2025 Vol. 44, No. 2~3
Article Contents

LIU Yongqiang, LYU Zhicheng, WANG Hu, CHENG Haiming. 2025. Zircon U−Pb age and geochemical characteristics of biotite monzonitic granite and mineralization background in Xiaodachuan Pb−Zn−Cu deposit of Inner Mongolia, the southern Great Khingan Range. Geological Bulletin of China, 44(2~3): 404-423. doi: 10.12097/gbc.2023.08.013
Citation: LIU Yongqiang, LYU Zhicheng, WANG Hu, CHENG Haiming. 2025. Zircon U−Pb age and geochemical characteristics of biotite monzonitic granite and mineralization background in Xiaodachuan Pb−Zn−Cu deposit of Inner Mongolia, the southern Great Khingan Range. Geological Bulletin of China, 44(2~3): 404-423. doi: 10.12097/gbc.2023.08.013

Zircon U−Pb age and geochemical characteristics of biotite monzonitic granite and mineralization background in Xiaodachuan Pb−Zn−Cu deposit of Inner Mongolia, the southern Great Khingan Range

More Information
  • Objective

    The newly discovered Xiaodachuan Pb−Zn−Cu deposit in the southern section of the Greater Khingan Range occurs in the biotite monzonitic granite body and is spatially affected by the late Yanshanian intrusive rocks. The age of diagenesis and mineralization, petrogenesis and metallogenic geological background are still unclear. The study can provide a new basis for the metallogenic regularity of lead and zinc in the area.

    Methods

    Samples of biotite monzogranite from the Xiaodachuan Pb−Zn−Cu deposit in the southern section of the Greater Khingan Range were collected for petrographic study, zircon U−Pb dating, whole rock geochemical analysis, and Sr−Nd isotopic investigations.

    Results

    Research shows that the zircon U−Pb ages of the biotite monzonitic granite are 135.9±0.8 Ma and 134.9±0.8 Ma, indicating that the Pb−Zn mineralization occurred in the Early Cretaceous. The rock geochemical characteristics show that the biotite monzonitic granite is rich in SiO2(71.29%~72.92%), K2O+Na2O(7.17%~7.89%), Al2O3(13.35%~14.48%), poor in MgO(0.61%~0.64%) and CaO(1.24%~1.73%), enriched in Nb, Ta, Zr, Hf and Th elements, depleted in Ba, K, Sr, P and Ti elements, and the rare earth distribution pattern is “seagull” type. The δEu value is 0.35~0.47, and the negative Eu anomaly is obvious. It belongs to high−potassium calc−alkaline and peraluminous A2−type granite. The Sr−Nd isotope characteristics show that the (87Sr/86Sr)i value is 0.70545~0.70548, the εNd(t) value is −1.7 ~ −0.3, and the two−stage model age of Nd isotope is 1071~957 Ma.

    Conclusions

    Combined with the chronological and geochemical characteristics, it is considered that the diagenetic material is a mixture of new crust and mantle−derived material and is contaminated by the upper crust. The Xiaodachuan biotite monzonitic granite was formed in an extensional environment after the closure of the Mongolia−Okhotsk Ocean, which also led to the occurrence of diagenesis and mineralization in the region.

  • 加载中
  • [1] Allegre C J, Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 38(1): 1−25.

    Google Scholar

    [2] Bonin B. 2007. A−type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 97(1/2): 1−29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    [3] Chen Y J, Chen H Y, Zaw K, et al. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: an overview[J]. Ore Geology Reviews, 31(1-4): 139−169. doi: 10.1016/j.oregeorev.2005.01.001

    CrossRef Google Scholar

    [4] Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200.

    Google Scholar

    [5] Eby G N. 1992. Chemical subdivision of the A−type granitoids; petrogenetic and tectonic implications[J]. Geology (Boulder), 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [6] Frost B R, Barnes C G, Collins W J. 2001. A Geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [7] Goldfarb R J, Mao J W, Qiu K F, et al. 2021. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics[J]. Gondwana Research, 100: 223−250. doi: 10.1016/j.gr.2021.02.020

    CrossRef Google Scholar

    [8] Goldstein S J, Jacobsen S B. 1988. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 89(1): 35−47. doi: 10.1016/0012-821X(88)90031-3

    CrossRef Google Scholar

    [9] Griffin W L, Wang X, Jackson S E, et al. 2002. Zircon chemistry and magma mixing, SE China: In−situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3/4): 237−269.

    Google Scholar

    [10] Gu Y C, Chen R Y, Jia B, et al. 2017. Zircon U−Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb−Zn−Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101−117 (in Chinese with English abstract).

    Google Scholar

    [11] Jacobsen S B, Wasserburg G J. 1984. Sm−Nd isotopic evolution of chondrites and achondrites, II[J]. Earth and Planetary Science Letters, 67(2): 137−150. doi: 10.1016/0012-821X(84)90109-2

    CrossRef Google Scholar

    [12] Jahn B M, Capdevila R, Liu D Y, et al. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor−Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth[J]. Journal of Asian Earth Sciences, 23(5): 629−653.

    Google Scholar

    [13] Jahn B M, Wu F Y, Lo C H, et al. 1999. Crust−mantle interaction induced by deep subduction of the continental crust: geochemical and Sr−Nd isotopic evidence from post−collisional mafic−ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1−2): 119−146.

    Google Scholar

    [14] Jiang H Y, Zhao Z D, Zhu X Y, et al. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb−Zn−Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450−471 (in Chinese with English abstract).

    Google Scholar

    [15] Jiang S H, Chen C L, Bagas L, et al. 2017. Two mineralization events in the Baiyinnuoer Zn−Pb deposit in Inner Mongolia, China: Evidence from field observations, S−Pb isotopic compositions and U−Pb zircon ages[J]. Journal of Asian Earth Sciences, 144: 339−367.

    Google Scholar

    [16] King P L, White A J R, Chappell B W, et al. 1997. Characterization and Origin of Aluminous A−type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371−391.

    Google Scholar

    [17] Koschek, G. 1993. Origin and significance of the SEM cathodoluminescence from zircon[J]. Microsc, 171(3): 223−232. doi: 10.1111/j.1365-2818.1993.tb03379.x

    CrossRef Google Scholar

    [18] Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo−Asian Ocean and subduction of the Paleo−Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3/4): 207−224. doi: 10.1016/j.jseaes.2005.09.001

    CrossRef Google Scholar

    [19] Liu J M, Zhang R, Zhang Q Z. 2004. The regional metallogeny of da hinggan ling, China[J]. Geoscience Frontiers, 11(1): 269−277 (in Chinese with English abstract).

    Google Scholar

    [20] Liu L J, Zhou T F, Zhang D Y, et al. 2018. S isotopic geochemistry, zircon and cassiterite U−Pb geochronology of the Haobugao Sn polymetallic deposit, southern Great Xing’an Range, NE China[J]. Ore Geology Reviews, 93: 168−180.

    Google Scholar

    [21] Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148.

    Google Scholar

    [22] Liu Y S, Hu Z C, Zong K Q, et al. 2010. Reappraisement and refinement of zircon U−Pb isotope and trace element analyses by LA−ICP−MS[J]. Chinese Science Bulletin, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [23] Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 4.

    Google Scholar

    [24] Lv Z C, Duan G Z, Liu C Q, et al. 2000. Types of Silver Deposits, Metallogenic Series, and Metallogenic Geochemical Characteristics in the Greater Khingan Mountains Region[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4): 305−309 (in Chinese with English abstract).

    Google Scholar

    [25] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [26] Mao J W, Zhou Z H, Wu G, et al. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 715−729 (in Chinese with English abstract).

    Google Scholar

    [27] McDonough W F, Sun S S, Ringwood A E, et al. 1992. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 56(3): 1001−1012. doi: 10.1016/0016-7037(92)90043-I

    CrossRef Google Scholar

    [28] Metelkin D V, Vernikovsky V A, Kazansky A Y. 2010. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 18(2/3): 400−419.

    Google Scholar

    [29] Mi K F, Lu Z C, Li C F, et al. 2017. Origin of the Badaguan porphyry Cu−Mo deposit, Inner Mongolia, northeast China: Constraints from geology, isotope geochemistry and geochronology[J]. Ore Geology Reviews, 81(1): 154−172. doi: 10.1016/j.oregeorev.2016.09.029

    CrossRef Google Scholar

    [30] Mi K F, Lu Z C, Liu Q, et al. 2021. Zircon U−Pb ages and geochemical characteristics of granites in the Yaoertu deposit: Implications for Pb−Zn−Ag mineralization in the southern Great Xing’an Range, NE China[J]. Ore Geology Reviews, 220: 106666. doi: 10.1016/j.oregeorev.2021.104160

    CrossRef Google Scholar

    [31] Mi K F, Lu Z C, Yan T J, et al. 2020. Zircon geochronological and geochemical study of the Baogaigou Tin deposits, southern Great Xing'an Range, Northeast China: Implications for the timing of mineralization and ore genesis[J]. Geological Journal, 55(7): 5062−5081. doi: 10.1002/gj.3729

    CrossRef Google Scholar

    [32] Mi K F, Lü Z C, Zhao S J, et al. 2021. Petrogenesis and metallogenic implications of the Late Jurassic Dagayin pluton, southern Great Xing'an Range, northeast China: Integrated geochronological, petrological, and geochemical constraints[J]. Journal of Geochemical Exploration, (220): 106666.

    Google Scholar

    [33] Mi, K F, Lü Z C, Yan, T J, et al. 2022. Zircon U−Pb geochronology and Sr−Nd−Hf−O isotopic constraints on the relationship between Mo and Pb−Zn mineralization in the Haisugou pluton in the southern Great Xing'an Range, northeast China[J]. Ore Geology Reviews, 144: 104838. doi: 10.1016/j.oregeorev.2022.104838

    CrossRef Google Scholar

    [34] Middlemost E A, Magmas K, Rocks M. 1985. An introduction to igneous petrology[J]. Magma and magmatic Rocks, Longmans.

    Google Scholar

    [35] Middlemost E A. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Reviews, 37(3/4): 215−224.

    Google Scholar

    [36] Ouyang H G, Mao J W, Zhou Z H. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China[J]. Gondwana Research, 27(3): 1153−1172.

    Google Scholar

    [37] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [38] Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [39] Pei Q M, Zhang S T, Santosh M, et al. 2017. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 83: 174−190.

    Google Scholar

    [40] Rapp R P, Shimizu N, Norman M D, et al. 1999. Reaction between slab−derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4): 335−356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [41] Ren W K, Wang S Y, Chen L B, et al. 2020. LA−ICP−MS zicon U−Pb geochronology, geochemistry and geological significance of granodiorites in Lancai Area, Tongren, Qinghai[J]. Journal of Jilin University: Earth Science Edition, 50(4): 1059−1074 (in Chinese with English abstract).

    Google Scholar

    [42] Ruan B X, Lv X B, Yang W, et al. 2015. Geology geochemistry and fluid inclusions of the Bianjiadayuan Pb−Zn−Ag deposit, Inner Mongolia, NE China: Implications for tectonic setting and metallogeny(Article)[J]. Ore Geology Reviews, 71: 121−137. doi: 10.1016/j.oregeorev.2015.05.004

    CrossRef Google Scholar

    [43] Rudnick R L, Gao S, Holland H D, et al. 2003. Composition of the continental crust[J]. The Crust, 3: 1−64.

    Google Scholar

    [44] Shellnutt J S, Jahn B M. 2010. Formation of the Late Permian Panzhihua plutonic−hypabyssal−volcanic igneous complex: Implications for the genesis of Fe−Ti oxide deposits and A−type granites of SW China[J]. Earth and Planetary Science Letters, 289(3/4): 509−519.

    Google Scholar

    [45] Sheng J F, Fu X Z, et al. 1999. Metallogenic Environment and geological characteristics of copper−polymetallic deposits in the central section of the Greater Khingan Mountains[M]. Beijing: Seismological Press: 1− 216 (in Chinese with English abstract).

    Google Scholar

    [46] Song K R. 2019. The Metallogenic Relationship between fluorite deposits and silver−polymetallic deposits and its prospecting significance in the Linxi Area of Inner Mongolia[D]. Doctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [47] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [48] Taylor S. R, McLennan S M. 1985. The continental crust: Its composition and evolution[M]. Blackwell Scientific Pub.: 1−312.

    Google Scholar

    [49] Wang F X, Bagas L, Jiang S H, et al. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn−polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 80: 1206−1229. doi: 10.1016/j.oregeorev.2016.09.021

    CrossRef Google Scholar

    [50] Wang H, Li F, Zhang G H. 2019. Genesis and prospecting indicators of the Xiaodachuan lead−zinc−copper polymetallic deposit in Inner Mongolia[J]. Inner Mongolia Science Technology and Economy, (6): 66 (in Chinese with English abstract).

    Google Scholar

    [51] Wang J B, Wang Y W, Wang L J, et al. 2001. Tin−polymetallic mineralization in the southern part of the Da Hinggan Mountains, China[J]. Resource Geology, 51(4): 283−291.

    Google Scholar

    [52] Wang X D, Xu D M, Lv X B, et al. 2018. Origin of the Haobugao skarn Fe−Zn polymetallic deposit, Southern Great Xing'an Range, NE China: geochronological, geochemical, and Sr−Nd−Pb isotopic constraints[J]. Ore Geology Reviews, 94: 58−72.

    Google Scholar

    [53] Wang X D. 2017. Diagenesis and Metallogenesis of the Silver−Lead−Zinc Polymetallic Deposit in the Lindong Area, Inner Mongolia[D]. Doctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [54] Wang T, Guo L, Zhang L, et al. 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol−Okhotsk Belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic Settings[J]. Journal of Asian Earth Sciences, 97(1): 365−392.

    Google Scholar

    [55] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419.

    Google Scholar

    [56] Wickham S M, Alberts A D, Zanvillevich A N, et al. 1996. A stable isotope study of anorogenic magmatism in East Central Asia[J]. Journal of Petrology, 37(5): 1063−1095. doi: 10.1093/petrology/37.5.1063

    CrossRef Google Scholar

    [57] Wu F Y, Jahn B M, Wilde S A, et al. 2003. Highly fractionated I−type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic[J]. Lithos, 64(3/4): 191−204.

    Google Scholar

    [58] Wu F Y, Jahn B M, Wilde S W, et al. 2000. Phanerozoic crustal growth: U−Pb and Sr−Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, (1/2): 89−113.

    Google Scholar

    [59] Wu F Y, Sun D Y, Li H M, et al. 2002. A−type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1/2): 143−173.

    Google Scholar

    [60] Yang J H, Wu F Y, Chung S L, et al. 2007. A hybrid origin for the Qianshan A−type granite, northeast China: geochemical and Sr−Nd−Hf isotopic evidence[J]. Lithos, 89(1/2): 89−106.

    Google Scholar

    [61] Yao L, Lv Z C, Ye T Z, et al. 2017. Zircon U−Pb age, geochemical and Nd−Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing'an Range, China[J]. Acta Petrologica Sinica, 33(10): 3183−3199 (in Chinese with English abstract).

    Google Scholar

    [62] Zhai D G, Liu J J, Wang J P, et al. 2014. Zircon U−Pb and molybdenite Re−Os geochronology, and whole−rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China[J]. Journal of Asian Earth Sciences, 79(1): 144−160. doi: 10.1016/j.jseaes.2013.09.008

    CrossRef Google Scholar

    [63] Zhai D G, Liu J J, Zhang A L, et al. 2017. U−Pb, Re−Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic (Ag−Pb−Zn−Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, NE China: Implications for discrete mineralization events[J]. Economic Geology, (8): 2041−2059.

    Google Scholar

    [64] Zhai D G, Williams−Jones A E, Liu J J, et al. 2020. The genesis of the giant Shuangjianzishan epithermal Ag−Pb−Zn deposit, Inner Mongolia, northeastern China[J]. Economic Geology, 115(1): 101−128.

    Google Scholar

    [65] Zhang L L, Jiang S H, Bagas L, et al. 2019. Element behaviour during interaction of magma and fluid: A case study of Chamuhan Granite, implications on the genesis of W−Mo mineralisation[J]. Lithos, 342: 31−44.

    Google Scholar

    [66] Zhang W, Lentz D R, Thorne K G, et al. 2020. Late Silurian−Early Devonian slab break−off beneath the Canadian Appalachians: Insights from the Nashwaak Granite, west−central New Brunswick, Canada[J]. Lithos, 358: 105393.

    Google Scholar

    [67] Zhao G L, Yang G L, Fu J Y. 1989. Mesozoic volcanic rocks in the central and southern parts of the Greater Khingan Mountains[M]. Beijing: Beijing Science and Technology Press: 1−252 (in Chinese).

    Google Scholar

    [68] Zhao J Q, Zhou Z H, Ouyang H G, et al. 2022. Zircon U−Pb age and geochemistry of quartz syenite porphyry in Shuangjianzishan Ag−Pb−Zn(Sn) deposit, Inner Mongolia, and their geological implications[J]. Mineral Deposits, 41(2): 324−344 (in Chinese with English abstract).

    Google Scholar

    [69] Zhao Y M, Wang D W, Zhang D Q, et al. 1994. Geological conditions for copper−polymetallic metallogenesis and prospecting models in the southeastern part of Inner Mongolia[M]. Beijing: Seismological Press: 1− 234 (in Chinese with English abstract).

    Google Scholar

    [70] Zhou Z H, Mao J W, Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A−type granites from the Huanggang Sn−Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 48: 272−286.

    Google Scholar

    [71] Zhu B Q. 1998. Study on chemical heterogeneities of mantle crustal systems and geochemical boundaries of blocks[J]. Earth Science Frontiers, 5(1): 72−82 (in Chinese with English abstract).

    Google Scholar

    [72] Zorin Y A. 1999. Geodynamics of the western part of the Mongolia−Okhotsk collisional belt, Trans−Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306(1): 33−56.

    Google Scholar

    [73] 赤峰盛源地质勘查有限公司. 2018. 内蒙古自治区巴林右旗小大川矿区铅锌铜矿详查报告[R].

    Google Scholar

    [74] 顾玉超, 陈仁义, 贾斌, 等. 2017. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 44(1): 101−117. doi: 10.12029/gc20170108

    CrossRef Google Scholar

    [75] 蒋昊原, 赵志丹, 祝新友, 等. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450−471. doi: 10.12029/gc20200213

    CrossRef Google Scholar

    [76] 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 11(1): 269−277. doi: 10.3321/j.issn:1005-2321.2004.01.024

    CrossRef Google Scholar

    [77] 吕志成, 段国正, 刘丛强, 等. 2000. 大兴安岭地区银矿床类型、成矿系列及成矿地球化学特征[J]. 矿物岩石地球化学通报, 19(4): 305−309. doi: 10.3969/j.issn.1007-2802.2000.04.037

    CrossRef Google Scholar

    [78] 毛景文, 周振华, 武广, 等. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 32(4): 715−729. doi: 10.3969/j.issn.0258-7106.2013.04.006

    CrossRef Google Scholar

    [79] 任纪舜, 陈廷愚, 牛宝贵, 等. 1992. 中国东部及邻区大陆岩石圈的构造演化与成矿[M]. 北京: 科学出版社: 90−103.

    Google Scholar

    [80] 任文恺, 王生云, 陈礼标, 等. 2020. 青海同仁兰采地区花岗闪长岩LA−ICP−MS锆石U−Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 50(4): 1059−1074.

    Google Scholar

    [81] 盛继福, 傅先政, 等. 1999. 大兴安岭中段成矿环境与铜多金属矿床地质特征[M]. 北京: 地震出版社: 1− 216.

    Google Scholar

    [82] 宋开瑞. 2019. 内蒙古林西地区萤石矿与银多金属矿成矿关系及找矿意义[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [83] 王河, 李峰, 张国辉. 2019. 内蒙古小大川铅锌铜多金属矿矿床成因与找矿标志[J]. 内蒙古科技与经济, (6): 66.

    Google Scholar

    [84] 王祥东. 2017. 内蒙古林东地区银铅锌多金属矿床成岩成矿作用[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [85] 姚磊, 吕志成, 叶天竺, 等. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U−Pb年龄、地球化学和Nd−Hf同位素特征及地质意义[J]. 岩石学报, 33(10): 3183−3199.

    Google Scholar

    [86] 赵国龙, 杨桂林, 傅嘉有. 1989. 大兴安岭中南部中生代火山岩[M]. 北京: 北京科学技术出版社: 1−252.

    Google Scholar

    [87] 赵家齐, 周振华, 欧阳荷根, 等. 2022. 内蒙古双尖子山银铅锌(锡)矿床石英正长斑岩U−Pb年龄地球化学及其地质意义[J]. 矿床地质, 41(2): 324−344.

    Google Scholar

    [88] 赵一鸣, 王大畏, 张德全, 等. 1994. 内蒙古东南部铜多金属成矿地质条件及找矿模式[M]. 北京: 地震出版社: 1−234.

    Google Scholar

    [89] 朱炳泉. 1998. 壳幔化学不均一性与块体地球化学边界研究[J]. 地学前缘, 5(1): 72−82. doi: 10.3321/j.issn:1005-2321.1998.01.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(4)

Article Metrics

Article views(124) PDF downloads(47) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint