2025 Vol. 44, No. 2~3
Article Contents

SUN Yuqing, GE Yonggang, CHEN Xingzhang, ZENG Lu, LIANG Xinyue, FENG Xin. 2025. Hazard assessment of debris flow in Jinsha River. Geological Bulletin of China, 44(2~3): 377-391. doi: 10.12097/gbc.2023.08.008
Citation: SUN Yuqing, GE Yonggang, CHEN Xingzhang, ZENG Lu, LIANG Xinyue, FENG Xin. 2025. Hazard assessment of debris flow in Jinsha River. Geological Bulletin of China, 44(2~3): 377-391. doi: 10.12097/gbc.2023.08.008

Hazard assessment of debris flow in Jinsha River

More Information
  • Objective

    This study investigates the distribution characteristics of debris flow in Jinsha River and conducts a hazard assessment to provide data support and a scientific basis for understanding regional variations in debris flow and disaster prevention in the Hengduan Mountain area.

    Methods

    Based on the field investigation and GIS spatial analysis, 2551 debris flows in the Jinsha River were identified. Hazard assessment was performed based on the activity characteristics of these debris flows. Using ROC analysis and spatial clustering, the debris flow hazard zoning in the Jinsha River was established.

    Results

    ① Debris flows in the upper reaches of Jinsha River are not active, predominantly of low to medium frequency, while high−frequency debris flows are concentrated in the lower reaches, especially between Yarmou and Qiaojia. ② The primary factors influencing debris flow formation include slopes ranging from 15° to 35°, frequent seismic activity, and the presence of both soft and hard clastic rocks. ③ Medium− and high−hazard debris flows cover 47.48% of the area, nearly half of the studied region. ④ The high−hazard zone in the Dongchuan−Qiaojia section shows high concentration, closely correlating with active faults and abundant sediment supply, largely controlled by tectonic activity.

    Conclusions

    High−hazard debris flow zones are concentrated in the downstream of Jinsha River. The hazard zoning map provides a reference for risk mitigation in hydropower development and transportation infrastructure planning.

  • 加载中
  • [1] Agterberg F A. 2011. Modified Weights−of−Evidence Method for Regional Mineral Resource Estimation[J]. Natural Resources Research, 20(2): 95−101. doi: 10.1007/s11053-011-9138-0

    CrossRef Google Scholar

    [2] Akbar T A, Ha S R. 2011. Landslide hazard zoning along Himalayan Kaghan Valley of Pakistan−by integration of GPS, GIS, and remote sensing technology[J]. Landslides, 8(4): 527−540. doi: 10.1007/s10346-011-0260-1

    CrossRef Google Scholar

    [3] Berenguer M, Sempere−Torres D, Hürlimann M. 2014. Debris−flow hazard assessment at regional scale by combining susceptibility mapping and radar rainfall[J]. Natural Hazards and Earth System Sciences, 2(10): 6295−6338.

    Google Scholar

    [4] Bi X, Fan Q, He L, et al. 2023. Analysis and Evaluation of Extreme Rainfall Trends and Geological Hazards Risk in the Lower Jinshajiang River[J]. Applied Sciences, 13(6): 4021. doi: 10.3390/app13064021

    CrossRef Google Scholar

    [5] Blothe J H, Korup O, Schwanghart W. 2015. Large landslides lie low: Excess topography in the Himalaya−Karakoram ranges[J]. Geology, 43(6): 523−526. doi: 10.1130/G36527.1

    CrossRef Google Scholar

    [6] Bojer A K, Ahmed M E, Bekalo D J, et al. 2023. Analysis of land use/land cover change (LULCC) and debris flow risks in Adama district, Ethiopia, aided by numerical simulation and deep learning−based remote sensing[J]. Stochastic Environmental Research and Risk Assessment, 37: 4893−4910. doi: 10.1007/s00477-023-02550-w

    CrossRef Google Scholar

    [7] Bregoli F, Medina V, Chevalier G. et al. 2015. Debris−flow susceptibility assessment at regional scale: Validation on an alpine environment[J]. Landslides, 12(3): 437−454. doi: 10.1007/s10346-014-0493-x

    CrossRef Google Scholar

    [8] Cabral V, Reis F, Veloso V, et al. 2023. A multi−step hazard assessment for debris−flow prone areas influenced by hydroclimatic events[J]. Engineering Geology, 313: 106961. doi: 10.1016/j.enggeo.2022.106961

    CrossRef Google Scholar

    [9] Cao P, Li Y, Li Z, et al. 2021. Geological structure characteristics and genetic mechanism of Baige Landslide Slope in Changdu Tibet[J]. Earth Science, 46(9): 3397−3409 (in Chinese with English abstract).

    Google Scholar

    [10] Chang M, Tang C, Van Asch T W J, et al. 2017. Hazard assessment of debris flows in the Wenchuan earthquake−stricken area, South West China[J]. Landslides, 14(5): 1783−1792. doi: 10.1007/s10346-017-0824-9

    CrossRef Google Scholar

    [11] Chen C, Tseng C, Dong J. 2007. New entropy−based method for variables selection and its application to the debris−flow hazard assessment[J]. Engineering Geology, 94(1/2): 19−26. doi: 10.1016/j.enggeo.2007.06.004

    CrossRef Google Scholar

    [12] Chen J, Li Y, Xu C. 2016. Susceptibility assessment model of debris flows in the dry−hot valley of the Jinsha River and its application[J]. Mountain Research, 34(4): 460−467 (in Chinese with English abstract).

    Google Scholar

    [13] Chen X, Chen H, You Y, et al. 2016. Weights−of−evidence method based on GIS for assessing susceptibility to debris flows in Kangding County, Sichuan Province, China[J]. Environmental Earth Sciences, 75(1): 70. doi: 10.1007/s12665-015-5033-z

    CrossRef Google Scholar

    [14] Esper Angillieri, M Y. 2020. Debris flow susceptibility mapping using frequency ratio and seed cells, in a portion of a mountain international route, Dry Central Andes of Argentina[J]. Catena, 189: 104504. doi: 10.1016/j.catena.2020.104504

    CrossRef Google Scholar

    [15] Fawcett T. 2006. An introduction to ROC analysis[J]. Pattern Recognition Letters, 27(8): 861−874. doi: 10.1016/j.patrec.2005.10.010

    CrossRef Google Scholar

    [16] Feng Z, Chen L, Wang L C, et al. 2024. Principle and application of the weight−of−evidence method in regional landslide susceptibility assessment[J]. Geological Bulletin of China, 43(7): 1255−1265 (in Chinese with English abstract).

    Google Scholar

    [17] Hu G, Tian S, Chen N, et al. 2020. An effectiveness evaluation method for debris flow control engineering for cascading hydropower stations along the Jinsha River, China[J]. Engineering Geology, 266: 105472. doi: 10.1016/j.enggeo.2019.105472

    CrossRef Google Scholar

    [18] Kuo Y, Yang T, Huang G. 2008. The use of grey relational analysis in solving multiple attribute decision−making problems[J]. Computers & Industrial Engineering, 55(1): 80−93.

    Google Scholar

    [19] Li Y, Chen J, Zhou F, et al. 2020. Identification of ancient river−blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau[J]. Geomorphology, 368: 107351. doi: 10.1016/j.geomorph.2020.107351

    CrossRef Google Scholar

    [20] Li Y, Su L, Zou Q, et al. 2021. Risk assessment of glacial debris flow on alpine highway under climate change: A case study of Aierkuran Gully along Karakoram Highway[J]. Journal of Mountain Science, 18(6): 1458−1475. doi: 10.1007/s11629-021-6689-3

    CrossRef Google Scholar

    [21] Liu X, Dong X, Qian J, et al. 2024. Airborne LiDAR−based Debris Flow Material Sources Remote Sensing Recognition in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 49(3): 400−410 (in Chinese with English abstract).

    Google Scholar

    [22] Liu X, Yao X, Yu K, et al. 2020. Remote sensing integrated identification of geological hazards in the Batang−Mangkang Section of the Sichuan−Tibet Highway[J]. Advanced Engineering Sciences, 52(6): 49−60 (in Chinese with English abstract).

    Google Scholar

    [23] Liu Z, Xu L, Jiang H. 2018. Study on the review of the risk assessment of debris flow, 2nd International Workshop on Renewable Energy and Development (IWRED)[J]. IOP Conference Series−Earth and Environmental Science, 153: 062083. doi: 10.1088/1755-1315/153/6/062083

    CrossRef Google Scholar

    [24] Lou Y, Xu S, Wu X. 2007. Geological disaster development mechanism and their prevention countermeasures in the "Three Rivers" juxtaposition area, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 4: 1−6 (in Chinese with English abstract).

    Google Scholar

    [25] Lou Y. 2009. Research on Geologic Environment in Three Parallel Rivers Region [D]. PhD Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [26] Lyu L, Xu M, Wang Z, et al. 2022. A field investigation on debris flows in the incised Tongde sedimentary basin on the northeastern edge of the Tibetan Plateau[J]. Catena, 208: 105727. doi: 10.1016/j.catena.2021.105727

    CrossRef Google Scholar

    [27] Ming Q, Pan Y. 2002. The elementary acknowledge on the importance of environmental evolution of Yunnan Plateau[J]. Journal of Geomechanics, 8(4): 361−368 (in Chinese with English abstract).

    Google Scholar

    [28] Ming Q. 2006. The landform development and environment effects of three parallel rivers in the north of Longitudinal Range−Gorge Region (LRGR) [D]. PhD Dissertation of Lanzhou University (in Chinese with English abstract).

    Google Scholar

    [29] Morel M, Piton G, Kuss D, et al. 2023. Statistical modeling of sediment supply in torrent catchments of the northern French Alps[J]. Natural Hazards and Earth System Sciences, 23(5): 1769−1787. doi: 10.5194/nhess-23-1769-2023

    CrossRef Google Scholar

    [30] Pan G, Wang L, Li R, et al. 2012. Tectonic evolution of the Qinghai−Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3−14. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    [31] Peng S, Ding D, Liu W, et al. 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 11: 1931−1946. doi: 10.5194/essd-11-1931-2019

    CrossRef Google Scholar

    [32] Saaty T. 1990. Multicriteria Decision Making: The Analytic Hierarchy Process[M]. Springer Netherlands.

    Google Scholar

    [33] Wang B, Wang L, Wang D, et al. 2021. The temporal and spatial framework and its tectonic evolution of the Jinsha River arc−basin system, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 41(2): 246−264 (in Chinese with English abstract).

    Google Scholar

    [34] Wang N, Pu K. 2018. Grey Relational Analysis of geological hazards and urbanization construction in China[J]. IOP Conference Series: Materials Science and Engineering, 381(1): 012012.

    Google Scholar

    [35] Wen H J, Hu J W, Zhang H, et al. 2024. Debris flow accumulation area using modified Laharz model[J]. Journal of Jilin University(Earth Science Edition), 54(3): 905−918 (in Chinese with English abstract).

    Google Scholar

    [36] Wu S, Chen J, Wendy Z, et al. 2018. Debris−flow susceptibility assessment and validation based on logistic Regression model: an example from the Benzilan−Changbo segment of the upper Jinshajiang River[J]. Geoscience, 32(3): 611−622 (in Chinese with English abstract).

    Google Scholar

    [37] Xiang L, Li Y, Chen H, et al. 2015. Sensitivity analysis of debris flow along highway based on geomorphic evolution theory[J]. Resources and Environment in the Yangtze Basin, 24(11): 1984−1992 (in Chinese with English abstract).

    Google Scholar

    [38] Xue X, Zheng L. 2013. GIS−information method based risk evaluation for debris flow in Chencang District, International Conference on Advances in Energy and Environmental Science[J]. Advanced Materials Research, 807/809: 1928−1933. doi: 10.4028/www.scientific.net/AMR.807-809.1928

    CrossRef Google Scholar

    [39] Yin C, Zhang J. 2018. Hazard regionalization of debris−flow disasters along highways in China[J]. Natural Hazards, 91(S1): 129−147. doi: 10.1007/s11069-018-3229-8

    CrossRef Google Scholar

    [40] Zeng C, Cao Z, Su F, et al. 2022. A dataset of high−precision aerial imagery and interpretation of landslide and debris flow disaster in Sichuan and surrounding areas between 2008 and 2020[J]. China Scientific Data, 7(2): 195−205 (in Chinese with English abstract).

    Google Scholar

    [41] Zhang C, Wang Q, Chen J, et al. 2011. Evaluation of debris flow risk in Jinsha River based on combined weight process[J]. Rock and Soil Mechanics, 32(3): 831−836 (in Chinese with English abstract).

    Google Scholar

    [42] Zhang J, Tian S, Hou P. 2021. The material supply ability analysis of debris flows based on areahypsometric integral and area−gradient integral[J]. The Chinese Journal of Geological Hazard and Control, 32(4): 9−16 (in Chinese with English abstract).

    Google Scholar

    [43] Zhang Y, Gao Y, Li B, et al. 2023. Characteristics and geological hazards of melange belts in Qinghai−Tibet Plateau[J]. Journal of Engineering Geology, 31(3): 981−998 (in Chinese with English abstract).

    Google Scholar

    [44] 曹鹏, 黎应书, 李宗亮, 等. 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制[J]. 地球科学, 46(9): 3397−3409.

    Google Scholar

    [45] 陈剑, 黎艳, 许冲. 2016. 金沙江干热河谷区泥石流易发性评价模型及应用[J]. 山地学报, 34(4): 460−467.

    Google Scholar

    [46] 冯振, 陈亮, 王立朝, 等. 2024. 区域地质灾害易发性评价的证据权法原理与实践[J]. 地质通报, 43(7): 1255−1265. doi: 10.12097/gbc.2023.02.034

    CrossRef Google Scholar

    [47] 骆银辉. 2009. 三江并流区地质环境问题研究[D]. 中国地质大学(北京)博士学位论文.

    Google Scholar

    [48] 骆银辉, 徐世光, 吴香根. 2007. 云南“三江”并流区地质灾害发育机制及其防治[J]. 中国地质灾害与防治学报, 4: 1−6. doi: 10.3969/j.issn.1003-8035.2007.03.001

    CrossRef Google Scholar

    [49] 刘小莎, 董秀军, 钱济人, 等. 2024. 高植被山区泥石流物源LiDAR遥感精细识别方法研究[J]. 武汉大学学报(信息科学版), 49(3): 400−410.

    Google Scholar

    [50] 刘星洪, 姚鑫, 於开炳, 等. 2020. 川藏高速巴塘-芒康段地质灾害遥感综合早期识别研究[J]. 工程科学与技术, 52(6): 49−60.

    Google Scholar

    [51] 明庆忠. 2006. 纵向岭谷北部三江并流区河谷地貌发育及其环境效应研究[D]. 兰州大学博士学位论文.

    Google Scholar

    [52] 明庆忠, 潘玉君. 2002. 对云南高原环境演化研究的重要性及环境演变的初步认知[J]. 地质力学学报, 8(4): 361−368. doi: 10.3969/j.issn.1006-6616.2002.04.011

    CrossRef Google Scholar

    [53] 王保弟, 王立全, 王冬兵, 等. 2021. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 41(2): 246−264.

    Google Scholar

    [54] 文海家, 胡吉威, 张辉, 等. 2024. 泥石流危险范围Laharz修正模型及其应用[J]. 吉林大学学报(地球科学版), 54(3): 905−918.

    Google Scholar

    [55] 吴赛儿, 陈剑, Wendy Z, 等. 2018. 基于逻辑回归模型的泥石流易发性评价与检验: 以金沙江上游奔子栏-昌波河段为例[J]. 现代地质, 32(3): 611−622.

    Google Scholar

    [56] 向灵芝, 李泳, 陈洪凯, 等. 2015. 基于流域演化的泥石流敏感性分析[J]. 长江流域资源与环境, 24(11): 1984−1992. doi: 10.11870/cjlyzyyhj201511024

    CrossRef Google Scholar

    [57] 曾超, 曹振宇, 苏凤环, 等. 2022. 四川及周边滑坡泥石流灾害高精度航空影像及解译数据集(2008—2020年)[J]. 中国科学数据, 7(2): 195−205.

    Google Scholar

    [58] 张晨, 王清, 陈剑平, 等. 2011. 金沙江流域泥石流的组合赋权法危险度评价[J]. 岩土力学, 32(3): 831−836. doi: 10.3969/j.issn.1000-7598.2011.03.032

    CrossRef Google Scholar

    [59] 张静, 田述军, 侯鹏鹂. 2021. 基于面积-高程和面积-坡度积分的泥石流物质供给能力分析[J]. 中国地质灾害与防治学报, 32(4): 9−16.

    Google Scholar

    [60] 张彦锋, 高杨, 李滨, 等. 2023. 青藏高原混杂岩带及其地质灾害发育特征分析[J]. 工程地质学报, 31(3): 981−998.

    Google Scholar

    [61] 中华人民共和国地质矿产行业标准. 2015. 滑坡崩塌泥石流灾害调查规范(1∶50000):D2/T 0261—2014[S]. 中国标准出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(193) PDF downloads(40) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint