2025 Vol. 44, No. 1
Article Contents

WANG Erteng, ZHAI Xinwei, CHEN Wanfeng, WU Lei, SONG Gaorui, WANG Jinrong. 2025. Neoproterozoic magmatic rocks associated with the opening of Paleo-Asian Ocean in Beishan area. Geological Bulletin of China, 44(1): 129-135. doi: 10.12097/gbc.2022.10.022
Citation: WANG Erteng, ZHAI Xinwei, CHEN Wanfeng, WU Lei, SONG Gaorui, WANG Jinrong. 2025. Neoproterozoic magmatic rocks associated with the opening of Paleo-Asian Ocean in Beishan area. Geological Bulletin of China, 44(1): 129-135. doi: 10.12097/gbc.2022.10.022

Neoproterozoic magmatic rocks associated with the opening of Paleo-Asian Ocean in Beishan area

More Information
  • Objective

    Precambrian rocks distributed in the Beishan area, located in the southern Central Asian Orogenic Belt, is significant for the study of the formation of the Paleo−Asian Ocean (PAO) and its associated mineralization. However, there are no constraints on the magmatism related to opening of PAO, and there is a lack of accurate chronological data regarding the formation of the Hongshan Iron Ore (HIO) deposits in the Beishan area.

    Methods

    We present the results of field investigations, zircon U−Pb dating, and geochemical analyses of the gabbro and andesitic tuff found in the central Beishan area.

    Results

    The new U−Pb dating results reveal the crystallization ages of the gabbro and andesitic tuff crystallized at 765 Ma, 756 Ma, respectively. The geochemical composition of the gabbro is indicative of an intraplate rift setting, suggesting a continental tectonic environment during its formation.

    Conclusions

    Integrating our findings with previous studies, we infer that the southern PAO had opened before 765 Ma in the Beishan area. Additionally, we conclude that the HIO formation occurred during the Nanhuanian Period (756 Ma).

  • 加载中
  • [1] Bu T, Wang G Q, Huang B T, et al. 2022. Neoproterozoic A−type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break−up[J]. Acta Petrologica Sinica, 38(10): 2988−3002 (in Chinese with English abstract).

    Google Scholar

    [2] Cleven N, Lin S, Guilmette C, et al. 2015. Petrogenesis and implications for tectonic setting of Cambrian suprasubduction−zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China[J]. Journal of Asian Earth Sciences, 113: 369−390.

    Google Scholar

    [3] He Z Y, Klemd L, Zhang M, et al. 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 185: 1−14.

    Google Scholar

    [4] Huang B, Wang X, Li T, et al. 2022. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks[J]. Precambrian Research, 376: 106686.

    Google Scholar

    [5] Jiang H Y, He Z Y, Zong K Q, et al. 2013. Zircon U−Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt[J]. Acta Petrologica Sinica, 29(11): 3949−3967 (in Chinese with English abstract).

    Google Scholar

    [6] Li Y B, Li H Q, Zhou W X, et al. 2021. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 40(7): 1117−1139 (in Chinese with English abstract).

    Google Scholar

    [7] Li Z X, Bogdanova S V, Collins A S, et al. 2008. Assembly, configuration, and break−up history of Rodinia: A synthesis[J]. Precambrian Research, 160(1/2): 179−210.

    Google Scholar

    [8] Liu Q, Zhao G, Sun M, et al. 2015. Ages and tectonic implications of Neoproterozoic ortho− and parageneses in the Beishan Orogenic Belt, China[J]. Precambrian Research, 266: 551−578.

    Google Scholar

    [9] Niu W C, Ren B F, Ren Y W, et al. 2019. Neoproterozoic Magmatic Records in the North Beishan Orogenic Belt: Evidence of the Gneissic Granites from the Hazhu area, Inner Mongolia[J]. Earth Science, 44(1): 284−297 (in Chinese with English abstract).

    Google Scholar

    [10] Su B X, Qin K Z, Sakyi P A, et al. 2011. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 41: 31−43.

    Google Scholar

    [11] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [12] Wan B, Li S, Xiao W, et al. 2018. Where and when did the Paleo−Asian Ocean form?[J]. Precambrian Research. 317: 241−252.

    Google Scholar

    [13] Wang B, Yang X, Li S, et al. 2021. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Precambrian Research, 352: 106016.

    Google Scholar

    [14] Xiao W J, Mao Q G, Windley B F, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553−1594.

    Google Scholar

    [15] Xu B, Jian P, Zheng H, et al. 2005. U–Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciation[J]. Precambrian Research, 136: 107−123.

    Google Scholar

    [16] Xu Z Q, Liu L L, Qi X X, et al. 2006. Record for Rodinia supercontinent breakup event in the south Sulu ultra−high pressure metamorphic terrane[J]. Acta Petrologica Sinica, 22(7): 1745−1760 (in Chinese with English abstract).

    Google Scholar

    [17] Yang X, Xu X H, Li H L, et al. 2017. Early Neoproterozoic tectonie framework of north margin of Tarim Basin, constraints from zircon U−Pb geochronology and geochemistry[J]. Geotectonica et Metallogenia, 41(2): 381−395 (in Chinese with English abstract).

    Google Scholar

    [18] Ye X X, Zong K Q, Zhang Z M, et al. 2013. Geochemistry of Neoproterozoic granite in Liuyuan area of southern Beishan orogenic belt and its geological significance[J]. Geological Bulletin of China, 32(2/3): 307−317 (in Chinese with English abstract).

    Google Scholar

    [19] Yu J Y, Li X M, Liang J W, et al. 2012. Evolution of the geological structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region: Constraints on the timing of opening and closing of the Beishan Paleozoic Oceanic Basin[J]. Xinjiang Geology, 30(2): 205−209 (in Chinese with English abstract).

    Google Scholar

    [20] Zheng R, Li J, Xiao W, et al. 2022. A combination of plume and subduction tectonics contributing to breakup of northern Rodinia: Constraints from the Neoproterozoic magmatism in the Dunhuang–Alxa Block, northwest China[J]. GSA Bulletin, 135(5/6): 1109−1126.

    Google Scholar

    [21] Zheng R, Li J, Zhang J, et al. 2020. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high−Mg diorite in the southern Beishan[J]. Lithos, 358/359: 105406.

    Google Scholar

    [22] Zhu Q, Zheng Z X, Li T B, et al. 2018. Response of the North China Craton to the Rodinia supercontinent breakup: New evidence from petrochemistry, chronology and Hf isotope of the gabbro in Xiaosongshan area of northern Helan Mountain[J]. Geological Bulletin of China, 37(6): 1075−1086 (in Chinese with English abstract).

    Google Scholar

    [23] Zuo G C, Liu Y K, Li S X. 2010. Metallogenesis and mechanism of Hongshan Iron deposit in Beishan region of Gansu Province[J]. Gansu Geology, 19(3): 9−18 (in Chinese with English abstract).

    Google Scholar

    [24] 卜涛, 王国强, 黄博涛, 等. 2022. 北山北带新元古代 A 型花岗岩: Rodinia超大陆裂解早期的地质响应[J]. 岩石学报, 38(10): 2988−3002.

    Google Scholar

    [25] 姜洪颖, 贺振宇, 宗克清, 等. 2013. 北山造山带南缘北山杂岩的锆石U−Pb定年和Hf同位素研究[J]. 岩石学报, 29(11): 3949−3967.

    Google Scholar

    [26] 李沅柏, 李海泉, 周文孝, 等. 2021. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 40(7): 1117−1139.

    Google Scholar

    [27] 牛文超, 任邦方, 任云伟, 等. 2019. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据[J]. 地球科学, 44(1): 284−297.

    Google Scholar

    [28] 许志琴, 刘福来, 戚学祥, 等. 2006. 南苏鲁超高压变质地体中罗迪尼亚超大陆裂解事件的记录[J]. 岩石学报, (7): 1745−1760.

    Google Scholar

    [29] 杨鑫, 徐旭辉, 李慧莉, 等. 2017. 塔里木北缘新元古代早期构造演化的锆石U−Pb年代学和地球化学约束[J]. 大地构造与成矿学, 41(2): 381−395.

    Google Scholar

    [30] 叶晓峰, 宗克清, 张泽明, 等. 2013. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 32(2/3): 307−317.

    Google Scholar

    [31] 余吉远, 李向民, 梁积伟, 等. 2012. 甘新蒙北山地区古生代构造演化研究——北山古生代洋盆开启、闭合时限最新进展[J]. 新疆地质, 30(2): 205−209.

    Google Scholar

    [32] 朱强, 曾佐勋, 李天斌, 等. 2018. 华北克拉通对Rodinia超大陆裂解的响应——来自贺兰山北段小松山地区辉长岩地球化学、年代学及Hf同位素的新证据[J]. 地质通报, 37(6): 1075−1086.

    Google Scholar

    [33] 左国朝, 刘义科, 李绍雄. 2010. 甘肃北山地区红山铁矿床成因及成矿机制[J]. 甘肃地质, 19(3): 9−18.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(243) PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint