2024 Vol. 43, No. 9
Article Contents

CHEN Wudi, LIU Xiaohuang, LI Hongyu, LIU Jiufen, ZHAO Xiaofeng, YUAN Jianglong, ZHAO Honghui, WANG Ran, XING Liyuan, WANG Chao, LUO Xinping. 2024. Change prediction of potential suitable area of cultivated land in Northeast China under the future climate change situation based on MaxEnt model. Geological Bulletin of China, 43(9): 1515-1529. doi: 10.12097/gbc.2024.04.004
Citation: CHEN Wudi, LIU Xiaohuang, LI Hongyu, LIU Jiufen, ZHAO Xiaofeng, YUAN Jianglong, ZHAO Honghui, WANG Ran, XING Liyuan, WANG Chao, LUO Xinping. 2024. Change prediction of potential suitable area of cultivated land in Northeast China under the future climate change situation based on MaxEnt model. Geological Bulletin of China, 43(9): 1515-1529. doi: 10.12097/gbc.2024.04.004

Change prediction of potential suitable area of cultivated land in Northeast China under the future climate change situation based on MaxEnt model

More Information
  • Northeast China is an important commodity grain base in China, and its cultivated land is mainly distributed in the Northeast Plain forest−farming resources area. Studying the future potential suitable areas of cultivated land in this region is of great significance for improving its adaptability in the context of future climate change. Based on the distribution data of cultivated land (dry land and paddy field) and 31 environmental variables such as climate, topography, hydrology and soil from 2000 to 2020, this study used the maximum entropy model (MaxEnt) and spatial statistical analysis to construct cultivated land prediction models under the scenarios of four shared economic paths (SSP126, SSP245, SSP370 and SSP585) in different periods (2021−2040,2041−2060) in the future, and revealed the spatial distribution and future evolution trend of the potential suitable areas of cultivated land in the forest and cultivated resources area of the Northeast Plain.The results showed that: ① The area of dry land was 29.21 ×104 km2, and the areas of high suitable area, medium suitable area, low suitable area and unsuitable area of dry land were 5.39×104 km2,48.71×104 km2,19.82×104 km2 and 30.18×104 km2, respectively. The high suitable area accounted for 15.27% of the dry land area, mainly distributed in the Liaohe Plain and Songnen Plain with low altitude. The main environmental factors affecting the suitability of dry land are the average temperature of the wettest quarter (bio8), slope (slope), precipitation of the driest quarter (bio17) and the standard deviation of seasonal variation of temperature (bio4). The optimal environmental conditions for dry land distribution are as follows: bio8 is 18.58 ~ 24.8℃, slope is −1.25° ~ 8.03°, bio17 is 0 ~ 16.3 mm, and bio4 is 930 ~ 1400. ② The paddy field area is 6.07×104 km2, and the areas of high suitable area, medium suitable area, low suitable area and unsuitable area of paddy field were 4.06×104 km2, 13.67×104 km2, 20.22×104 km2 and 66.17×104 km2, respectively. The high suitable area accounted for 66.89% of the paddy field area, which was mainly concentrated in Sanjiang Plain and scattered in Songnen Plain and Liaohe Plain. The main environmental factors affecting the suitability of paddy fields are altitude (dem), annual average temperature (bio1), slope and isothermality (bio3). The optimal environmental conditions for the distribution of paddy fields are as follows: dem is lower than 225.9 m, bio1 is 1.69 ~ 6.03℃, slope is lower than 2.28°, bio3 is lower than 25.53. ③ In the future climate scenario, the distribution of suitable areas for dry land and paddy fields is basically consistent with the current climate scenario, but the area of suitable areas has changed. During the early future period, the area of high suitable area of dry land increased the most under the SSP245−30 mode, which was 0.4×104 km2. The area increment of high suitable area in SSP126−30 mode was the highest, which was 0.03×104 km2. During the mid future period, the high suitable areas of dry land and paddy field decreased under the four modes. The dry land decreased the most under the SSP126−50 mode (1.46×104 km2), and the paddy field decreased the most under the SSP585−50 mode (0.29×104 km2). The research results can provide scientific support for the spatial planning of land in the Northeast Plain forest−farming resources area, and provide reference and suggestions for the development and utilization of cultivated land.

  • 加载中
  • [1] Bai S Y, Zhang S W, Bao Y, et al. 2003. Application of RS and GIS in land suitability evaluation——Given example of Wuchuan County[J]. Journal of Soil and Water Conservation, (6): 18−21, 26 (in Chinese with English abstract).

    Google Scholar

    [2] Chen M Y, Wang S C, Lu Q, et al. 2024. Habitat suitability evaluation and influencing factors of waterbirds in coastal zone around Bohai Sea[J]. Chinese Journal of Ecology, 43(4): 1152−1160 (in Chinese with English abstract).

    Google Scholar

    [3] Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 9: 1937−1958. doi: 10.5194/gmd-9-1937-2016

    CrossRef Google Scholar

    [4] Fu Y J, Liu X H, Sun X L, et. al. 2024. Spatial−temporal variation of ecosystem carbon storage driven by land use in the northwest inland desert resource region in the past 30 years[J]. Geological Bulletin of China, 43(2/3): 451−462 (in Chinese with English abstract).

    Google Scholar

    [5] Gao X X, Liu J, Huang Z H. 2022. The impact of climate change on the distribution of rare and endangered tree Firmiana kwangsiensis using the Maxent modeling[J]. Ecology and Evolution, 12(8): e9165. doi: 10.1002/ece3.9165

    CrossRef Google Scholar

    [6] Haddad N M, Brudvig L A, Clobert J, et al. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems[J]. Science Advances, 1(2): e1500052. doi: 10.1126/sciadv.1500052

    CrossRef Google Scholar

    [7] He Z S, Wang L J, Jiang L, et al. 2019. Effect of microenvironment on species distribution patterns in the regeneration layer of forest gaps and non−gaps in a subtropical natural forest, China[J]. Forests, 10(2): 90. doi: 10.3390/f10020090

    CrossRef Google Scholar

    [8] Hu Y B, Zhang Q, Xiao G J, et al. 2022. Effect of soil carbon, nitrgen and phosphate contents on maize production in semi−arid regions of China[J]. Journal of Desert Research, 42: 261−273 (in Chinese with English abstract).

    Google Scholar

    [9] Jiang F M, Xu Z H, Wang J F, et al. 2022. Identification and zoning of complex ecological functions in territorial space: A case study of Huzhou City of Zhejiang Province[J]. Journal of Zhejiang University ( Agriculture and Life Science ), 48: 227−239 (in Chinese with English abstract).

    Google Scholar

    [10] Kiss O, Catry I, Avilés J M, et al. 2020. Past and future climate−driven shifts in the distribution of a warm−adapted bird species, the European Roller Coracias Garrulus[J]. Bird Study, 67: 143−159. doi: 10.1080/00063657.2020.1784842

    CrossRef Google Scholar

    [11] Kumar S, Stohlgren T J, Chong G W. 2006. Spatial heterogeneity influences native and nonnative plant species richness[J]. Ecology, 87: 3186−3199. doi: 10.1890/0012-9658(2006)87[3186:SHINAN]2.0.CO;2

    CrossRef Google Scholar

    [12] Li D Y, Zhang Y C. 2020. Soil organic carbon and its influencing factors[J]. Agricultural Sciences, 10: 803−810 (in Chinese with English abstract).

    Google Scholar

    [13] Li H Y, Liu X H, Zhao X F, et al. 2023a. Contrasting effects of tectonic faults on vegetation growth along the elevation gradient in tectonically active mountains[J]. Forests, 14(12): 2336. doi: 10.3390/f14122336

    CrossRef Google Scholar

    [14] Li S, Wang Z S, Zhu Z X, et al. 2023b. Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model[J]. Scientific Reports, 13(1): 1806. doi: 10.1038/s41598-023-29009-w

    CrossRef Google Scholar

    [15] Liu J J, Kuang W H, Zhang Z X, et al. 2014. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s[J]. Acta Geographica Sinica, 69: 3−14 (in Chinese with English abstract).

    Google Scholar

    [16] Liu X H, Liu X J, Jiang D, et al. 2023. Chinese natural resource zoning from a global perspective[M]. Beijing: Science Press (in Chinese with English abstract).

    Google Scholar

    [17] Liu Y H, Liu L, Chen H, et al. 2024. Habitat suitability evaluation of sable (Martes zibellina) based on MaxEnt model in Beijicun National Nature Reserve, Heilongjiang Province, China[J]. Acta Ecologica Sinica, 44(2): 559−569 (in Chinese with English abstract).

    Google Scholar

    [18] Ma R M, Ban J, Wang Q, et al. 2022. Full−coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005−2017 based on a multi−variable random forest model[J]. Earth System Science Data, 14: 943−954. doi: 10.5194/essd-14-943-2022

    CrossRef Google Scholar

    [19] Miao X R, Li Z H, Wang M Y. 2023. Spatiotemporal changes of cultivated land use system resilience in the black soil region of Northeast China under food supply security: A case study of Qiqihar City[J]. Resource Science, 45: 1801−1816 (in Chinese with English abstract).

    Google Scholar

    [20] Miller R H, Masuoka P, Klein T A, et al. 2012. Ecological niche modeling to estimate the distribution of Japanese Encephalitis Virus in Asia[J]. Plos Neglected Tropical Diseases, 6(6): e1678. doi: 10.1371/journal.pntd.0001678

    CrossRef Google Scholar

    [21] Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 190: 231−259.

    Google Scholar

    [22] Rong W W, Huang X, Niu P X, et al. 2023. Potentially suitable areas for traditional Chinese medicinal material Ephedra equisetina based on MaxEnt model[J]. Acta Ecologica Sinica, 43: 8631−8646 (in Chinese with English abstract).

    Google Scholar

    [23] Semwal D P, Pandey A, Gore P G, et al. 2021. Habitat prediction mapping using BioClim model for prioritizing germplasm collection and conservation of an aquatic cash crop 'makhana' (Euryale ferox Salisb.) in India[J]. Genetic Resources and Crop Evolution, 68: 3445−3456. doi: 10.1007/s10722-021-01265-7

    CrossRef Google Scholar

    [24] Song M S, Yang M, Fang X H. 2019. Improved control charts based on maximum entropy and their evaluations[J]. Chinese Journal of Management Science, 27: 208−216 (in Chinese with English abstract).

    Google Scholar

    [25] Soilhi Z, Sayari N, Benalouache N, et al. 2022. Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model[J]. Ecological Informatics, 68: 101533. doi: 10.1016/j.ecoinf.2021.101533

    CrossRef Google Scholar

    [26] Sun J J, Jiang B, Zhu J R, et al. 2020. Prediction of potential suitable habitat and dominate environmental factors of sassafras tzumu in Zhejiang with MaxEnt Model[J]. Journal of Northeast Forestry University, 48: 1−6 (in Chinese with English abstract).

    Google Scholar

    [27] Tang G A. 2019. Digital elevation model of China (1KM)[DS]. A Big Earth Data Platform for Three Poles(in Chinese).

    Google Scholar

    [28] Wang F H, Zhang K G, Fang X Q, et al. 2024. Spatio−temporal changes and sustainable utilization strategies of cultivated land in China over the past 2000 years[J]. Geological Bulletin of China, 43(8): 1373−1383 (in Chinese with English abstract).

    Google Scholar

    [29] Wang G. 2021. Spatiotemporal multi−scale habitat selection of red−crowned crane in Yancheng coastal wetland and its influencing mechanism [D]. Master's thesis of Nanjing Normal University (in Chinese with English abstract).

    Google Scholar

    [30] Wei L, Ge T D, Zhu Z K, et al. 2021. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers[J]. Geoderma, 398: 115121. doi: 10.1016/j.geoderma.2021.115121

    CrossRef Google Scholar

    [31] Worthington T A, Zhang T J, Logue D R, et al. 2016. Landscape and flow metrics affecting the distribution of a federally−threatened fish: Improving management, model fit, and model transferability[J]. Ecological Modelling, 342: 1−18. doi: 10.1016/j.ecolmodel.2016.09.016

    CrossRef Google Scholar

    [32] Xiong M Q, Li F J, Liu X H, et al. 2023. Characterization of ecosystem services and their trade−off and synergistic relationships under different land−use scenarios on the loess plateau[J]. Land, 12(12): 2087. doi: 10.3390/land12122087

    CrossRef Google Scholar

    [33] Xiong D Y, Zhang L, Li G Q. 2023. MaxEnt − based multi − class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 35: 140−148 (in Chinese with English abstract).

    Google Scholar

    [34] Xiong M Q, Liu X H, Zhang X H, et al. 2024. Spatio−temporal variation of soil conservation in the upper reaches of the Tarim River Basin based on RUSLE model[J]. Geological Bulletin of China, 43(4): 641−650 (in Chinese with English abstract).

    Google Scholar

    [35] Xu L, Fan Y, Zheng J, et al. 2023. Impacts of climate change and human activity on the potential distribution of Aconitum leucostomum in China[J]. The Science of the total environment, 912: 168829.

    Google Scholar

    [36] Yang L W, Zhang Y Y, Yang Z, et al. 2024. Potential habitat analysis and future conservation strategies of Pére David's deer based on MaxEnt model[J]. Chinese Journal of Ecology, 1−17 [2024−08−26]. http://kns.cnki.net/kcms/detail/21.1148.Q.20240118.1433.002.html (in Chinese with English abstract).

    Google Scholar

    [37] Ying B K, Tian K, Guo H Y, et al. 2023. Predicting potential suitable habitats of Kandelia obovata in China under future climatic scenarios based on MaxEnt model[J]. Acta Ecologica Sinica, 44(1): 224−234 (in Chinese with English abstract).

    Google Scholar

    [38] Zhou Y C, Zhang Z X, Zhu B, et al. 2021. MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China[J]. Forests, 12(6): 752. doi: 10.3390/f12060752

    CrossRef Google Scholar

    [39] Zhang M Y, Wang K L, Liu H Y, et al. 2008. Heterogeneity of landscape pattern with elevation in karst area[J]. Chinese Journal of Ecology, (7): 1156−1160 (in Chinese with English abstract).

    Google Scholar

    [40] Zhang R, Du G M, Zhang S W. 2023. Spatiotemporal changes and the driving factors of cultivated landresources of the typical black soil region in Northeast China from 1986 to 2020[J]. Resources Science, 45(5): 939−950 (in Chinese with English abstract).

    Google Scholar

    [41] Zhang W L, Kolbe H, Zhang S L. 2020. Research Progress of SOC Functions and Transformation Mechanisms[J]. Scientia Agricultura Sinica, 53: 317−331 (in Chinese with English abstract).

    Google Scholar

    [42] Zhang X, Zhao Y C, Xie E Z, et al. 2020. Spatio−temporal change of soil organic carbon, progress and prospects[J]. Journal of Agro−Environment Science, 39: 673−679 (in Chinese with English abstract).

    Google Scholar

    [43] Zhang X Y, Wu W H, Liang Y M. 2024. Prediction of potential suitable distribution of shoot blight of larch(Neofusicoccum laricinum) in China[J]. Acta Ecologica Sinica, 44(7): 3027−3037 (in Chinese with English abstract).

    Google Scholar

    [44] Zhao Z Y, Tu J J, Liu J, et al. 2010. GlS based on the karst area of cultivated land suitability evaluation in order to Yunyang County of Chongqing as an example[J]. Journal of Agricultural Mechanization Research, 32: 10−12,17 (in Chinese with English abstract).

    Google Scholar

    [45] Zheng J L, Cai Y L, Guo X Y, et al. 2024. Study on land use change and carbon stock in northern Shanxi Province based on InVEST model[J]. Geological Bulletin of China, 43(1): 173−180 (in Chinese with English abstract).

    Google Scholar

    [46] Zheng Y, Hu Y C, Liu Y S, et al. 2005. Spatial analysis and optimal allocation of land resources based on lanosuitability evaluation in Shandong Province[J]. Transactions of the Chinese Society of Agricultural Engineering, (2): 60−65 (in Chinese with English abstract).

    Google Scholar

    [47] Zinke L. 2022. Irrigation efficiency for expanded croplands[J]. Nature Reviews Earth & Environment, 3: 617−617.

    Google Scholar

    [48] 白淑英, 张树文, 宝音, 等. 2003. 遥感和GIS在土地适宜性评价研究中的应用——以呼和浩特武川县为例[J]. 水土保持学报, (6): 18−21,26. doi: 10.3321/j.issn:1009-2242.2003.06.005

    CrossRef Google Scholar

    [49] 陈梦缘, 汪生财, 路琦, 等. 2024. 环渤海海岸带水鸟栖息地适宜性评价及影响因素[J]. 生态学杂志, 43(4): 1152−1160.

    Google Scholar

    [50] 付宇佳, 刘晓煌, 孙兴丽, 等. 2024. 近30年西北内陆荒漠资源大区土地利用驱动下生态系统碳储量时空变化[J]. 地质通报, 43(2/3): 451−462.

    Google Scholar

    [51] 胡延斌, 张强, 肖国举, 等. 2022. 中国半干旱区农田土壤碳、氮、磷含量对玉米生产的影响[J]. 中国沙漠, 42: 261−273.

    Google Scholar

    [52] 姜芳茗, 徐志红, 王建锋, 等. 2022. 国土空间复合生态功能识别与分区——以浙江省湖州市为例[J]. 浙江大学学报(农业与生命科学版), 48: 227−239.

    Google Scholar

    [53] 李典友, 章玉成. 2020. 土壤有机碳及其影响因素[J]. 农业科学, 10: 803−810.

    Google Scholar

    [54] 刘纪远, 匡文慧, 张增祥, 等. 2014. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J]. 地理学报, 69: 3−14. doi: 10.11821/dlxb201401001

    CrossRef Google Scholar

    [55] 刘晓煌, 刘晓洁, 江东, 等. 2023. 全球视角下的中国自然资源区划[M]. 北京: 科学出版社.

    Google Scholar

    [56] 刘艳华, 刘磊, 陈红, 等. 2024. 基于Maxent模型的北极村国家级自然保护区紫貂栖息地适宜性评价[J]. 生态学报, 44(2): 559−569.

    Google Scholar

    [57] 苗欣然, 李泽红, 王梦媛. 2023. 粮食供应安全下东北黑土区耕地利用系统韧性时空演变——以齐齐哈尔市为例[J]. 资源科学, 45: 1801−1816. doi: 10.18402/resci.2023.09.08

    CrossRef Google Scholar

    [58] 荣文文, 黄祥, 牛攀新, 等. 2023. 基于最大熵模型的中药材木贼麻黄潜在适生区[J]. 生态学报, 43: 8631−8646.

    Google Scholar

    [59] 宋明顺, 杨铭, 方兴华. 2019. 基于最大熵分布的控制图改进与评价研究[J]. 中国管理科学, 27: 208−216.

    Google Scholar

    [60] 孙杰杰, 江波, 朱锦茹, 等. 2020. 应用生态位模型预测檫木在浙江省的潜在适生区与主导环境因子[J]. 东北林业大学学报, 48: 1−6. doi: 10.3969/j.issn.1000-5382.2020.04.001

    CrossRef Google Scholar

    [61] 汤国安. 2019. 中国数字高程图(1KM)[DS]. 时空三极环境大数据平台.

    Google Scholar

    [62] 王发浩, 张凯歌, 方修琦, 等. 2024. 中国过去2000年耕地的时空变化及其可持续利用策略[J]. 地质通报, 43(8): 1373−1383.

    Google Scholar

    [63] 王刚. 2021. 基于时空多尺度的盐城滨海湿地丹顶鹤栖息地选择及其影响机制研究[D]. 南京师范大学硕士学位论文.

    Google Scholar

    [64] 熊东阳, 张林, 李国庆. 2023. 基于最大熵模型的遥感土地利用多分类研究[J]. 自然资源遥感, 35: 140−148.

    Google Scholar

    [65] 熊茂秋, 刘晓煌, 张雪辉, 等. 2024. 基于RUSLE模型的塔里木河流域上游土壤保持时空变化研究[J]. 地质通报, 43(4): 641−650.

    Google Scholar

    [66] 杨丽雯, 张渊媛, 杨峥, 等. 2024. 基于最大熵模型的麋鹿潜在栖息地分析与保护对策[J/OL]. 生态学杂志, 1−17 [2024−08−26]. http://kns.cnki.net/kcms/detail/21.1148.Q.20240118.1433.002.html.

    Google Scholar

    [67] 应邦肯, 田阔, 郭浩宇, 等. 2023. 基于MaxEnt模型预测未来气候变化情境下红树秋茄(Kandelia obovata)在中国潜在适生区的变化[J]. 生态学报, 44(1): 224−234.

    Google Scholar

    [68] 张明阳, 王克林, 刘会玉, 等. 2008. 喀斯特区域景观空间格局随高程的分异特征[J]. 生态学杂志, (7): 1156−1160.

    Google Scholar

    [69] 张瑞, 杜国明, 张树文. 2023. 1986—2020年东北典型黑土区耕地资源时空变化及其驱动因素[J]. 资源科学, 45(5): 939−950.

    Google Scholar

    [70] 张维理, Kolbe H, 张认连. 2020. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 53: 317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007

    CrossRef Google Scholar

    [71] 张秀, 赵永存, 谢恩泽, 等. 2020. 土壤有机碳时空变化研究进展与展望[J]. 农业环境科学学报, 39: 673−679. doi: 10.11654/jaes.2020-0031

    CrossRef Google Scholar

    [72] 张秀芸, 伍文慧, 梁英梅. 2024. 落叶松枯梢病在中国的适生性[J]. 生态学报, 44(7): 3027−3037.

    Google Scholar

    [73] 赵在友, 涂建军, 柳蛟, 等. 2010. 基于GIS的喀斯特地区耕地适宜性评价——以重庆市云阳县为例[J]. 农机化研究, 32: 10−12,17. doi: 10.3969/j.issn.1003-188X.2010.01.003

    CrossRef Google Scholar

    [74] 郑吉林, 蔡艳龙, 郭晓宇, 等. 2024. 基于InVEST模型的晋北土地利用变化与碳储量研究[J]. 地质通报, 43(1): 173−180. doi: 10.12097/gbc.2022.05.038

    CrossRef Google Scholar

    [75] 郑宇, 胡业翠, 刘彦随, 等. 2005. 山东省土地适宜性空间分析及其优化配置研究[J]. 农业工程学报, (2): 60−65. doi: 10.3321/j.issn:1002-6819.2005.02.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(990) PDF downloads(248) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint