2025 Vol. 44, No. 2~3
Article Contents

REN Bingzhang, HOU Hongxing, SUI Yu, WANG Zhixiang, CAO Mengmeng, ZHAN Zedong, SHI Lingfeng, XI Guangyue, SHAO Xingkun, LI Liyang, LI Junhua. 2025. Climate change at orbital scale in Songnen Plain during the Middle and Late Pleistocene. Geological Bulletin of China, 44(2~3): 392-403. doi: 10.12097/gbc.2023.07.004
Citation: REN Bingzhang, HOU Hongxing, SUI Yu, WANG Zhixiang, CAO Mengmeng, ZHAN Zedong, SHI Lingfeng, XI Guangyue, SHAO Xingkun, LI Liyang, LI Junhua. 2025. Climate change at orbital scale in Songnen Plain during the Middle and Late Pleistocene. Geological Bulletin of China, 44(2~3): 392-403. doi: 10.12097/gbc.2023.07.004

Climate change at orbital scale in Songnen Plain during the Middle and Late Pleistocene

More Information
  • Objective

    The Songnen Plain, located at the edge of the East Asian Summer Monsoon (EASM), is an important region for studying the variability of the hydrological cycle recorded by Pleistocene lacustrine sediments on orbital timescales. Investigating these variations helps to understand the evolution of the water cycle and ancient lake productivity in the lacustrine records of Northeast China.

    Methods

    This study applied Electron Spin Resonance (ESR) dating to samples from borehole BQZK05, obtained from the Ground Substrate Survey in the Songnen Plain, to acquire sedimentary records from approximately 1025 ka. The ESR age data were processed using the Bayesian age−depth model, and spectral analysis was performed on Total Organic Carbon (TOC) and Gamma Ray (GR) data to identify periodic signals.

    Results

    The results from the ESR Bayesian age−depth model show that TOC exhibits significant cycles of approximately 173 kyr and 100 kyr. The Gamma Ray (GR) data from 870~40 ka reveal a dominant ~173 kyr cycle. The ~100 kyr cycle observed in TOC suggests that high−latitude ice volume significantly influences vegetation content and lake biological productivity in the Songnen Plain.

    Conclusions

    Changes in high−latitude ice volume and low−latitude solar radiation have jointly driven climate change in the Songnen Plain during the Middle to Late Pleistocene. The prominent ~173 kyr cycle observed in both TOC and GR data sequences indicates that this cycle played an important role in organic carbon burial.

  • 加载中
  • [1] Abe−Ouchi A, Saito F, Kawamura K, et al. 2013. Insolation−driven 100000 −year glacial cycles and hysteresis of ice−sheet volume[J]. Nature, 500(7461): 190−194. doi: 10.1038/nature12374

    CrossRef 100000−year glacial cycles and hysteresis of ice−sheet volume" target="_blank">Google Scholar

    [2] An Z. 2000. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 19: 171−187.

    Google Scholar

    [3] An Z, Clemens S C, Shen J, et al. 2011. Glacial−interglacial Indian summer monsoon dynamics[J]. Science, 333(6043): 719−723. doi: 10.1126/science.1203752

    CrossRef Google Scholar

    [4] An Z, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya−Tibetan plateau since Late Miocene times[J]. Nature, 411(6833): 62−66. doi: 10.1038/35075035

    CrossRef Google Scholar

    [5] Bao R, Sheng X, Meng X, et al. 2023. 100 ky pacing of the East Asian summer monsoon over the past five glacial cycles inferred from land snails[J]. Geology, 51(2): 179−183. doi: 10.1130/G50243.1

    CrossRef Google Scholar

    [6] Blaauw M, Christen J A. 2011. Flexible paleoclimate age−depth models using an autoregressive gamma process[J]. Bayesian Analysis, 6(3): 457−474. doi: 10.1214/ba/1339616472

    CrossRef Google Scholar

    [7] Boulila S, Vahlenkamp M, De Vleeschouwer D, et al. 2018. Towards a robust and consistent middle Eocene astronomical timescale[J]. Earth and Planetary Science Letters, 486: 94−107. doi: 10.1016/j.jpgl.2018.01.003

    CrossRef Google Scholar

    [8] Cai Y, Fung I Y, Edwards R L, et al. 2015. Variability of stalagmite−inferred Indian monsoon precipitation over the past 252000 yr[J]. Proceedings of the National Academy of Sciences of the United States of America, 112: 2954−2959.

    252000 yr" target="_blank">Google Scholar

    [9] Caley T, Roche D M, Renssen H. 2014. Orbital Asian summer monsoon dynamics revealed using an isotope−enabled global climate model[J]. Nature Communications, 5: 5371.

    Google Scholar

    [10] Cao M, Wang Z, Sui Y, et al. 2021. Mineral dust coupled with climate‐carbon cycle on orbital timescales over the Past 4 Ma[J]. Geophysical Research Letters, 48, e2021GL095327. https://doi.org/10.1029/2021GL095327.

    Google Scholar

    [11] Cheng H, Edwards R L, Broecker W S, et al. 2009. Ice age terminations[J]. Science, 326: 248−252.

    Google Scholar

    [12] Cheng H, Edwards R L, Sinha A, et al. 2016. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 534: 640−648.

    Google Scholar

    [13] Clemens S C, Prell W L, Sun Y, et al. 2010. Orbital‐scale timing and mechanisms driving Late Pleistocene Indo‐Asian summer monsoons: Reinterpreting cave speleothem δ18O[J]. Paleoceanography, 25. doi:10.1029/2010PA001926.

    Google Scholar

    [14] Clemens S C, Holbourn A, Kubota Y, et al. 2018. Precession−band variance missing from East Asian monsoon runoff[J]. Nat. Commun., 9(1): 3364. doi: 10.1038/s41467-018-05814-0

    CrossRef Google Scholar

    [15] De Vleeschouwer D, Vahlenkamp M, Crucifix M, et al. 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 my[J] Geology, 45(4): 375−378.

    Google Scholar

    [16] Ding Z L, Derbyshire E, Yang S L, et al. 2002. Stacked 2.6−Ma grain size record from the Chinese loess based on five sections and correlation with the deep−sea δ18O record[J]. Paleoceanography, 17(3): doi.10.1029/2001PA000725.

    Google Scholar

    [17] Gallagher S J, Sagawa T, Henderson A C G, et al. 2018. East Asian Monsoon History and Paleoceanography of the Japan Sea Over the Last 460, 000 Years[J]. Paleoceanography and Paleoclimatology. doi.org/10.1029/2018PA003331.

    Google Scholar

    [18] Goldsmith Y, Broecker W. S, Xu H, et al. 2017. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales[J]. Proceedings of the National Academy of Sciences, 114: 1817−1821.

    Google Scholar

    [19] Hao Q, Wang L, Oldfield F, et al. 2012. Delayed build−up of Arctic ice sheets during 400, 000−year minima in insolation variability[J]. Nature, 490: 393−396.

    Google Scholar

    [20] Herzschuh U, Zhang C, Mischke S, et al. 2005. A late Quaternary lake record from the Qilian Mountains (NW China): Evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data[J]. Global and Planetary Change, 46: 361−379.

    Google Scholar

    [21] Hilgen F, Zeeden C, Laskar J. 2020. Paleoclimate records reveal elusive ~200 kyr eccentricity cycle for the first time[J]. Global and Planetary Change, 194: 103296. doi: 10.1016/j.gloplacha.2020.103296

    CrossRef Google Scholar

    [22] Huang H, Gao Y, Ma C, et al. 2021. Organic carbon burial is paced by a~ 173 ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 7(28): eabf9489. doi: 10.1126/sciadv.abf9489

    CrossRef Google Scholar

    [23] Huybers, P. 2011. Combined obliquity and precession pacing of late Pleistocene deglaciations[J]. Nature, 480(7376): 229−232. doi: 10.1038/nature10626

    CrossRef Google Scholar

    [24] Jin C S, Xu D, Li M, et al. 2023. Tectonic and orbital forcing of the South Asian monsoon in central Tibet during the Late Oligocene[J]. Proceedings of the National Academy of Sciences, 120(15): e2214558120. doi: 10.1073/pnas.2214558120

    CrossRef Google Scholar

    [25] Kang S, Du J, Wang N, et al. 2020. Early Holocene weakening and Mid−Late Holocene strengthening of the East Asian winter monsoon[J]. Geology, 48(11): 1043−1047. doi: 10.1130/G47621.1

    CrossRef Google Scholar

    [26] Kang S, Wang X, Du J, et al. 2022. Paleoclimates inform on a weakening and amplitude−reduced East Asian winter monsoon in the warming future[J]. Geology, 50(11): 1224−1228. doi: 10.1130/G50246.1

    CrossRef Google Scholar

    [27] Li T, Liu F, Abels H A, et al. 2017. Continued obliquity pacing of East Asian summer precipitation after the Mid−Pleistocene transition[J]. Earth and Planetary Science Letters, 457: 181−190.

    Google Scholar

    [28] Lisiecki L E, Raymo M E. 2005. A Pliocene−Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 20(1): PA1003, doi:10.1029/2004PA001071.

    CrossRef Google Scholar

    [29] Liu C, Nie J, Li Z, et al. 2021. Eccentricity forcing of East Asian monsoonal systems over the past 3 million years[J]. Proceedings of the National Academy of Sciences, 118(43), e2107055118. https://doi.org/10.1073/pnas.2107055118.

    Google Scholar

    [30] Liu J, Chen J, Zhang X, et al. 2015. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth−Science Reviews, 148: 194−208.

    Google Scholar

    [31] Liu W, Liu Z, An Z, et al. 2014. Late Miocene episodic lakes in the arid Tarim Basin, western China[J]. Proc. Natl. Acad. Sci. USA, 111(46): 16292−16296. doi: 10.1073/pnas.1410890111

    CrossRef Google Scholar

    [32] Liu X, Liu J, Chen S, et al. 2020. New insights on Chinese cave δ18O records and their paleoclimatic significance[J]. Earth−Science Reviews, 207: 103216. https://doi.org/10.1026/j.earscirev.2020.103216.

    Google Scholar

    [33] Maher B A, Thompson R. 2012. Oxygen isotopes from Chinese caves: records not of monsoon rainfall but of circulation regime[J]. Journal of Quaternary Science, 27: 615−624.

    Google Scholar

    [34] Melles M, Brighamgrette J, Minyuk P S, et al. 2012. 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE Russia[J]. Science, 337(6092): 315−320. doi: 10.1126/science.1222135

    CrossRef Google Scholar

    [35] Nie J. 2018. The Plio−Pleistocene 405 kyr climate cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 26−30.

    Google Scholar

    [36] Nie J, Wang W, Heermance R, et al. 2022. Late Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening[J]. Nature Communications, 13(1): 3977.

    Google Scholar

    [37] Nakagawa T, Okuda M, Yonenobu H, et al. 2008. Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms[J]. Geology, 36: 491−494.

    Google Scholar

    [38] Paillard D, Labeyrie L, Yiou P. 1996. Macintosh program performs time-series analysis[J]. Eos Transactions American Geophysical Union, 77(39): 379−379.

    Google Scholar

    [39] Qiu S, Xia Y, Wang P, et al. 1988. Study of the Pleistocene stratigraphy and sedimentary environment of the Songliao Plain[J]. Science in China (Series B), 4: 431−442(in Chinese with English abstract).

    Google Scholar

    [40] Qiu S, Wang X, Zhang S, et al. 2012. Evolution of the ancient lake in the Songliao Plain and the formation of its plain[J]. Quaternary Research, 32(5): 1011−1021(in Chinese with English abstract).

    Google Scholar

    [41] Saltzman B, Maasch K A. 1988. Carbon cycle instability as a cause of the Late Pleistocene ice age oscillations: Modeling the asymmetric response[J]. Global Biogeochemical Cycles, 2(2): 177−185. doi: 10.1029/GB002i002p00177

    CrossRef Google Scholar

    [42] Schnyder J, Ruffell A, Deconinck J F, et al. 2006. Conjunctive use of spectral gamma−ray logs and clay mineralogy in defining Late Jurassic–Early Cretaceous palaeoclimate change (Dorset, UK) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 229(4): 303−320.

    Google Scholar

    [43] Shao X, Hou H, Ren B, et al. 2024. Sedimentary characteristics analysis and paleoenvironmental restoration of the ground substrate in the Baiquan County, Qiqihar area, Songnen Plain[J]. Geological Bulletin of China, 43(9): 1498−1514(in Chinese with English abstract).

    Google Scholar

    [44] Shi F, Duan A, Yin Q, et al. 2021. Modulation of the relationship between summer temperatures in the Qinghai–Tibetan Plateau and Arctic over the past millennium by external forcings[J]. Quaternary Research, 103: 130−138. doi: 10.1017/qua.2021.3

    CrossRef Google Scholar

    [45] Shi Z G, Liu X D, Sun Y B, et al. 2011. Distinct responses of East Asian summer and winter monsoons to astronomical forcing[J]. Climate of the Past, 7: 1363−1370.

    Google Scholar

    [46] Song C, Hu S, Han W, et al. 2014. Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 395: 67−76.

    Google Scholar

    [47] Sun Y, Clemens S C, An Z, et al. 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6−Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 25: 33−48.

    Google Scholar

    [48] Sun Y, Clemens S C, Morrill C, et al. 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 5: 46−49.

    Google Scholar

    [49] Sun Y, Kutzbach J, An Z, et al. 2015. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 115: 132−142.

    Google Scholar

    [50] Sun Y, Liang L, Bloemendal J, et al. 2016. High−resolution scanning XRF investigation of Chinese loess and its implications for millennial−scale monsoon variability[J]. Journal of Quaternary Science, 31: 191−202.

    Google Scholar

    [51] Sun Y, Yin Q, Crucifix M, et al. 2019. Diverse manifestations of the mid−Pleistocene climate transition[J]. Nature Communications, 10(1): 352.

    Google Scholar

    [52] Sun Y, Wang T, Yin Q, et al. 2022. A review of orbital−scale monsoon variability and dynamics in East Asia during the Quaternary[J]. Quaternary Science Reviews, 288: 107593. doi: 10.1016/j.quascirev.2022.107593

    CrossRef Google Scholar

    [53] Tian J, Xie X, Ma W, et al. 2011. X‐ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 26(4): PA402, doi:10.1029/2010PA002045.

    Google Scholar

    [54] Vaucher R, Zeeden C, Hsieh A I, et al. 2023. Hydroclimate dynamics during the Plio−Pleistocene transition in the Northwest Pacific realm[J]. Global and Planetary Change: 104088. https://doi.org/10.1016/j.gloplacha.2023.104088.

    Google Scholar

    [55] Wang Y, Cheng H, Edwards R L, et al. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 308: 854−857.

    Google Scholar

    [56] Wang Y, Cheng H, Edwards R L, et al. 2008. Millennial−and orbital−scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 451: 1090−1093.

    Google Scholar

    [57] Wang Y, Lu H, Wang K, et al. 2020. Combined high−and low−latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period[J]. Science Advances, 6(46): eabc2414. doi: 10.1126/sciadv.abc2414

    CrossRef Google Scholar

    [58] Wang Z, Huang C, Kemp D B, et al. 2021. Distinct responses of Late Miocene eolian and lacustrine systems to astronomical forcing in NE Tibet[J]. Geological Society of America Bulletin, 133(11): 2266−2278.

    Google Scholar

    [59] Wen X, Liu Z, Wang S, et al. 2016. Correlation and anti−correlation of the East Asian summer and winter monsoons during the last 21, 000 years[J]. Nature Communications, 7: 11999.

    Google Scholar

    [60] Westerhold T, Bickert T, Röhl U. 2005. Middle to Late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): New constrains on Miocene climate variability and sea−level fluctuations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 217(3/4): 205−222.

    Google Scholar

    [61] Yi L, Shi Z, Tan L, et al. 2017. Orbital−scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary[J]. Climate Dynamics, 50: 2183−2197.

    Google Scholar

    [62] Zhan T, Zeng F, Xie Y, et al. 2019. Magnetic stratigraphy dating of boreholes in the Northeast Plain and the evolution of the ancient Songnen Lake[J]. Chinese Science Bulletin, 64(11): 1179−1190(in Chinese with English abstract). doi: 10.1360/N972018-01212

    CrossRef Google Scholar

    [63] Zhan Z, Xi G, Ren B, et al. 2024. The spatial changes of carbon storage and carbon fixation potential in five counties of Qiqihar, Heilongjiang Province[J]. Geological Bulletin of China, 43(9): 1470−1484(in Chinese with English abstract).

    Google Scholar

    [64] Zhang R, Li X, Xu Y, et al. 2022. The 173-kyr obliquity cycle pacing the Asian Monsoon in the Eastern Chinese Loess Plateau from Late Miocene to Pliocene[J]. Geophysical Research Letters, 49(2): e2021GL097008. doi: 10.1029/2021GL097008

    CrossRef Google Scholar

    [65] Zhang W, De Vleeschouwer D, Shen J, et al. 2018. Orbital time scale records of Asian eolian dust from the Sea of Japan since the early Pliocene[J]. Quaternary Science Reviews, 187: 157−167.

    Google Scholar

    [66] Zhang Y G, Ji J, Balsam W, et al. 2009. Mid−Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation[J]. Geology, 37(7): 599−602. doi: 10.1130/G25670A.1

    CrossRef Google Scholar

    [67] Zhao S, Liu Z, Christophe C, et al. 2018. Responses of the East Asian summer monsoon in the low−latitude South China Sea to high−latitude millennial−scale climatic changes during the last glaciation: Evidence from a high−resolution clay mineralogical record[J]. Paleoceanography & Paleoclimatology, 33(7): 745−765.

    Google Scholar

    [68] Zhao Y, Tzedakis P C, Li Q, et al. 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years[J]. Science Advances, 6(19): eaay6193. doi: 10.1126/SCiadv.aay6193

    CrossRef Google Scholar

    [69] 裘善文, 王锡魁, 张淑芹, 等. 2012. 松辽平原古大湖演变及其平原的形成[J]. 第四纪研究, 32(5): 1011−1021. doi: 10.3969/j.issn.1001-7410.2012.05.17

    CrossRef Google Scholar

    [70] 裘善文, 夏玉海, 汪佩芳, 等. 1988. 松辽平原更新世地层及其沉积环境的研究[J]. 中国科学(B辑), (4): 431−442.

    Google Scholar

    [71] 邵兴坤, 侯红星, 任柄璋, 等. 2024. 松嫩平原齐齐哈尔地区拜泉县地表基质特征及其古环境恢复[J]. 地质通报, 43(9): 1498−1514.

    Google Scholar

    [72] 詹涛, 曾方明, 谢远云, 等. 2019. 东北平原钻孔的磁性地层定年及松嫩古湖演化[J]. 科学通报, 64(11): 1179−1190.

    Google Scholar

    [73] 詹泽东, 西广越, 任柄璋, 等. 2024. 黑龙江省齐齐哈尔五县碳存储量空间变化规律及固碳潜力研究[J]. 地质通报, 43(9): 1470−1484. doi: 10.12097/gbc.2023.09.028

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(151) PDF downloads(42) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint