Liu S, Li P, Feng Z. 2019. Eco−restoration research progress and strategy about wind−break and sand−fixation forest in BeiJing−TianJin−Hebei Metropolitan Region[J]. Chinese Journal of Ecology, 38(1): 267−274 (in Chinese with English abstract).

    Google Scholar

    [21] Liu Z, Huang X K, Xu H L, et al. 2020. Migration characteristics of elements in the rock−soil system and suitability evaluation of orange planting in Yaqueling area, Yichang, Hubei Province[J]. Geology in China, 47(6): 1853−1868.

    Google Scholar

    [22] Luo S, Zhang D M, Lu D B, et al. 2021. Evaluation of trace elements abundance and deficiency in cultivated soil and its influencing factors in Bijie City of Wumeng Mountain[J]. Geological Bulletin of China, 40(9): 1570−1583 (in Chinese with English abstract).

    Google Scholar

    [23] Ma T, Shen S, Deng Y M, et al. 2020. Theoretical approaches of survey on Earth's Critical Zone in basin: An example from Jianghan Plain, Central Yangtze River[J]. Earth Science, 45(12): 4498−4511 (in Chinese with English abstract).

    Google Scholar

    [24] Ministry of Natural Resources. 2020. Notice of the general office of the ministry of natural resources printing and distributing “The ground substrate classification scheme (trial)”[EB/OL]. (2020-12-22) [2024-01-09]. http://gi.mnr.gov.cn/202012/t202012222596025.html (in Chinese).

    Google Scholar

    [25] Ministry of Natural Resources. 2020. Notice of the ministry of natural resources on issuing the overall plan for the construction of the Natural Resources Investigation and Monitoring System[EB/OL]. (2020-01-17) [2024-01-09]. http://gi.mnr.gov.cn/202001/t20200117_2498071.html (in Chinese).

    Google Scholar

    [26] Ning X B, Xiang W H, Fang X, et al. 2009. Chemical element concentration in calcite, calcareous soil and plants on the rocky desertification area in Huaxi, Guiyang[J]. Scientia Silvae Sinicae, 45(5): 34−41 (in Chinese with English abstract).

    Google Scholar

    [27] Pei X L, Han X L, Qian J L, et al. 2020. Soil fertility assessment indicators from the perspective of natural resources comprehensive observation[J]. Resources Science, 42(10): 1953−1964 (in Chinese with English abstract).

    Google Scholar

    [28] Priscia O, Jerôme V, Bernard D, et al. 1999. The effect of organic matter on chemical weathering: study of a small tropical watershed: nsimi−zoétélé site, cameroon[J]. Geochimica et Cosmochimica Acta, 63(23): 4013−4035.

    Google Scholar

    [29] Richter D J, Mobley M. 2009. Monitoring earth’s critical zone[J]. Science, 326(20): 1067−1068.

    Google Scholar

    [30] Roering J J, Marshall J, Booth A M, et al. 2010. Evidence for biotic controls on topography and soil production[J]. Earth Planet Sci. Lett., 298: 183−190. doi: 10.1016/j.jpgl.2010.07.040

    CrossRef Google Scholar

    [31] Russell C P, Clifford R S, Leonard S S, et al. 2022. Forest vulnerability to drought controlled by bedrock composition[J]. Nature Geoscience, 9(15): 714−719.

    Google Scholar

    [32] Shao F L. 2012. Study on spatial heterogeneity relationship of vegetation structure and soil components in typical forest of northern Hebei mountains[D]. Doctoral Dissertation of Beijing Forestry University (in Chinese with English abstract).

    Google Scholar

    [33] Sharma A, Rajamani V. 2000. Weathering of gneissic rocks in the upper reaches of Cauvery river, south India: Implications to neotectonics of the region[J]. Chemical Geology, 166(3/4): 203−223. doi: 10.1016/S0009-2541(99)00222-3

    CrossRef Google Scholar

    [34] Shu L S. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035−1053 (in Chinese with English abstract).

    Google Scholar

    [35] Titus J H, Nowak R S, Smith S D. 2002. Soil resource heterogeneity in the Mojave Desert[J]. Journal of Arid Environments, 52(3): 269−292. doi: 10.1006/jare.2002.1010

    CrossRef Google Scholar

    [36] Wang Z L, Wei Z G, Tao Y, et al. 2002. Distribution, migration and accumulation of rare earth elements (REE) in the rock−soil−Dicranopteris dichotoma (RSD) system[J]. Geological Bulletin of China, 21(12): 881−889 (in Chinese with English abstract).

    Google Scholar

    [37] Wang Z S, Zhang K B, Wang X. 2015. Spatial heterogeneity of vegetation in artificially fenced area in Liuyangpu of Yanchi County in Ningxia[J]. Science of Soil and Water Conservation, 13(5): 52−57 (in Chinese with English abstract).

    Google Scholar

    [38] Xavier Z R, Jennifer M, Laura R, et al. 2015. Climatic and landscape controls on water transit times and silicatemineral weathering in the critical zone[J]. Water Resources Research, 51(8): 6036−6051. doi: 10.1002/2015WR017018

    CrossRef Google Scholar

    [39] Xu W M, Song C Y, Li Q M. 2015. Relationship between soil resource heterogeneity and tree diversity in Xishuangbanna Tropical Seasonal Rainforest, Southwest China[J]. Acta Ecol. Sin., 35(23): 7756−7762 (in Chinese with English abstract).

    Google Scholar

    [40] Yang S H, Song X D, Wu H Y, et al. 2024. A review and discussion on the Earth’s Critical Zone research: Status quo and prospect[J]. Acta Pedologica Sinica, 61(2): 308−318 (in Chinese with English abstract).

    Google Scholar

    [41] Yao X F, Yang J F, Zuo L Y, et al. 2022. Discussion on connotation and survey strategy of the ground substrate[J]. Geological Bulletin of China, 41(12): 2097−2105 (in Chinese with English abstract).

    Google Scholar

    [42] Yin Z Q, Hao A B, Wu A M, et al. 2022. The key progress in Chengde and the national proposal of the integrated survey of natural resources[J]. Geological Bulletin of China, 41(12): 2087−2096 (in Chinese with English abstract).

    Google Scholar

    [43] Yin Z Q, Qin X G, Zhang S J, et al. 2020. Preliminary study on classification and investigation of surface substrate[J]. Hydrogeology & Engineering Geology, 47(6): 8−14 (in Chinese with English abstract).

    Google Scholar

    [44] Yu M G, Hong W T, Yang Z L, et al. 2021. Classification of Yanshanian volcanic cycle and the related mineralization in the coast area of southeastern China[J]. Geological Bulletin of China, 40(6): 845−863 (in Chinese with English abstract).

    Google Scholar

    [45] Zhang G L, Song X D, Wu K N. 2021. A classification scheme for Earth’s Critical Zones and its application in China[J]. Science China Earth Sciences, 51(10): 1681−1692 (in Chinese with English abstract).

    Google Scholar

    [46] Zhang G L, Wang Q B, Zhang F R, et al. 2013. Criteria for establishment of soil family and soil series in Chinese soil taxonomy[J]. Acta Pedologica Sinica, 50(4): 826−834 (in Chinese with English abstract).

    Google Scholar

    [47] Zhang Z Y. 2017. Spatial distribution of vegetation and soil in temperate savanna ecosystem, Inner Mongolia[D]. Doctoral Dissertation of Chinese Academy of Forestry (in Chinese with English abstract).

    Google Scholar

    [48] Zhao J F, Liang Z M, Liu J T, et al. 2022. Variable runoff generation layer distributed hydrological model for hilly regions[J]. Advances in Water Science, 33(3): 429−441 (in Chinese with English abstract).

    Google Scholar

    [49] Zhao Q, Li T T, Zhang Q D. 2020. Soil nutrients'spatial heterogeneity and effects on vegetation distribution in Taiyue mountain[J]. Journal of Shanxi Normal University Natural Science Edition, 34(1): 79−84 (in Chinese with English abstract).

    Google Scholar

    [50] Zhao X J, Wu T S, Zhong X Y, et al. 2020. Comprehensive evaluation of ecological risk of farmland soil in typical karst area of Guangxi area with high heavy metal background[J]. Jiangsu Agricultural Sciences, 48(22): 252−261 (in Chinese with English abstract).

    Google Scholar

    [51] 包志伟. 1992. 华南花岗岩风化壳稀土元素地球化学研究[J]. 地球化学, 21(2): 166−174. doi: 10.3321/j.issn:0379-1726.1992.02.008

    CrossRef Google Scholar

    [52] 丁永建, 张世强, 韩添丁, 等. 2014. 由地表过程向地表系统科学研究跨越的机遇与挑战[J]. 地球科学进展, 29(4): 443−455. doi: 10.11867/j.issn.1001-8166.2014.04.0443

    CrossRef Google Scholar

    [53] 葛良胜, 杨贵才. 2020. 自然资源调查监测工作新领域: 地表基质调查[J]. 中国国土资源经济, 33(9): 4−11.

    Google Scholar

    [54] 顾尚义, 万国江, 毛健全. 2003. 广西凭祥英安岩的化学风化作用研究[J]. 地球化学, 32(4): 328−334. doi: 10.3321/j.issn:0379-1726.2003.04.004

    CrossRef Google Scholar

    [55] 胡忠良, 潘根兴, 李恋卿, 等. 2009. 贵州喀斯特山区不同植被下土壤C、N、P含量和空间异质性[J]. 生态学报, 29(8): 4187−4195. doi: 10.3321/j.issn:1000-0933.2009.08.021

    CrossRef Google Scholar

    [56] 黄金廷, 侯光才, 陶正平, 等. 2008. 鄂尔多斯高原植被生态分区及其水文地质意义[J]. 地质通报, 27(8): 1330−1334. doi: 10.3969/j.issn.1671-2552.2008.08.032

    CrossRef Google Scholar

    [57] 贾磊, 刘洪, 欧阳渊, 等. 2022. 基于地质建造的南方山地−丘陵区地表基质填图单元划分方案——以珠三角新会—台山地区为例[J]. 西北地质, 55(4): 140−157.

    Google Scholar

    [58] 蓝雪春, 程岚. 2017. 宁波市水土保持区划研究[J]. 中国水土保持科学, 15(1): 141−147.

    Google Scholar

    [59] 李响, 周效华, 相振群, 等. 2023. 地表基质调查的工作思路刍议: 以海南岛为例[J]. 地质通报, 42(1): 68−75. doi: 10.12097/j.issn.1671-2552.2023.01.006

    CrossRef Google Scholar

    [60] 李新荣. 2005. 干旱沙区土壤空间异质性变化对植被恢复的影响[J]. 中国科学(D辑: 地球科学), (4): 361−370.

    Google Scholar

    [61] 刘晨. 2015. 放牧对草地植被、土壤空间异质性及其相互关系的调控机制[D]. 东北师范大学博士学位论文.

    Google Scholar

    [62] 刘成禹, 何满潮. 2011. 对岩石风化程度敏感的化学风化指数研究[J]. 地球与环境, 39(3): 349−354.

    Google Scholar

    [63] 刘绿怡, 卞子亓, 丁圣彦. 2018. 景观空间异质性对生态系统服务形成与供给的影响[J]. 生态学报, 38(18): 6412−6421.

    Google Scholar

    [64] 刘硕, 李品, 冯兆忠. 2019. 京津冀防风固沙植被生态修复研究进展与对策[J]. 生态学杂志, 38(1): 267−274.

    Google Scholar

    [65] 刘孜, 黄行凯, 徐宏林, 等. 2020. 湖北宜昌鸦鹊岭地区岩石−土壤元素迁移特征及柑橘种植适宜性评价[J]. 中国地质, 47(6): 1853−1868. doi: 10.12029/gc20200620

    CrossRef Google Scholar

    [66] 骆珊, 张德明, 卢定彪, 等. 2021. 乌蒙山区毕节市耕地土壤微量元素丰缺评价及其影响因素[J]. 地质通报, 40(9): 1570−1583. doi: 10.12097/j.issn.1671-2552.2021.09.016

    CrossRef Google Scholar

    [67] 马腾, 沈帅, 邓娅敏, 等. 2020. 流域地球关键带调查理论方法: 以长江中游江汉平原为例[J]. 地球科学, 45(12): 4498−4511.

    Google Scholar

    [68] 宁晓波, 项文化, 方晰, 等. 2009. 贵阳花溪石灰岩、石灰土与定居植物化学元素含量特征[J]. 林业科学, 45(5): 34−41. doi: 10.3321/j.issn:1001-7488.2009.05.005

    CrossRef Google Scholar

    [69] 裴小龙, 韩小龙, 钱建利, 等. 2020. 自然资源综合观测视角下的土壤肥力评价指标[J]. 资源科学, 42(10): 1953−1964.

    Google Scholar

    [70] 邵方丽. 2012. 冀北山地典型森林植被与土壤成分的空间异质性关系研究[D]. 北京林业大学博士学位论文.

    Google Scholar

    [71] 舒良树. 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7): 1035−1053.

    Google Scholar

    [72] 汪振立, 魏正贵, 陶冶, 等. 2002. 岩石−土壤−铁芒萁系统中稀土元素的分布、迁移和累积[J]. 地质通报, 21(12): 881−889.

    Google Scholar

    [73] 王志述, 张克斌, 王晓. 2015. 盐池柳杨堡人工封育区植被空间异质性[J]. 中国水土保持科学, 13(5): 52−57. doi: 10.3969/j.issn.1672-3007.2015.05.008

    CrossRef Google Scholar

    [74] 徐武美, 宋彩云, 李巧明. 2015. 西双版纳热带季节雨林土壤养分空间异质性对乔木树种多样性的影响[J]. 生态学报, 35(23): 7756−7762.

    Google Scholar

    [75] 杨顺华, 宋效东, 吴华勇, 等. 2024. 地球关键带研究评述: 现状与展望[J]. 土壤学报, 61(2): 308−318.

    Google Scholar

    [76] 姚晓峰, 杨建锋, 左力艳, 等. 2022. 地表基质的内涵辨析与调查思路[J]. 地质通报, 41(12): 2097−2105.

    Google Scholar

    [77] 殷志强, 郝爱兵, 吴爱民, 等. 2022. 承德自然资源综合调查主要进展与全国自然资源综合调查总体思路[J]. 地质通报, 41(12): 2087−2096.

    Google Scholar

    [78] 殷志强, 秦小光, 张蜀冀, 等. 2020. 地表基质分类及调查初步研究[J]. 水文地质工程地质, 47(6): 8−14.

    Google Scholar

    [79] 余明刚, 洪文涛, 杨祝良, 等. 2021. 东南沿海燕山期火山活动旋回划分及其成矿规律[J]. 地质通报, 40(6): 845−863. doi: 10.12097/j.issn.1671-2552.2021.06.003

    CrossRef Google Scholar

    [80] 张甘霖, 宋效东, 吴克宁. 2021. 地球关键带分类方法与中国案例研究[J]. 中国科学: 地球科学, 51(10): 1681−1692.

    Google Scholar

    [81] 张甘霖, 王秋兵, 张凤荣, 等. 2013. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 50(4): 826−834. doi: 10.11766/trxb201303180124

    CrossRef Google Scholar

    [82] 张志永. 2017. 内蒙古温带疏林草地生态系统植被−土壤的空间分异特征研究[D]. 中国林业科学研究院博士学位论文.

    Google Scholar

    [83] 赵建飞, 梁忠民, 刘金涛, 等. 2022. 山丘区变动产流层分布式水文模型[J]. 水科学进展, 33(3): 429−441.

    Google Scholar

    [84] 赵倩, 李婷婷, 张钦弟. 2020. 太岳山植物群落土壤养分空间异质性及其对植被分布的影响[J]. 山西师范大学学报(自然科学版), 34(1): 79−84.

    Google Scholar

    [85] 赵辛金, 吴天生, 钟晓宇, 等. 2020. 广西典型岩溶区重金属高背景区农田土壤生态风险综合评价[J]. 江苏农业科学, 48(22): 252−261.

    Google Scholar

    [86] 自然资源部. 2020a. 自然资源部关于印发《自然资源调查监测体系构建总体方案》的通知[EB/OL]. (2020-01-17) [2024-01-09]. http://gi.mnr.gov.cn/202001/t20200117_2498071.html.

    Google Scholar

    [87] 自然资源部. 2020b. 自然资源部办公厅印发《地表基质分类方案(试行)》的通知[EB/OL]. (2020-12-22) [2024-01-09]. http://gi.mnr.gov.cn/202012/t202012222596025.html.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(425) PDF downloads(111) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint