Citation: | WU Yonghong, TAO Xiayan, ZHAO Zhongyu, TANG Qingsong, HUANG Tianjun, LIU Jiawei, FENG Liang, WU Guanghui. 2025. Discovery and significant implication of the strike-slip faults in Kaijiang-Liangping Trough of the Sichuan Basin. Geological Bulletin of China, 44(1): 117-128. doi: 10.12097/gbc.2023.05.011 |
The identification of strike−slip faults in sedimentary basins is of great significance to the study of the strike−slip fault−controlled reservoir and its exploitation deployment. However, the small−scale and low seismic resolution of strike−slip fault is the key issues restricting the exploration and development of strike−slip fault−controlled oil−gas reservoirs. Therefore, the identification of strike−slip faults is carried out on the basis of new 3D seismic data in the eastern Kaijiang−Liangping Trough of the Sichuan Basin.
Steerable Pyramid reprocessing of the new 3D seismic data is used to enhance the seismic resolution on the strike−slip faults, the identification marks of the strike−slip faults are analyzed and the strike−slip faults are interpreted by seismic methods, and the fault effects on the gas accumulation and enrichment are discussed by the well data.
The Steerable Pyramid reprocessing has enhanced the seismic identified resolution of deep small (vertical fault displacement <30 m) strike−slip faults. Five marks in seismic section and six marks in plane attribute are proposed to form a method for seismic identification of small strike−slip faults. These include five section marks of vertical fault, flower structure, fault dip reversal, abrupt change of fault displacement and property, and six plane markers of echelon/oblique faults, horizontal offset of geological body, pull−apart micrograben, horsetail structure, horizontal variation of fault type and throw, and linear mutation of seismic attribute. A large strike−slip fault system is found that is consistent with the NW−trending platform margin. The strike−slip fault can not only connect source rocks and facilitate migration and accumulation, but also favor the gas enrichment and high production from the deep carbonate rocks.
This paper proposes the identification markers of deep small strike−slip faults, and put forward the identification method of strike−slip fault. A large strike−slip fault system is found along the Kaijiang−Liangping Trough, and has significant effects on gas accumulation and distribution. This discovery provides a new exploration and development domain of strike−slip fault−controlled gas reservoirs in the Sichuan Basin.
[1] | Aydin A, Schultz R A. 1990. Effect of mechanical interaction on the development of strike−slip faults with echelon patterns[J]. Journal of Structural Geology, 12(1): 123−129. doi: 10.1016/0191-8141(90)90053-2 |
[2] | Chen L X, Jiang Z X, Sun C, et al. 2023. An overview of the differential carbonate reservoir characteristic and exploitation challenge in the Tarim Basin (NW China)[J]. Energies, 16: 5586. doi: 10.3390/en16155586 |
[3] | Chen S P, Tian Z J, Xu S D, et al. 2024. Two structural types of shear fracture belts related to wrenches[J]. Geological Bulletin of China, 43(1): 13−19 (in Chinese with English abstract). |
[4] | Dou F P, Li J H, Peng M. 2024. Tectonic deformation mechanism of the fault zone in the northwest margin of Junggar Basin: Based on physical experimental simulation[J]. Geological Bulletin of China, 43(4): 527−535 (in Chinese with English abstract). |
[5] | Feng L J, Jiang Y Q, Liu F, et al. 2021. Reservoir characteristics and main controlling factors of oolitic shoal reservoir in Feixianguan Formation in the southern part of Kaijiang−Liangping trough, eastern Sichan Basin[J]. Acta Petrolei Sinica, 42(10): 1287−1298 (in Chinese with English abstract). |
[6] | Fossen H. 2010. Structural Geology[M]. Cambridge University Press. |
[7] | Harding T P. 1985. Seismic characteristics and identification of negative flower structures positive flower structures and positive structural inversion[J]. Geological Society of America Bulletin, 69(4): 1016−1058. |
[8] | Harding T P. 1990. Identification of wrench fault using subsurface structural data: criteria and pitfalls[J]. AAPG Bulletin, 74(10): 1090−1609. |
[9] | He D F, Li D S, Zhang G W, et al. 2011. Formation and evolution of multi−cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 46(3): 589−606 (in Chinese with English abstract). |
[10] | Jia C Z, Ma D B, Yuan J Y, et al. 2021. Structural characteristics, formation & evolution and genetic mechanisms of strike–slip faults in the Tarim Basin[J]. Natural Gas Industry, 41(8): 81−91(in Chinese with English abstract). |
[11] | Jiao F Z, Yang Y, Ran Q, et al. 2021. Distribution and gas exploration of the strike–slip faults in the central Sichuan Basin[J]. Natural Gas Industry, 41(8): 59−68 (in Chinese with English abstract). |
[12] | Li H K, Li Z Q, Long W, et al. 2019. Vertical configuration of Sichuan Basin and its superimposed characteristics of the prototype basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 46(3): 257−267 (in Chinese with English abstract). |
[13] | Liang D X, Hu S Y, Gu Z D, et al. 2015. Formation and evolution process of Kaijiang paleohigh in the Sichuan Basin and its controlling effects on gas pool formation[J]. Natural Gas Industry, (9): 35−41 (in Chinese with English abstract). |
[14] | Liu S G, Yang Y, Deng B, et al. 2021. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth−science Review, 213: 103470. doi: 10.1016/j.earscirev.2020.103470 |
[15] | Ma D B, Wang Z C, Duan S F, et al. 2018. Strike-slip faults and their significance for hydrocarbon accumulation in Gaoshiti-Moxi area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 45(5): 795-805. |
[16] | Ma X H, Yang Y, Wen Long, et al. 2019. Distribution and exploration direction of medium−and large−sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(1): 1−13 (in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30001-1 |
[17] | Ma Y S, Cai X Y, Yun L, et al. 2022. Practice and theoretical and technical progress in exploration and development of Shunbei ultra−deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 49(1): 1−17 (in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6 |
[18] | Sylvester A G. 1988. Strike−slip faults[J]. Geological Society of America Bulletin, 11(100): 1666−1703. |
[19] | Tang Q S, Tang S H, Luo B, et al. 2022. Seismic description of deep strike−slip fault damage zone by Steerable Pyramid Method in the Sichuan Basin, China[J]. Energies, 15(21): 8131. doi: 10.3390/en15218131 |
[20] | Tang Q S, Liu J W, Wu G H, et al. 2024. Seismic description and application of deep carbonate strike−slip fault−controlled “sweet spots” reservoirs in the Anyue Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 35(11): 2053−2063 (in Chinese with English abstract). |
[21] | Wang Q H, Yang H J, Wang R J, et al. 2021. Discovery and exploration technology of fault−controlled large oil and gas fields of ultra−deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 26(4): 58−71 (in Chinese with English abstract). |
[22] | Wang X Z, Li B, Wen L, et al. 2021. Characteristics of “Guangyuan−Wangcang” trough during late Middle Permian and its petroleum geological significance in northern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 48(3): 562−574 (in Chinese with English abstract). |
[23] | Wen L, Zhang Q, Yang Y, et al. 2012. Factors controlling reef−bank reservoirs in the Changxing−Feixianguan formation in the Sichuan Basin and their play fairways[J]. Natural Gas Industry, 32(1): 39−44 (in Chinese with English abstract). |
[24] | Wu G H, Pang X Q, Li Q M, et al. 2016. The structural characteristics of carbonate recks and their effects on hydrocarbon exploration in Craton Basin: A case study of the Tarim Basin[M]. Beijing: Science Press: 131−150 (in Chinese). |
[25] | Wu G H, Zou Y, Xu W, et al. 2023. The strike−slip faults distribution and implications on the Sinian gas exploration in the northern slope of the central paleo−uplift in the Sichuan Basin[J]. Natural Gas Industry, 43(77): 26−34 (in Chinese with English abstract). |
[26] | Xia Y P, Liu W H, Xu L G, et al. 2007. Identification of strike−slip fault and its petroleum geology significance[J]. China Petroleum Exploration, 12(1): 17−23 (in Chinese with English abstract). |
[27] | Xiong C, Cai Z X, Ma B S, et al. 2024. Controls of strike−slip faults on condensate gas accumulation and enrichment in the Ordovician carbonate reservoirs of the central Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 263: 106019. doi: 10.1016/j.jseaes.2024.106019 |
[28] | Yang H J, Wu G H, Han J F, et al. 2022. The strike−slip fault analysis in the Tarim Basin[M]. Petroleum Industry Press: 38−54 (in Chinese). |
[29] | Yang Y, Zhong Y, Li L J. 2021. Distribution and gensis of Permian−Triassic reef−shoal combination around Kaijiang−Liangping trough in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 48(6): 683−690 (in Chinese with English abstract). |
[30] | Zhang J Y, Zhou J G, HAO Y, et al. 2011. A Sedimentary model of Changxing and Feixianguan reservoirs around Kaijiang−Liangping Trough in Sichuan Basin[J]. Marine Original Petroleum Geology, 16(3): 45−54 (in Chinese with English abstract). |
[31] | Zou C N, Du J H, Xu C C, et al. 2014. Formation, distribution, resource potential and discovery of the Sinian−Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 41(3): 278−293 (in Chinese with English abstract). |
[32] | Zou Y, Wu G H, Song Y T, et al. 2024. Pitfalls in seismic identification of strike−slip faults in intracraton basin[J]. Geophysical Prospecting for Petroleum, 63(4): 869−880 (in Chinese with English abstract). |
[33] | 陈书平, 田作基, 徐世东, 等. 2024. 两种结构类型的走滑相关剪断裂带[J]. 地质通报, 43(1): 13−19. doi: 10.12097/gbc.2023.04.005 |
[34] | 豆方鹏, 李江海, 彭谋. 2024. 准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究[J]. 地质通报, 43(4): 527−535. |
[35] | 冯林杰, 蒋裕强, 刘菲, 等. 2021. 川东地区开江−梁平海槽南段飞仙关组鲕滩储层特征及主控因素[J]. 石油学报, 42(10): 1287−1298. doi: 10.7623/syxb202110003 |
[36] | 何登发, 李德生, 张国伟, 等. 2011. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 46(3): 589−606. doi: 10.3969/j.issn.0563-5020.2011.03.001 |
[37] | 贾承造, 马德波, 袁敬一, 等. 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业, 41(8): 81−91. doi: 10.3787/j.issn.1000-0976.2021.08.008 |
[38] | 焦方正, 杨雨, 冉崎, 等. 2021. 四川盆地中部地区走滑断层的分布与天然气勘探[J]. 天然气工业, 41(8): 59−68. |
[39] | 李洪奎, 李忠权, 龙伟, 等. 2019. 四川盆地纵向结构及原型盆地叠合特征[J]. 成都理工大学学报(自然科学版), 46(3): 257−267. |
[40] | 梁东星, 胡素云, 谷志东, 等. 2015. 四川盆地开江古隆起形成演化及其对天然气成藏的控制作用[J]. 天然气工业, (9): 35−41. |
[41] | 马德波, 汪泽成, 段书府, 等. 2018. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义[J]. 石油勘探与开发, 45(5): 795-805. |
[42] | 马新华, 杨雨, 文龙, 等. 2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J]. 石油勘探与开发, 46(1): 1−13. |
[43] | 马永生, 蔡勋育, 云露, 等. 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 49(1): 1−17. |
[44] | 唐青松, 刘嘉伟, 邬光辉, 等. 2024. 四川盆地安岳气田深层走滑断控“甜点”储层地震刻画与成效[J]. 天然气地球科学, 35(11): 2053−2063. |
[45] | 王清华, 杨海军, 汪如军, 等. 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 26(4): 58−71. |
[46] | 王兴志, 李博, 文龙, 等. 2021. 四川盆地北部中二叠世晚期 “广元−旺苍” 海槽特征及其油气地质意义[J]. 石油勘探与开发, 48(3): 562−574. |
[47] | 文龙, 张奇, 杨雨, 等. 2012. 四川盆地长兴组−飞仙关组礁、滩分布的控制因素及有利勘探区带[J]. 天然气工业, 32(1): 39−44. |
[48] | 邬光辉, 庞雄奇, 李启明, 等. 2016. 克拉通碳酸盐岩构造与油气——以塔里木盆地为例[M]. 北京: 科学出版社: 131−150. |
[49] | 邬光辉, 邹禺, 徐 伟, 等. 2023. 四川盆地川中古隆起北斜坡震旦系走滑断裂分布及其勘探意义[J]. 天然气工业, 43(77): 26−34. |
[50] | 夏义平, 刘万辉, 徐礼贵, 等. 2007. 走滑断层的识别标志及其石油地质意义[J]. 中国石油勘探, 12(1): 17−23. |
[51] | 杨海军, 邬光辉, 韩剑发, 等. 2022. 塔里木盆地走滑断裂构造解析[M]. 北京: 石油工业出版社: 38−54. |
[52] | 杨雨, 钟原, 李林娟. 2021. 开江-梁平海槽周缘二叠系—三叠系礁滩组合分布与成因[J]. 成都理工大学学报(自然科学版), 48(6): 683−690. |
[53] | 张建勇, 周进高, 郝毅, 等. 2011. 四川盆地环开江−梁平海槽长兴组−飞仙关组沉积模式[J]. 海相油气地质, 16(3): 45−54. |
[54] | 邹才能, 杜金虎, 徐春春, 等. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 41(3): 278−293. |
[55] | 邹禺, 邬光辉, 宋玉婷, 等. 2024. 克拉通内盆地走滑断层地震判识的若干陷阱[J]. 石油物探, 63(4): 869−880. |
Tectonic position of the Sichuan Basin (a), the Kaijiang-Liangping Trough (b) and its tectonic zoning (c)
Typical seismic profile showing the thrust fault zone in the southeastern Kaijiang-Liangping Trough
The seismic profiles before (a) and after (b) Steerable Pyramid reprocessing, and the planar coherence attribute before (c) and after (d) Steerable Pyramid reprocessing
Seismic profile and typical marks of strike-slip faults
Seismic section (a) and its vertical displacement (b), and changes in the nature and location of the upper and lower faults (c) illustrating strike-slip faults
Triassic planar enhanced coherence attributes showing en échelon faults (a),platform-marginal reef-shoals of the Changxing Formation changing along strike-slip faults (b), and maximum forward curvature showing oblique faults with a sinistral left-stepping to form a pull-apart micrograben (c)
The planar curvature map showing the horsetail structure (a), planar enhanced coherence attribute showing oblique faults (b) and vertical throw along fault strike showing the abrupt change of the fault nature and displacement (c), and the planar amplitude attribute by Steerable Pyramid reprocessing showing linear abruptness zone along strike-slip fault (d)
Planar distribution of Triassic strike-slip faults in the southeastern Kaijiang-Liangping Trough
Interpreted seismic profile of strike-slip faults in the southeastern Kaijiang-Liangping Trough (a) and the layered distribution of strike-slip faults interpreted by the coherence attributes (b)
The gas accumulation model associated with strike-slip faults in the Kaijiang-Liangping Trough