2025 Vol. 44, No. 1
Article Contents

WU Yonghong, TAO Xiayan, ZHAO Zhongyu, TANG Qingsong, HUANG Tianjun, LIU Jiawei, FENG Liang, WU Guanghui. 2025. Discovery and significant implication of the strike-slip faults in Kaijiang-Liangping Trough of the Sichuan Basin. Geological Bulletin of China, 44(1): 117-128. doi: 10.12097/gbc.2023.05.011
Citation: WU Yonghong, TAO Xiayan, ZHAO Zhongyu, TANG Qingsong, HUANG Tianjun, LIU Jiawei, FENG Liang, WU Guanghui. 2025. Discovery and significant implication of the strike-slip faults in Kaijiang-Liangping Trough of the Sichuan Basin. Geological Bulletin of China, 44(1): 117-128. doi: 10.12097/gbc.2023.05.011

Discovery and significant implication of the strike-slip faults in Kaijiang-Liangping Trough of the Sichuan Basin

    Fund Project: Supported by the National Natural Science Foundation of China (No. U24B2019、42241202), Science and Technology Co-operation Project of the CNPC-SWPU Innovation Alliance (2020CX010301).
More Information
  • Author Bio: WU Yonghong, male, born in 1981, engineer, mainly engaged in research of oil/gas exploration and development; Email:wuyh01@petrochina.com.cn
  • Corresponding author: WU Guanghui, male, born in 1971, professor, mainly engaged in study of structural geology and petroleum geology; E−mail:wugh@swpu.edu.cn.
  • Objective

    The identification of strike−slip faults in sedimentary basins is of great significance to the study of the strike−slip fault−controlled reservoir and its exploitation deployment. However, the small−scale and low seismic resolution of strike−slip fault is the key issues restricting the exploration and development of strike−slip fault−controlled oil−gas reservoirs. Therefore, the identification of strike−slip faults is carried out on the basis of new 3D seismic data in the eastern Kaijiang−Liangping Trough of the Sichuan Basin.

    Methods

    Steerable Pyramid reprocessing of the new 3D seismic data is used to enhance the seismic resolution on the strike−slip faults, the identification marks of the strike−slip faults are analyzed and the strike−slip faults are interpreted by seismic methods, and the fault effects on the gas accumulation and enrichment are discussed by the well data.

    Results

    The Steerable Pyramid reprocessing has enhanced the seismic identified resolution of deep small (vertical fault displacement <30 m) strike−slip faults. Five marks in seismic section and six marks in plane attribute are proposed to form a method for seismic identification of small strike−slip faults. These include five section marks of vertical fault, flower structure, fault dip reversal, abrupt change of fault displacement and property, and six plane markers of echelon/oblique faults, horizontal offset of geological body, pull−apart micrograben, horsetail structure, horizontal variation of fault type and throw, and linear mutation of seismic attribute. A large strike−slip fault system is found that is consistent with the NW−trending platform margin. The strike−slip fault can not only connect source rocks and facilitate migration and accumulation, but also favor the gas enrichment and high production from the deep carbonate rocks.

    Conclusions

    This paper proposes the identification markers of deep small strike−slip faults, and put forward the identification method of strike−slip fault. A large strike−slip fault system is found along the Kaijiang−Liangping Trough, and has significant effects on gas accumulation and distribution. This discovery provides a new exploration and development domain of strike−slip fault−controlled gas reservoirs in the Sichuan Basin.

  • 加载中
  • [1] Aydin A, Schultz R A. 1990. Effect of mechanical interaction on the development of strike−slip faults with echelon patterns[J]. Journal of Structural Geology, 12(1): 123−129. doi: 10.1016/0191-8141(90)90053-2

    CrossRef Google Scholar

    [2] Chen L X, Jiang Z X, Sun C, et al. 2023. An overview of the differential carbonate reservoir characteristic and exploitation challenge in the Tarim Basin (NW China)[J]. Energies, 16: 5586. doi: 10.3390/en16155586

    CrossRef Google Scholar

    [3] Chen S P, Tian Z J, Xu S D, et al. 2024. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 43(1): 13−19 (in Chinese with English abstract).

    Google Scholar

    [4] Dou F P, Li J H, Peng M. 2024. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation[J]. Geological Bulletin of China, 43(4): 527−535 (in Chinese with English abstract).

    Google Scholar

    [5] Feng L J, Jiang Y Q, Liu F, et al. 2021. Reservoir characteristics and main controlling factors of oolitic shoal reservoir in Feixianguan Formation in the southern part of Kaijiang−Liangping trough, eastern Sichan Basin[J]. Acta Petrolei Sinica, 42(10): 1287−1298 (in Chinese with English abstract).

    Google Scholar

    [6] Fossen H. 2010. Structural Geology[M]. Cambridge University Press.

    Google Scholar

    [7] Harding T P. 1985. Seismic characteristics and identification of negative flower structures positive flower structures and positive structural inversion[J]. Geological Society of America Bulletin, 69(4): 1016−1058.

    Google Scholar

    [8] Harding T P. 1990. Identification of wrench fault using subsurface structural data: criteria and pitfalls[J]. AAPG Bulletin, 74(10): 1090−1609.

    Google Scholar

    [9] He D F, Li D S, Zhang G W, et al. 2011. Formation and evolution of multi−cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 46(3): 589−606 (in Chinese with English abstract).

    Google Scholar

    [10] Jia C Z, Ma D B, Yuan J Y, et al. 2021. Structural characteristics, formation & evolution and genetic mechanisms of strike–slip faults in the Tarim Basin[J]. Natural Gas Industry, 41(8): 81−91(in Chinese with English abstract).

    Google Scholar

    [11] Jiao F Z, Yang Y, Ran Q, et al. 2021. Distribution and gas exploration of the strike–slip faults in the central Sichuan Basin[J]. Natural Gas Industry, 41(8): 59−68 (in Chinese with English abstract).

    Google Scholar

    [12] Li H K, Li Z Q, Long W, et al. 2019. Vertical configuration of Sichuan Basin and its superimposed characteristics of the prototype basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 46(3): 257−267 (in Chinese with English abstract).

    Google Scholar

    [13] Liang D X, Hu S Y, Gu Z D, et al. 2015. Formation and evolution process of Kaijiang paleohigh in the Sichuan Basin and its controlling effects on gas pool formation[J]. Natural Gas Industry, (9): 35−41 (in Chinese with English abstract).

    Google Scholar

    [14] Liu S G, Yang Y, Deng B, et al. 2021. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth−science Review, 213: 103470. doi: 10.1016/j.earscirev.2020.103470

    CrossRef Google Scholar

    [15] Ma D B, Wang Z C, Duan S F, et al. 2018. Strike-slip faults and their significance for hydrocarbon accumulation in Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 45(5): 795-805.

    Google Scholar

    [16] Ma X H, Yang Y, Wen Long, et al. 2019. Distribution and exploration direction of medium−and large−sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(1): 1−13 (in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30001-1

    CrossRef Google Scholar

    [17] Ma Y S, Cai X Y, Yun L, et al. 2022. Practice and theoretical and technical progress in exploration and development of Shunbei ultra−deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 49(1): 1−17 (in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6

    CrossRef Google Scholar

    [18] Sylvester A G. 1988. Strike−slip faults[J]. Geological Society of America Bulletin, 11(100): 1666−1703.

    Google Scholar

    [19] Tang Q S, Tang S H, Luo B, et al. 2022. Seismic description of deep strike−slip fault damage zone by Steerable Pyramid Method in the Sichuan Basin, China[J]. Energies, 15(21): 8131. doi: 10.3390/en15218131

    CrossRef Google Scholar

    [20] Tang Q S, Liu J W, Wu G H, et al. 2024. Seismic description and application of deep carbonate strike−slip fault−controlled “sweet spots” reservoirs in the Anyue Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 35(11): 2053−2063 (in Chinese with English abstract).

    Google Scholar

    [21] Wang Q H, Yang H J, Wang R J, et al. 2021. Discovery and exploration technology of fault−controlled large oil and gas fields of ultra−deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 26(4): 58−71 (in Chinese with English abstract).

    Google Scholar

    [22] Wang X Z, Li B, Wen L, et al. 2021. Characteristics of “Guangyuan−Wangcang” trough during late Middle Permian and its petroleum geological significance in northern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 48(3): 562−574 (in Chinese with English abstract).

    Google Scholar

    [23] Wen L, Zhang Q, Yang Y, et al. 2012. Factors controlling reef−bank reservoirs in the Changxing−Feixianguan formation in the Sichuan Basin and their play fairways[J]. Natural Gas Industry, 32(1): 39−44 (in Chinese with English abstract).

    Google Scholar

    [24] Wu G H, Pang X Q, Li Q M, et al. 2016. The structural characteristics of carbonate recks and their effects on hydrocarbon exploration in Craton Basin: A case study of the Tarim Basin[M]. Beijing: Science Press: 131−150 (in Chinese).

    Google Scholar

    [25] Wu G H, Zou Y, Xu W, et al. 2023. The strike−slip faults distribution and implications on the Sinian gas exploration in the northern slope of the central paleo−uplift in the Sichuan Basin[J]. Natural Gas Industry, 43(77): 26−34 (in Chinese with English abstract).

    Google Scholar

    [26] Xia Y P, Liu W H, Xu L G, et al. 2007. Identification of strike−slip fault and its petroleum geology significance[J]. China Petroleum Exploration, 12(1): 17−23 (in Chinese with English abstract).

    Google Scholar

    [27] Xiong C, Cai Z X, Ma B S, et al. 2024. Controls of strike−slip faults on condensate gas accumulation and enrichment in the Ordovician carbonate reservoirs of the central Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 263: 106019. doi: 10.1016/j.jseaes.2024.106019

    CrossRef Google Scholar

    [28] Yang H J, Wu G H, Han J F, et al. 2022. The strike−slip fault analysis in the Tarim Basin[M]. Petroleum Industry Press: 38−54 (in Chinese).

    Google Scholar

    [29] Yang Y, Zhong Y, Li L J. 2021. Distribution and gensis of Permian−Triassic reef−shoal combination around Kaijiang−Liangping trough in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 48(6): 683−690 (in Chinese with English abstract).

    Google Scholar

    [30] Zhang J Y, Zhou J G, HAO Y, et al. 2011. A Sedimentary model of Changxing and Feixianguan reservoirs around Kaijiang−Liangping Trough in Sichuan Basin[J]. Marine Original Petroleum Geology, 16(3): 45−54 (in Chinese with English abstract).

    Google Scholar

    [31] Zou C N, Du J H, Xu C C, et al. 2014. Formation, distribution, resource potential and discovery of the Sinian−Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 41(3): 278−293 (in Chinese with English abstract).

    Google Scholar

    [32] Zou Y, Wu G H, Song Y T, et al. 2024. Pitfalls in seismic identification of strike−slip faults in intracraton basin[J]. Geophysical Prospecting for Petroleum, 63(4): 869−880 (in Chinese with English abstract).

    Google Scholar

    [33] 陈书平, 田作基, 徐世东, 等. 2024. 两种结构类型的走滑相关剪断裂带[J]. 地质通报, 43(1): 13−19. doi: 10.12097/gbc.2023.04.005

    CrossRef Google Scholar

    [34] 豆方鹏, 李江海, 彭谋. 2024. 准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究[J]. 地质通报, 43(4): 527−535.

    Google Scholar

    [35] 冯林杰, 蒋裕强, 刘菲, 等. 2021. 川东地区开江−梁平海槽南段飞仙关组鲕滩储层特征及主控因素[J]. 石油学报, 42(10): 1287−1298. doi: 10.7623/syxb202110003

    CrossRef Google Scholar

    [36] 何登发, 李德生, 张国伟, 等. 2011. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 46(3): 589−606. doi: 10.3969/j.issn.0563-5020.2011.03.001

    CrossRef Google Scholar

    [37] 贾承造, 马德波, 袁敬一, 等. 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 41(8): 81−91. doi: 10.3787/j.issn.1000-0976.2021.08.008

    CrossRef Google Scholar

    [38] 焦方正, 杨雨, 冉崎, 等. 2021. 四川盆地中部地区走滑断层的分布与天然气勘探[J]. 天然气工业, 41(8): 59−68.

    Google Scholar

    [39] 李洪奎, 李忠权, 龙伟, 等. 2019. 四川盆地纵向结构及原型盆地叠合特征[J]. 成都理工大学学报(自然科学版), 46(3): 257−267.

    Google Scholar

    [40] 梁东星, 胡素云, 谷志东, 等. 2015. 四川盆地开江古隆起形成演化及其对天然气成藏的控制作用[J]. 天然气工业, (9): 35−41.

    Google Scholar

    [41] 马德波, 汪泽成, 段书府, 等. 2018. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义[J]. 石油勘探与开发, 45(5): 795-805.

    Google Scholar

    [42] 马新华, 杨雨, 文龙, 等. 2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 46(1): 1−13.

    Google Scholar

    [43] 马永生, 蔡勋育, 云露, 等. 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 49(1): 1−17.

    Google Scholar

    [44] 唐青松, 刘嘉伟, 邬光辉, 等. 2024. 四川盆地安岳气田深层走滑断控“甜点”储层地震刻画与成效[J]. 天然气地球科学, 35(11): 2053−2063.

    Google Scholar

    [45] 王清华, 杨海军, 汪如军, 等. 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 26(4): 58−71.

    Google Scholar

    [46] 王兴志, 李博, 文龙, 等. 2021. 四川盆地北部中二叠世晚期 “广元−旺苍” 海槽特征及其油气地质意义[J]. 石油勘探与开发, 48(3): 562−574.

    Google Scholar

    [47] 文龙, 张奇, 杨雨, 等. 2012. 四川盆地长兴组−飞仙关组礁、滩分布的控制因素及有利勘探区带[J]. 天然气工业, 32(1): 39−44.

    Google Scholar

    [48] 邬光辉, 庞雄奇, 李启明, 等. 2016. 克拉通碳酸盐岩构造与油气——以塔里木盆地为例[M]. 北京: 科学出版社: 131−150.

    Google Scholar

    [49] 邬光辉, 邹禺, 徐 伟, 等. 2023. 四川盆地川中古隆起北斜坡震旦系走滑断裂分布及其勘探意义[J]. 天然气工业, 43(77): 26−34.

    Google Scholar

    [50] 夏义平, 刘万辉, 徐礼贵, 等. 2007. 走滑断层的识别标志及其石油地质意义[J]. 中国石油勘探, 12(1): 17−23.

    Google Scholar

    [51] 杨海军, 邬光辉, 韩剑发, 等. 2022. 塔里木盆地走滑断裂构造解析[M]. 北京: 石油工业出版社: 38−54.

    Google Scholar

    [52] 杨雨, 钟原, 李林娟. 2021. 开江-梁平海槽周缘二叠系—三叠系礁滩组合分布与成因[J]. 成都理工大学学报(自然科学版), 48(6): 683−690.

    Google Scholar

    [53] 张建勇, 周进高, 郝毅, 等. 2011. 四川盆地环开江−梁平海槽长兴组−飞仙关组沉积模式[J]. 海相油气地质, 16(3): 45−54.

    Google Scholar

    [54] 邹才能, 杜金虎, 徐春春, 等. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 41(3): 278−293.

    Google Scholar

    [55] 邹禺, 邬光辉, 宋玉婷, 等. 2024. 克拉通内盆地走滑断层地震判识的若干陷阱[J]. 石油物探, 63(4): 869−880.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(278) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint