2025 Vol. 44, No. 1
Article Contents

GU Yuchao, CHEN Renyi, DU Jiyu, JU Nan. 2025. Petrogenesis and tectonic implications of the Early Cretaceous syenogranite in Huanggangliang area, southern Great Hinggan Range: Evidence from zircon U−Pb ages, petrogeochemistry and Sr−Nd−Pb isotopes. Geological Bulletin of China, 44(1): 91-116. doi: 10.12097/gbc.2023.06.013
Citation: GU Yuchao, CHEN Renyi, DU Jiyu, JU Nan. 2025. Petrogenesis and tectonic implications of the Early Cretaceous syenogranite in Huanggangliang area, southern Great Hinggan Range: Evidence from zircon U−Pb ages, petrogeochemistry and Sr−Nd−Pb isotopes. Geological Bulletin of China, 44(1): 91-116. doi: 10.12097/gbc.2023.06.013

Petrogenesis and tectonic implications of the Early Cretaceous syenogranite in Huanggangliang area, southern Great Hinggan Range: Evidence from zircon U−Pb ages, petrogeochemistry and Sr−Nd−Pb isotopes

More Information
  • Objective

    A large area of granitoids had been developed in the huanggangliang tin-iron mining and its surrounding area in the southern Great Hinggan Range. Thus, the study on its diagenetic age, petrogenetic type and source of diagenetic and ore-forming materials provides important insights to the mechanism of Early Cretaceous collision orogeny in this area and its relationship with mineralization.

    Methods

    Samples were collected from the Huanggangliang tin−iron mining area and its surrounding areas in the southern Great Hinggan Range for petrography, zircon U−Pb geochronology, rock geochemistry, and Rb−Sr, Sm−Nd, Pb isotope studies.

    Results

    The crystallization ages of these samples range from 141.9 Ma to 139.1 Ma, which was formed during the Early Cretaceous and was about 3 Ma earlier than the mineralization age. The rocks are belong to high potassium calcium alkaline A−type granites with characteristics of high silicon, low aluminum, low magnesium, high potassium and low sodium. The ratios of (87Sr/86Sr)i and 143Nd/144Nd are 0.70031~0.70543 and 0.512572~0.512636, respectively, the value of εNd (t) is 0.07~ 1.18, and the Nd isotope model age TDM2 ranges from 926 Ma to 838 Ma.

    Conclusions

    The diagenetic materials of the Huanggangliang skarn tin−iron deposit were separated from the depleted mantle in Neoproterozoic, and experienced crustal contamination during ascending emplacement process. The southern Great Hinggan Range area experienced high−angle subduction of the Paleo−Pacific Ocean plate after post−collisional extension of the Mongol−Okhotsk Ocean closure.

  • 加载中
  • [1] Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters[J]. Chemical Geology, 48(1): 43−55.

    Google Scholar

    [2] Black L P, Kamo S L, Allen C M, et al. 2003. TEMORA 1: A new zircon standard for Phanerozoic U−Pb geochronology[J]. Chemical Geology, 200(1/2): 155−170. doi: 10.1016/S0009-2541(03)00165-7

    CrossRef Google Scholar

    [3] Cai J H, Yan G H, Xiao C D, et al. 2004. Nd, Sr, Pb isotopic characteristics of the Mesozoic intrusive rocks in Taihang−Da Hinggan Mountains tectonomagmatic belt and their source region[J]. Acta Petrologica Sinica, 20(5): 1225−1242 (in Chinese with English abstract).

    Google Scholar

    [4] Cao H H, Xu W L, Pei F P, et al. 2013. Zircon U−Pb geochronology and petrogenesis of the Late Paleozoic−Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block[J]. Lithos, 170/171: 191–207.

    Google Scholar

    [5] Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173−174.

    Google Scholar

    [6] Chappell B W, White A J R. 1992. I− and S−type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1−26.

    Google Scholar

    [7] Che Y W, Liu J F, Zhao S, et al. 2021. Early Early−Cretaceous post−collisional tectonic setting of the southern segment of the Great Xing’an Range: Evidence from the Lanjiayingzi gabbro−diorite in Linxi area[J]. Geological Bulletin of China, 40(1): 152–163 (in Chinese with English abstract).

    Google Scholar

    [8] Chen G Z, Wu G, Li T G, et al. 2018. LA−ICP−MS zircon and cassiterite U−Pb ages of Daolundaba copper−tungstentin deposit in Inner Mongolia and their geological significance[J]. Mineral Deposits, 37(2): 225−245 (in Chinese with English abstract).

    Google Scholar

    [9] Chen G Z, Wu G, Li T G, et al. 2021a. Mineralization of the Daolundaba Cu−W−Sn deposit in the southern Great Xing’an Range: Constraints from zircon and monazite U−Pb and sericite 40Ar−39Ar ages[J]. Acta Petrologica Sinica, 37(3): 865−885 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.03.14

    CrossRef Google Scholar

    [10] Chen G Z, Wu G, Li T G, et al. 2021b. Mineralization of the Daolundaba Cu−Sn−W−Ag deposit in the southern Great Xing’an Range, China: Constraints from geochronology, geochemistry, and Hf isotope[J]. Ore Geology Reviews, 133: 104117.

    Google Scholar

    [11] Clemens J D, Holloway J R, White A J R. 1986. Origin of an A−type granite: Experimental constraints[J]. American Mineralogist, 71(3/4): 317−324.

    Google Scholar

    [12] Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A−type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [13] Dai M, Yan G S, Li Y S, et al. 2022. The origin of microgranular enclaves in the Early Cretaceous Shuangjianzishan granites in southern Great Hinggan Range, NE China[J]. Geological Journal, 57(7): 2631–2655.

    Google Scholar

    [14] Dall’Agnol R, Carvalho de Oliveira D. 2007. Oxidized, magnetite−series, rapakivi−type granites of Carajas, Brazil: Implications for classification and petrogenesis of A−type granites[J]. Lithos, 93: 215−233. doi: 10.1016/j.lithos.2006.03.065

    CrossRef Google Scholar

    [15] Deng J F, Zhao G C, Su S G, et al. 2005. Structure overlap and tectonic setting of Yanshan orogenic belt in Yanshan Era[J]. Geotectonica et Metallogenia 29(2): 157–165 (in Chinese with English abstract).

    Google Scholar

    [16] Dickin A P. 1994. Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: Implications for magma evolution and crustal structure[J]. Geological Magazine, 131(3): 329−333. doi: 10.1017/S0016756800011092

    CrossRef Google Scholar

    [17] Duan X X, Zeng Q D, Yang Y H, et al. 2015. Triassic magmatism and Mo mineralization in northeast China: geochronological and isotopic constraints from the Laojiagou porphyry Mo deposit[J]. International Geology Review, 57(1): 55−75. doi: 10.1080/00206814.2014.989546

    CrossRef Google Scholar

    [18] Eby G N. 1992. Chemical subdivision of the A−type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641−644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [19] Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin[J]. Special Paper of the Geological Society of America, 206(9): 1−60.

    Google Scholar

    [20] Fan W M, Guo F, Wang Y J, et al. 2003. Late Mesozoic calc−alkaline volcanism of post−orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 121: 115−135. doi: 10.1016/S0377-0273(02)00415-8

    CrossRef Google Scholar

    [21] Feng Y Z, Yang J H, Sun J F, et al. 2020. Material records for Mesozoic destruction of the North China Craton by subduction of the Paleo−Pacific slab[J]. Science China Earth Sciences, 63: 690−700 (in Chinese with English abstract). doi: 10.1007/s11430-019-9564-4

    CrossRef Google Scholar

    [22] Frost C D, Frost B R. 1997. Reduced rapakivi−type granites: the tholeiite connection[J]. Geology, 25(7): 647−650. doi: 10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2

    CrossRef Google Scholar

    [23] Gu Y C, Chen R Y, Jia B, et al. 2017a. Zircon U−Pb dating and geochemistry of the granite porphyry from the Shuangjianzishan silver polymetallic deposit in Inner Mongolia and tectonic implications[J]. Geology and Exploration, 53(3): 495−507 (in Chinese with English abstract).

    Google Scholar

    [24] Gu Y C, Chen R Y, Jia B, et al. 2017b. Zircon U−Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb−Zn−Ag deposit of Inner Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101−117 (in Chinese with English abstract).

    Google Scholar

    [25] Guo Z J, Zhou Z H, Li G T, et al. 2012. SHRIMP U−Pb zircon dating and petrogeochemistral characteristics of the intermediate−acid intrusive rocks in the Aoergai copper deposit of Inner Mongolia[J]. Geology in China, 39(6): 1487−1500 (in Chinese with English abstract).

    Google Scholar

    [26] Han B F, Wang S G, Jahn B, et al. 1997. Depleted−mantle source for the Ulungur River A−type granites from North Xinjiang, China: Geochemistry and Nd−Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 138(3/4): 135−159. doi: 10.1016/S0009-2541(97)00003-X

    CrossRef Google Scholar

    [27] Harris C, Marsh J S, Milner S C. 1999. Petrology of the alkaline core of the Messum igneous complex, Nambibia: Evidence for the progressively decreasing effect of crustal contamination[J]. Journal of Petrology, 40(9): 1377−1397. doi: 10.1093/petroj/40.9.1377

    CrossRef Google Scholar

    [28] Hong J X, Zhang H Y, Zhai D G, et al. 2021. The geochronology of the Haobugao skarn Zn−Pb deposit (NE China) using garnet LA−ICP−MS U−Pb dating[J]. Ore Geology Reviews, 139: 1−23.

    Google Scholar

    [29] Hou Z Q. 2010. Metallogensis of continental collision[J]. Acta Geologica Sinica, 84(1): 30−58 (in Chinese with English abstract).

    Google Scholar

    [30] Ishiyama D, Mizuta T, Ishikawa Y, et al. 2001. Geochemical characteristics of igneous rocks and tin−copper mineralization[R]. Project Final Report of Chinese Research Center for Mineral Resources Exploration, 4: 115–138.

    Google Scholar

    [31] Jiang H Y, Zhao Z D, Zhu X Y, et al. 2020. Characteristics and metallogenic significance of granite porphyry and pyroxene diorite in the Bianjiadayuan Pb−Zn−Ag polymetallic deposit, Inner Mongolia[J]. Geology in China, 47(2): 450−471 (in Chinese with English abstract).

    Google Scholar

    [32] Jiang S H, Chen C L, Bagas L, et al. 2017. Two mineralization events in the Baiyinnuoer Zn−Pb deposit in Inner Mongolia, China: Evidence from field observations, S−Pb isotopic compositions and U−Pb zircon ages[J]. Journal of Asian Earth Sciences, 144: 339−367. doi: 10.1016/j.jseaes.2016.12.042

    CrossRef Google Scholar

    [33] King P L, White A J R, Chappell B W, et al. 1997. Characterization and origin of aluminous A−type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrelogy, 38: 371−391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [34] Kravchinsky V A, Cogne J P, Harbert W P, et al. 2002. Evolution of the Mongol−Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 148: 34−57. doi: 10.1046/j.1365-246x.2002.01557.x

    CrossRef Google Scholar

    [35] Li J F, Wang K Y, Quan H Y, et al. 2016. Discussion on the magmatic evolution sequence and metallogenic geodynamical setting background Hongling Pb−Zn deposit in the southern Da Xing’an Mountains[J]. Acta Petrologica Sinica, 32(5): 1529−1542 (in Chinese with English abstract).

    Google Scholar

    [36] Li M X. 2020. Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in the Mandu area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 39(2/3): 224−233 (in Chinese with English abstract).

    Google Scholar

    [37] Li Y S, Liu Z F, Shao Y J, et al. 2022. Genesis of the Huanggangliang Fe−Sn polymetallic deposit in the southern Da Hinggan Range, NE China: Constraints from geochronology and cassiterite trace element geochemistry[J]. Ore Geology Reviews, 151: 105226. doi: 10.1016/j.oregeorev.2022.105226

    CrossRef Google Scholar

    [38] Li Y, Xu W L, Wang F, et al. 2017. Triassic volcanism along the eastern margin of the Xing'an Massif, NE China: Constraints on the spatial–temporal extent of the Mongol–Okhotsk tectonic regime[J]. Gondwana Research, 48: 205−223. doi: 10.1016/j.gr.2017.05.002

    CrossRef Google Scholar

    [39] Lin Q, Ge W C, Wu F Y, et al. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3): 403−412 (in Chinese with English abstract).

    Google Scholar

    [40] Liu C H, Bagas L, Wang F X. 2016. Isotopic analysis of the super−large Shuangjianzishan Pb−Zn−Ag deposit in Inner Mongolia, China: Constraints on magmatism, metallogenesis, and tectonic setting[J]. Ore Geology Reviews, 75: 252−267. doi: 10.1016/j.oregeorev.2015.12.019

    CrossRef Google Scholar

    [41] Liu F, Wang X, Hai L F, et al. 2021. Zircon U−Pb ages, Hf isotope and extensional tectonics of monzogranite in the Hansumu area of southern Great Khingan[J]. Geology in China, 48(5): 1609−1622 (in Chinese with English abstract).

    Google Scholar

    [42] Liu J M, Zhang R, Zhang Q Z. 2004. The regional metallogency of Da Hinggan Ling, China[J]. Earth Science Frontiers, 11(1): 269–277 (in Chinese with English abstract).

    Google Scholar

    [43] Liu J L, Ji L, Ni J L, et al. 2022. Dynamics of the Early Cretaceous lithospheric thinning and destruction of the North China craton as the consequence of Paleo−Pacific type active continental margin[J]. Acta Geologica Sinica, 96(10): 3360−3380 (in Chinese with English abstract).

    Google Scholar

    [44] Liu L J, Zhou T F, Fu B, et al. 2021. Petrogenesis of Early Cretaceous granitic rocks from the Haobugao area, southern Great Xing’an Range, northeast China: Geochronology, geochemistry and Sr−Nd−Hf−O isotope constraints[J]. Lithos, 406/407: 106501.

    Google Scholar

    [45] Liu Y F Jiang S H, Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag−Zn−Pb−Cu−(Sn−W) deposits in the shallow part of a porphyry Sn−W−Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 75(2): 150−173.

    Google Scholar

    [46] Liu R L, Wu G, Li T G, et al. 2018. LA−ICP−MS cassiterite and zircon U−Pb ages of the weilasituo tin−polymetallic deposit in the southern Great Xing’an Range and their geological significance[J]. Earth Science Frontiers, 25(5): 183–201 (in Chinese with English abstract).

    Google Scholar

    [47] Liu W, Pan X F, Xie L W, et al. 2007. Sources of material for the Linxi granitoids, the southern segment of the Da Hinggan Mts.: When and how continental crust grew?[J]. Acta Petrologica Sinica, 26 (3): 667–679 (in Chinese with English abstract).

    Google Scholar

    [48] Liu Y, Jiang S H, Leon B, et al. 2017. Isotopic(C−O−S) geochemistry and Re−Os geochronology of the Haobugao Zn−Fe deposit in Inner Mongolia, NE China[J]. Ore Geology Reviews, 82: 130−147. doi: 10.1016/j.oregeorev.2016.11.024

    CrossRef Google Scholar

    [49] Liu Z, Lǚ X B, Mei W. 2013. Sulfur−Lead−Oxygen isotope compositions of the Huanggang skarn Fe−Sn deposit, Inner Mongolia: Implications for the sources of ore−forming materials[J]. Journal of Mineralogy and Petrology, 33(3): 30−37 (in Chinese with English abstract).

    Google Scholar

    [50] Lofgren G E, Beard J S, 1991. Dehydration melting and water−saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kb[J]. Journal of Petrology, 32(2): 365−401.

    Google Scholar

    [51] Loiselle M C, Wones D S. 1979. Characteristics and origin of anorogenic granites[J]. Geological Society of American, Abstracts with Programs, 11: 468.

    Google Scholar

    [52] Ludwig K R. 2003. Isoplot 3.0−A geochronological toolkit for Micro−soft Excel[M]. Bekeley Geochronology Center, Special Publication, 4: 1−70.

    Google Scholar

    [53] Mao J W, Xie G Q, Zhang Z H, et al. 2005. Mesozoic large−scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1): 169−188 (in Chinese with English abstract).

    Google Scholar

    [54] Mao Q. 2001. Petrogenesis of granitoids associated with tin−mineralization in Huanggang tin−mineralization belt, Inner Mongolia, China[D]. Doctor Thesis of Institute of Geology and Geophysics, Chinese Academy of Sciences: 1–74 (in Chinese with English abstract).

    Google Scholar

    [55] Mei W, Lǚ X B, Cao X F, et al. 2015. Ore genesis and hydrothermal evolution of the Huanggang skarn iron–tin polymetallic deposit, southern Great Xing'an Range: Evidence from fluidminclusions and isotope analyses[J]. Ore Geology Reviews, 64: 239−252. doi: 10.1016/j.oregeorev.2014.07.015

    CrossRef Google Scholar

    [56] Mei W, Lǚ X B, Wang X D, et al. 2020. Alteration, mineralization and genesis of Huanggang skarn iron−tin polymetallic deposit, Southern Great Xing’an Range[J]. Earth Science, 45(12): 4428−4445 (in Chinese with English abstract).

    Google Scholar

    [57] Mushkin A, Navon O, Halicz L, et al. 2003. The petrogenesis of A−type magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 44(5): 815−832. doi: 10.1093/petrology/44.5.815

    CrossRef Google Scholar

    [58] Nasdala L, Hofmeister W, Norberg N, et al. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U−Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 32(3): 247−265. doi: 10.1111/j.1751-908X.2008.00914.x

    CrossRef Google Scholar

    [59] Niu X D, Shu Q H, Xing K, et al. 2022. Evaluating Sn mineralzation potential at the Haobugao skarn Zn−Pb deposit (NE China) using whole−rock and zircon geochemistry[J]. Journal of Geochemical Exploration, 234: 106938. doi: 10.1016/j.gexplo.2021.106938

    CrossRef Google Scholar

    [60] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [61] Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 50: 63−81.

    Google Scholar

    [62] Ruan B X, Lǚ X B, Liu S T, et al. 2013. Genesis of Bianjiadayuan Pb−Zn−Ag deposit in Inner Mongolia: Constraints from U−Pb dating of zircon and multi−isotope geochemistry[J]. Mineral Deposits, 32(3): 501−514 (in Chinese with English abstract).

    Google Scholar

    [63] Shao J A, Liu F T, Chen H, et al. 2001. Relation ship between Mesozoic magmatism and subduction in Da Hinggan−Yanshan area[J]. Acta Geologica Sinica, 75(1): 56−63 (in Chinese with English abstract).

    Google Scholar

    [64] Shi C Y, Yan M C, Chi Q H. 2007. Abundances of chemical elements of granitoids in different geotectonic units of China and their characteristics[J]. Acta Geologica Sinica, 81(1): 48−59 (in Chinese with English abstract).

    Google Scholar

    [65] Streckeisen A L, Le Maitre R W. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks[J]. Neues Jahrbuch fur Mineralogie, Abhandlungen, 136: 169–206.

    Google Scholar

    [66] Su R K, Xue H M, Cao G Y. 2022. Huanggangliang volcanic−extrusive uplift in the southern Da Hinggan Mountains: Discussion on genetic relation between different lithofacies[J]. Acta Petrologica et Mineralogica, 41(4): 727−745 (in Chinese with English abstract).

    Google Scholar

    [67] Sun D Y, Wu F Y, Zhang Y B, et al. 2004. The final closing time of the west Lamulun River–Changchun–Yanji plate suture zone—Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 34(2): 174−181 (in Chinese with English abstract).

    Google Scholar

    [68] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J(eds.)[J]. Magmatism in Oceanic Basins. Geological Society Special Publication, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [69] Tomurtogoo O, Windley B F, Krnoer A, et al. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol−Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society 162: 125–34.

    Google Scholar

    [70] Wang C M, Zhang S T, Deng J, et al. 2007. The exhalative genesis of the stratabound skarn in the Huanggangliang Sn−Fe polymetallic deposit of Inner Mongolia[J]. Acta Petrologica et Mineralogica, 26(5): 409−417 (in Chinese with English abstract).

    Google Scholar

    [71] Wang C G, Sun F Y, Sun G S, et al. 2016. Geochronology, geochemical and isotopic constraints on petrogenesis of intrusive complex associated with Bianjiadayuan polymetallic deposit on the southern margin of the Greater Khingan, China[J]. Arabian Journal of Geosciences, 9: 334.

    Google Scholar

    [72] Wang D, Zhao G C, Su S G, et al. 2020. Spatial−temporal distribution of late Mesozoic intrusive rocks in south Daxing'anling mountains and the characteristic contrast of rocks in the mid ridge and the east slope[J]. Geoscience, 34(3): 466−482 (in Chinese with English abstract).

    Google Scholar

    [73] Wang F X, Bagas L, Jiang S H, et al. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn−polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 80: 1206−1229. doi: 10.1016/j.oregeorev.2016.09.021

    CrossRef Google Scholar

    [74] Wang L J, Wang J B, Wang Y W et al. 2002. REE geochemistry of the Huangguangliang skarn Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 18(4): 575-584 (in Chinese with English abstract).

    Google Scholar

    [75] Wang X, Ren X G, Wang Y, et al. 2018. Zircon U−Pb ages and geochemical characteristics of the quartz monzonite diorite rocks from Hanmiao area in the southern segment of the Da Hinggan Mountains[J]. Geological Bulletin of China, 37(9): 1662−1670 (in Chinese with English abstract).

    Google Scholar

    [76] Wang X L, Liu J J, Zhai D G, et al. 2014a. A study of isotope geochemistry and sources of ore−forming materials of the Bianjiadayuan silver polymetallic deposit in Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1288−1303 (in Chinese with English abstract).

    Google Scholar

    [77] Wang X L, Liu J J, Zhai D G, et al. 2014b. U−Pb Dating, geochemistry and tectonic implications of Bianjiadayuan quartz porphyry, Inner Mongolia, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33 (5): 654–665 (in Chinese with English abstract).

    Google Scholar

    [78] Wang X D, Xu D M, Lǚ X B, et al. 2018. Orgin of the Haobugao skarn Fe−Zn polymetallic deposit, Southern Great Xing’an Range, NE China: Geochronological, geochemical, and Sr−Nd−Pb isotopic constraints[J]. Ore Geology Reviews, 94: 58−72. doi: 10.1016/j.oregeorev.2018.01.022

    CrossRef Google Scholar

    [79] Wang Y N, Xu W L, Wang F, et al. 2018. New insights on the Early Mesozoic evolution of multiple tectonic regimes in the northeastern North China Craton from the detrital zircon provenance of sedimentary strata[J]. Solid Earth, 9(6): 1375−1397. doi: 10.5194/se-9-1375-2018

    CrossRef Google Scholar

    [80] Wang Z J, Cao H H, Pei F P, et al. 2015. Geochronology and geochemistry of middle Permian−Middle Triassic intrusive rocks from central−eastern Jilin Province, NE China: Constraints on the tectonic evolution of the eastern segment of the Paleo−Asian Ocean[J]. Lithos, 238: 13−25. doi: 10.1016/j.lithos.2015.09.019

    CrossRef Google Scholar

    [81] Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effect in avariety of crustal magmas types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [82] Wei W, Chen J P, Huang X K, et al. 2017. Magmatic migmatization of Haliheiba pluton: Petrographic study of dark inclusion, U−Pb chronology and Hf isotope of zircon mineral in central and southern section of the Da Hinggan Mountains area[J]. Mineral Exploration, 8(6): 948−956 (in Chinese with English abstract).

    Google Scholar

    [83] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [84] Wilson M. 1989. Igneous petrogenesis a global tectonic approach[M]. London: Chapman and Hall: 1−466.

    Google Scholar

    [85] Wu F Y, Li X H, Yang J H, et al. 2007. Discussion on the petrogenesis of granites[J]. Acta Petrologica, 23(6): 1217−1238 (in Chinese with English abstract).

    Google Scholar

    [86] Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1–30.

    Google Scholar

    [87] Wu F Y, Sun D Y, Jahn B, et al. 2004. A Jurassic garnet−bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 23: 731–44.

    Google Scholar

    [88] Wu F Y, Sun D Y, Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 15(2): 181−189 (in Chinese with English abstract).

    Google Scholar

    [89] Wu G B. 2014. Research of silver mineralization in central−southern segment of the Great Xing’an Range—A case study of the Shuangjianzishan silver deposit, Inner Mongolia[D]. Doctor Thesis of University of Chinese Academy of Sciences, 1–150 (in Chinese with English abstract).

    Google Scholar

    [90] Wyllie P J. 1977. Effects of H2O and CO2 on magma generation in the crust and mantle[J]. Journal of the Gelogical Society, 134(2): 215−234.

    Google Scholar

    [91] Xu C H, Sun F Y, Fan X Z, et al. 2022. The Early Cretaceous tectonic evolution of the southern Great Xing’an Range, northeastern China: New constraints from A2−type granite and monzodiorite[J]. Canadian Journal of Earth Sciences, 59: 135−155. doi: 10.1139/cjes-2021-0041

    CrossRef Google Scholar

    [92] Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing’an−Mongolian orogenic belt[J]. Earth Science, 44(5): 1620−1646 (in Chinese with English abstract).

    Google Scholar

    [93] Xu Z B, Shao Y J, Yang Z A, et al. 2017. LA−ICP−MS analysis of trace elements in sphalerite from the Huanggangliang Fe−Sn deposit, Inner Mongolia, and its implications[J]. Acta Petrologica et Mineralogica, 36(3): 360−370 (in Chinese with English abstract).

    Google Scholar

    [94] Yang Q D, Guo L, Wang T, et al. 2014. Geochronology, origin, sources and tectonic settings of Late Mesozoic two−stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 30(7): 1961−1981 (in Chinese with English abstract).

    Google Scholar

    [95] Yang Y J, Yang X P, Jiang B, et al. 2022. Spatio−temporal distribution of Mesozoic volcanic strata in the Great Xing’an Range: Response to the subduction of the Mongol−Okhotsk Ocean and Paleo−Pacific Ocean[J]. Earth Science Frontiers, 29(2): 115−131 (in Chinese with English abstract).

    Google Scholar

    [96] Yao M J, Liu J J, Zhai D G, et al. 2012. Sufur and lead isotopic compositions of the polymetallic deposits in the southern Daxing’anling: implication for metal sources[J]. Journal of Jilin University(Earth Science Edition), 42(2): 362−373 (in Chinese with English abstract).

    Google Scholar

    [97] Yao M J, Cao Y, Liu J J, et al. 2016. Isotope age of Re−Os in molybdenite and genetic implication of Huanggangliang Fe−Sn deposit in Inner Mongolia[J]. Mineral Exploration, 7(3): 399−403 (in Chinese with English abstract).

    Google Scholar

    [98] You S X, Chen K, Zhang Y C, et al. 2022. Geochemical characteristics and geological significance of magnetite in Huanggangliang iron polymetallic deposit, Inner Mongolia[J]. Mineral Exploration, 13(4): 398−409 (in Chinese with English abstract).

    Google Scholar

    [99] Zartman R E, Doe B R. 1981. Plumbotectonics−the mode[J]. Tectonophysics, 75: 135−162. doi: 10.1016/0040-1951(81)90213-4

    CrossRef Google Scholar

    [100] Zeng Q D, Sun Y, Duan X X, et al. 2013. U−Pb and Re−Os geochronology of the Haolibao porphyry Mo−Cu deposit, NE China: Implications for a Late Permian tectonic setting[J]. Geological Magazine, 150(6): 975−985. doi: 10.1017/S0016756813000186

    CrossRef Google Scholar

    [101] Zhai D G, Liu J J, Cook N J, et al. 2019. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag−Pb−Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita, 54: 47−66. doi: 10.1007/s00126-018-0804-6

    CrossRef Google Scholar

    [102] Zhai D G, Liu J J, Li J M, et al. 2016. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Monglolia and its geological significance[J]. Mineral Deposits, 35(5): 1011−1022 (in Chinese with English abstract).

    Google Scholar

    [103] Zhai D G, Liu J J, Yang Y Q, et al. 2012. Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe−Sn deposit, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 31(4): 513−523 (in Chinese with English abstract).

    Google Scholar

    [104] Zhai D G, Liu J J, Zhang A L, et al. 2017. U−Pb Re−Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic (Ag−Pb−Zn−Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: Implications for discrete mineralization events[J]. Economic Geology, 112(8): 2041−2059. doi: 10.5382/econgeo.2017.4540

    CrossRef Google Scholar

    [105] Zhai D G, Liu J J, Zhang H Y, et al. 2014. S−Pb isotopic geochemistry, U−Pb and Re−Os geochronology of the Huanggangliang Fe−Sn deposit, Inner Mongolia, NE China[J]. Ore Geology Reviews, 59: 109−122. doi: 10.1016/j.oregeorev.2013.12.005

    CrossRef Google Scholar

    [106] Zhai D G, Williams−Jones A E, Liu J J, et al. 2020. The genesis of the giant Shuangjianzishan epithermal Ag−Pb−Zn deposit, Inner Mongolia, northeastern China[J]. Economic Geology, 115(1): 101−128. doi: 10.5382/econgeo.4695

    CrossRef Google Scholar

    [107] Zhang J H, Gao S, Ge W C, et al. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction−induced delamination[J]. Chemical Geology, 276: 144–165.

    Google Scholar

    [108] Zhang P C, Peng B, Zhao J Z, et al. 2022. Petrogenesis of the syenogranite in the Xiaowulangou area of southern Great Xing’an Range: Constraints from zircon LA−ICP−MS U−Pb geochronology, geochemistry and Hf isotopes[J]. Earth Science, 47(8): 2889−2901 (in Chinese with English abstract).

    Google Scholar

    [109] Zhang T F, Guo S, Xin H T, et al. 2019. Petrogenesis and magmatic evolution of highly fractionated granite and their constraints on Sn−(Li−Rb−Nb−Ta) mineralization in the Weilasituo deposit, Inner Mongolia, southern Great Xing’an Range, China[J]. Earth Science, 44(1): 248−267 (in Chinese with English abstract).

    Google Scholar

    [110] Zhang X B, Bao C J, Wu S S. 2021. Chronology of the Daolundaba Cu−W polymetallic deposit, southern Great Xing’an Range: Evidence from quartz fluid inclusion 40Ar/39Ar age[J]. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 38(1): 83–90 (in Chinese with English abstract).

    Google Scholar

    [111] Zhao H, Li S, Wang T, et al. 2015. Age, petrogenesis and tectonic implications of the Early Cretaceous magmatism in the Huanggangliang area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 34(12): 2203−2218 (in Chinese with English abstract).

    Google Scholar

    [112] Zhao J Q, Zhou Z H, Ouyang H G, et al. 2022. Zircon U−Pb age and geochemistry of quartz syenite porphyry in Shuangjianzishan Ag−Pb−Zn (Sn) deposit, Inner Mongolia, and their geological implications[J]. Mineral Deposits, 41(2): 324−344 (in Chinese with English abstract).

    Google Scholar

    [113] Zhao Q, Xiao R G, Zhang D H, et al. 2020. Petrogenesis and tectonic setting of ore−associated intrusive rocks in the Baiyinnuoer Zn–Pb deposit, southern Great Xing’an Range (NE China): Constraints from zircon U–Pb dating, geochemistry, and Sr−Nd−Pb isotopes[J]. Minerals. 10(1): 1−18.

    Google Scholar

    [114] Zhou T, Sun Z J, Yu H N, et al. 2022. Zircon U−Pb geochronology, Hf isotope and whole−rock geochemical characteristics of Xiaohanshan pluton in Haobugao Pb−Zn deposit, Inner Mongolia[J]. Geoscience, 36(1): 282−294 (in Chinese with English abstract).

    Google Scholar

    [115] Zhou Z H, Gao X, Ouyang H G, et al. 2019. Formation mechanism and intrinsic genetic relationship between tin-tungstenlithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 38(5): 1004−1022 (in Chinese with English abstract).

    Google Scholar

    [116] Zhou Z H, Liu H W, Chang G X, et al. 2011. Mineralogical characteristics of skarns in the Huanggang Sn−Fe deposit of Inner Mongolia and their metallogenic indicating significance[J]. Acta Petrologica et Mineralogica, 30(1): 97−112 (in Chinese with English abstract).

    Google Scholar

    [117] Zhou Z H, Lǚ L S, Feng J R, et al. 2010a. Molybdenite Re−Os ages of Huanggang skarn Sn−Fe deposit and their geological significance, Inner Mongolia[J]. Acta Petrologica Sinica, 26(3): 667−679 (in Chinese with English abstract).

    Google Scholar

    [118] Zhou Z H, Lǚ L S, Yang Y J, et al. 2010b. Petrogenesis of the Early Cretaceous A−type granite in the Huanggang Sn−Fe deposit, Inner Mongolia: Constraints from zircon U−Pb dating and geochemistry[J]. Acta Petrologica Sinica, 26(12): 3521−3537 (in Chinese with English abstract).

    Google Scholar

    [119] Zhou Z H, Lǚ L S, Yang Y J, et al. 2010c. LA−ICP−MS zircon U−Pb chronology and Hf isotope composition of the Huanggang granite in the southern Great Hinggan Range and their geological significance[J]. Mineral Deposits, 29(Supplement): 559−560 (in Chinese).

    Google Scholar

    [120] Zhou Z H, Mao J W, Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A−type granites from the Huanggang Sn−Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 49: 272−286. doi: 10.1016/j.jseaes.2012.01.015

    CrossRef Google Scholar

    [121] Zhou Z H, Ouyang H G, Wu X L, et al. 2014. Geochronology and geochemistry study of the biotite granite from the Daolundaba Cu−W polymetallic deposit in the Inner Mogolia and its geological significance[J]. Acta Petrologica Sinica, 30(1): 79−94 (in Chinese with English abstract).

    Google Scholar

    [122] Zhu X Y, Zhang Z H, Fu X, et al. 2016. Geological and geochemical characteristics of the Weilasito Sn−Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188−208 (in Chinese with English abstract).

    Google Scholar

    [123] Zindler A, Hart S. 1986. Chemical Geodynamics[J]. Annual Review of Earth Planet Science, 14: 493–571.

    Google Scholar

    [124] Zorin Y A. 1999. Geodynamics of the western part of the Mongolia−Okhotsk collisional belt, Trans−Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306: 33−56. doi: 10.1016/S0040-1951(99)00042-6

    CrossRef Google Scholar

    [125] 蔡剑辉, 阎国翰, 肖成东, 等. 2004. 太行山−大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨[J]. 岩石学报, 20(5): 1225−1242. doi: 10.3969/j.issn.1000-0569.2004.05.018

    CrossRef Google Scholar

    [126] 车亚文, 刘建峰, 赵硕, 等. 2021. 大兴安岭南段早白垩世早期后碰撞构造环境——来自林西县兰家营子辉长闪长岩的证据[J]. 地质通报, 40(1): 152−163.

    Google Scholar

    [127] 陈公正, 武广, 李铁刚, 等. 2021. 大兴安岭南段道伦达坝铜钨锡矿床成矿作用: 来自锆石和独居石U−Pb和绢云母40Ar−39Ar年龄的约束[J]. 岩石学报, 37(3): 865−885.

    Google Scholar

    [128] 陈公正, 武广, 李铁刚, 等. 2018. 内蒙古道伦达坝铜钨锡矿床LA−ICP−MS锆石和锡石U−Pb年龄及其地质意义[J]. 矿床地质, 37(2): 225−245.

    Google Scholar

    [129] 邓晋福, 赵国春, 苏尚国, 等. 2005. 燕山造山带燕山期构造叠加及其大地构造背景[J]. 大地构造与成矿学, 29(2): 157−165. doi: 10.3969/j.issn.1001-1552.2005.02.001

    CrossRef Google Scholar

    [130] 冯亚洲, 杨进辉, 孙金凤, 等. 2020. 中生代古太平洋板块俯冲诱发华北克拉通破坏的物质记录[J]. 中国科学: 地球科学, 50: 651−662.

    Google Scholar

    [131] 顾玉超, 陈仁义, 贾斌, 等. 2017a. 内蒙古双尖子山银多金属矿床花岗斑岩年代学、地球化学特征及构造意义[J]. 地质与勘探, 53(3): 495−507.

    Google Scholar

    [132] 顾玉超, 陈仁义, 贾斌, 等. 2017b. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 44(1): 101−117.

    Google Scholar

    [133] 郭志军, 周振华, 李贵涛, 等. 2012. 内蒙古敖尔盖铜矿中—酸性侵入岩体SHRIMP锆石U−Pb定年与岩石地球化学特征研究[J]. 中国地质, 39(6): 1487−1500. doi: 10.3969/j.issn.1000-3657.2012.06.003

    CrossRef Google Scholar

    [134] 侯增谦. 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30−58.

    Google Scholar

    [135] 蒋昊原, 赵志丹, 祝新友, 等. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示[J]. 中国地质, 47(2): 450−471. doi: 10.12029/gc20200213

    CrossRef Google Scholar

    [136] 李剑锋, 王可勇, 权鸿雁, 等. 2016. 大兴安岭南段红岭铅锌矿床岩浆演化序列与成矿动力学背景探讨[J]. 岩石学报, 32(5): 1529−1542.

    Google Scholar

    [137] 李猛兴. 2020. 大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因[J]. 地质通报, 39(2/3): 224−233.

    Google Scholar

    [138] 林强, 葛文春, 吴福元, 等. 2004. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 20(3): 403−412. doi: 10.3321/j.issn:1000-0569.2004.03.004

    CrossRef Google Scholar

    [139] 刘芳, 王晰, 海连富, 等. 2021. 大兴安岭南段罕苏木地区二长花岗岩锆石U−Pb年龄、Hf 同位素特征及其伸展构造作用[J]. 中国地质, 48(5): 1609−1622. doi: 10.12029/gc20210521

    CrossRef Google Scholar

    [140] 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘(中国地质大学, 北京), 11 (1): 269–277.

    Google Scholar

    [141] 刘俊来, 季雷, 倪金龙, 等. 2022. 早白垩世华北克拉通岩石圈减薄与破坏动力学: 兼论古太平洋型活动大陆边缘[J]. 地质学报, 96(10): 3360−3380. doi: 10.3969/j.issn.0001-5717.2022.10.007

    CrossRef Google Scholar

    [142] 刘瑞麟, 武广, 李铁刚, 等. 2018. 大兴安岭南段维拉斯托锡金属矿床LA−ICP−MS锡石和锆石U−Pb年龄及其地质意义[J]. 地学前缘(中国地质大学, 北京), 25 (5): 183–201.

    Google Scholar

    [143] 刘伟, 潘小菲, 谢烈文, 等. 2007. 大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式[J]. 岩石学报, 23(2): 441−460. doi: 10.3969/j.issn.1000-0569.2007.02.022

    CrossRef Google Scholar

    [144] 刘智, 吕新彪, 梅微. 2013. 内蒙古黄岗矽卡岩型铁锡矿床S−Pb−O同位素组成及对成矿物质来源的指示[J]. 矿物岩石, 33(3): 30−37. doi: 10.3969/j.issn.1001-6872.2013.03.006

    CrossRef Google Scholar

    [145] 毛景文, 谢桂青, 张作衡, 等. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 169−188. doi: 10.3321/j.issn:1000-0569.2005.01.017

    CrossRef Google Scholar

    [146] 毛骞. 2001. 内蒙古黄岗矿集区与锡矿化有关的花岗岩成因研究[D]. 中国科学院地质与地球物理研究所博士学位论文: 1–74.

    Google Scholar

    [147] 梅微, 吕新彪, 王祥东, 等. 2020. 大兴安岭南段黄岗矽卡岩型铁锡多金属矿床蚀变矿化特征及其成因[J]. 地球科学, 45(12): 4428−4445.

    Google Scholar

    [148] 阮班晓, 吕新彪, 刘申态, 等. 2013. 内蒙古边家大院铅锌银矿床成因-来自锆石U-Pb年龄和多元同位素的制约[J]. 矿床地质, 32(3): 501−514. doi: 10.3969/j.issn.0258-7106.2013.03.004

    CrossRef Google Scholar

    [149] 邵济安, 刘福田, 陈辉, 等. 2001. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 75(1): 56−63. doi: 10.3321/j.issn:0001-5717.2001.01.006

    CrossRef Google Scholar

    [150] 史长义, 鄢明才, 迟清华. 2007. 中国不同构造单元花岗岩类元素丰度及特征[J]. 地质学报, 81(1): 48−59. doi: 10.3321/j.issn:0001-5717.2007.01.007

    CrossRef Google Scholar

    [151] 苏荣昆, 薛怀民, 曹光跃. 2022. 大兴安岭南段黄岗梁火山−侵出隆起: 不同岩相之间的成因联系[J]. 岩石矿物学杂志, 41(4): 727−745. doi: 10.3969/j.issn.1000-6524.2022.04.004

    CrossRef Google Scholar

    [152] 孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河–长春–延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 34(2): 174−181.

    Google Scholar

    [153] 王长明, 张寿庭, 邓军, 等. 2007. 内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J]. 岩石矿物学杂志, 26(5): 409−417. doi: 10.3969/j.issn.1000-6524.2007.05.003

    CrossRef Google Scholar

    [154] 王迪, 赵国春, 苏尚国, 等. 2020. 大兴安岭南段晚中生代侵入岩时空分布及主脊与东坡岩体特征对比[J]. 现代地质, 34(3): 466−482.

    Google Scholar

    [155] 王莉娟, 王京彬, 王玉往, 等. 2002. 内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学[J]. 岩石学报, 18(4): 575−584. doi: 10.3969/j.issn.1000-0569.2002.04.017

    CrossRef Google Scholar

    [156] 王晰, 任锡钢, 汪岩, 等. 2018. 大兴安岭南段罕庙地区石英二长闪长岩锆石U−Pb年龄及地球化学特征[J]. 地质通报, 37(9): 1662−1670.

    Google Scholar

    [157] 王喜龙, 刘家军, 翟德高, 等. 2014a. 内蒙古林西边家大院银多金属矿床同位素地球化学特征及成矿物质来源探讨[J]. 中国地质, 41(4): 1288−1303.

    Google Scholar

    [158] 王喜龙, 刘家军, 翟德高, 等. 2014b. 内蒙古边家大院矿区石英斑岩U−Pb年代学、岩石地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 33(5): 654−665.

    Google Scholar

    [159] 魏巍, 陈建平, 黄行凯, 等. 2017. 大兴安岭中南段哈力黑坝岩体岩浆混合作用: 暗色包体岩相学、年代学和锆石Hf同位素启示[J]. 矿产勘查, 8(6): 948−956. doi: 10.3969/j.issn.1674-7801.2017.06.005

    CrossRef Google Scholar

    [160] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [161] 吴福元, 孙德有, 林强. 1999. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 15(2): 181−189. doi: 10.3321/j.issn:1000-0569.1999.02.003

    CrossRef Google Scholar

    [162] 吴冠斌. 2014. 大兴安岭中南段银成矿作用研究——以双尖子山银多金属矿床为例[D]. 中国科学院大学博士学位论文: 1–150.

    Google Scholar

    [163] 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646.

    Google Scholar

    [164] 徐卓彬, 邵拥军, 杨自安, 等. 2017. 内蒙古黄岗梁铁锡矿床闪锌矿LA−ICP−MS微量元素组成及其指示意义[J]. 岩石矿物学杂志, 36(3): 360−370. doi: 10.3969/j.issn.1000-6524.2017.03.006

    CrossRef Google Scholar

    [165] 杨奇荻, 郭磊, 王涛, 等. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961−1981.

    Google Scholar

    [166] 杨雅军, 杨晓平, 江斌, 等. 2022. 大兴安岭中生代火山岩地层时空分布与蒙古–鄂霍茨克洋、古太平洋板块俯冲作用响应[J]. 地学前缘, 29(2): 115−131.

    Google Scholar

    [167] 要梅娟, 刘家军, 翟德高, 等. 2012. 大兴安岭南段多金属成矿带硫-铅同位素组成及其地质意义[J]. 吉林大学学报: 地球科学版, 42(2): 362−373.

    Google Scholar

    [168] 要梅娟, 曹烨, 刘家军, 等. 2016. 内蒙古黄岗梁铁锡矿床辉钼矿Re−Os年龄及其成因意义[J]. 矿产勘查, 7(3): 399−403. doi: 10.3969/j.issn.1674-7801.2016.03.003

    CrossRef Google Scholar

    [169] 尤诗祥, 陈可, 张毓策, 等. 2022. 内蒙古黄岗梁铁多金属矿床磁铁矿地球化学特征及其地质意义[J]. 矿产勘查, 13(4): 398−409.

    Google Scholar

    [170] 翟德高, 刘家军, 李俊明, 等. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义[J]. 矿床地质, 35(5): 1011−1022.

    Google Scholar

    [171] 翟德高, 刘家军, 杨永强, 等. 2012. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J]. 岩石矿物学杂志, 31(4): 513−523. doi: 10.3969/j.issn.1000-6524.2012.04.004

    CrossRef Google Scholar

    [172] 章培春, 彭勃, 赵金忠, 等. 2022. 大兴安岭南段小乌兰沟正长花岗岩成因: 锆石LA−ICP−MS U−Pb年代学、地球化学及Hf同位素的制约[J]. 地球科学, 47(8): 2889−2901. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208017

    CrossRef Google Scholar

    [173] 张天福, 郭硕, 辛后田, 等. 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn−(Li−Rb−Nb−Ta)多金属成矿作用的制约[J]. 地球科学, 44(1): 248−267.

    Google Scholar

    [174] 张雪冰, 包长甲, 吴世山. 2021. 大兴安岭南段道伦达坝铜钨多金属矿床年代学研究: 来自石英包裹体40Ar−39Ar年龄的证据[J]. 新疆大学学报(自然科学版) (中英文), 38(1): 83−90.

    Google Scholar

    [175] 赵辉, 李舢, 王涛, 等. 2015. 大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代、成因及其构造意义[J]. 地质通报, 34(12): 2203−2218. doi: 10.3969/j.issn.1671-2552.2015.12.007

    CrossRef Google Scholar

    [176] 赵家齐, 周振华, 欧阳荷根, 等. 2022. 内蒙古双尖子山银铅锌(锡)矿床石英正长斑岩U−Pb年龄、地球化学及其地质意义[J]. 矿床地质, 41(2): 324−344.

    Google Scholar

    [177] 周桐, 孙珍军, 于赫楠, 等. 2022. 内蒙古浩布高铅锌矿床小罕山岩体年代学、Hf同位素及地球化学特征[J]. 现代地质, 36(1): 282−294.

    Google Scholar

    [178] 周振华, 高旭, 欧阳荷根, 等. 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制——以内蒙古维拉斯托锡钨锂多金属矿床为例[J]. 矿床地质, 38(5): 1004−1022.

    Google Scholar

    [179] 周振华, 刘宏伟, 常帼雄, 等. 2011. 内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义[J]. 岩石矿物学杂志, 30(1): 97−112. doi: 10.3969/j.issn.1000-6524.2011.01.009

    CrossRef Google Scholar

    [180] 周振华, 吕林素, 冯佳睿, 等. 2010a. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re−Os年龄及其地质意义[J]. 岩石学报, 26(3): 667−679.

    Google Scholar

    [181] 周振华, 吕林素, 杨永军, 等. 2010b. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U−Pb年代学和岩石地球化学制约[J]. 岩石学报, 26(12): 3521−3537.

    Google Scholar

    [182] 周振华, 吕林素, 杨永军, 等. 2010c. 大兴安岭南段黄岗花岗岩体LA−ICP−MS锆石U−Pb年代学和Hf同位素组成及其地质意义[J]. 矿床地质, 29(增刊): 559−560.

    Google Scholar

    [183] 周振华, 欧阳荷根, 武新丽, 等. 2014. 内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义[J]. 岩石学报, 30(1): 79−94.

    Google Scholar

    [184] 祝新友, 张志辉, 付旭, 等. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 43(1): 188−208. doi: 10.3969/j.issn.1000-3657.2016.01.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(254) PDF downloads(53) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint