2024 Vol. 43, No. 1
Article Contents

CHEN Shuping, TIAN Zuoji, XU Shidong, MA Zhongzhen, CHANG Shaoying, ZHAO Huaibo. 2024. Two structural types of shear fracture belts related to wrenches. Geological Bulletin of China, 43(1): 13-19. doi: 10.12097/gbc.2023.04.005
Citation: CHEN Shuping, TIAN Zuoji, XU Shidong, MA Zhongzhen, CHANG Shaoying, ZHAO Huaibo. 2024. Two structural types of shear fracture belts related to wrenches. Geological Bulletin of China, 43(1): 13-19. doi: 10.12097/gbc.2023.04.005

Two structural types of shear fracture belts related to wrenches

  • Riedel shears are the typical structural styles in strike-slip belts. However, shear fracture zones have been found recently to have different shear fracture assemblages. In these shear fracture belts, the properties of the arraying patterns of the shear fractures are identical with those of the moving ways of the two fault blocks, which is either left-step with left-lateral movement or right-step with right-lateral movement. The shear fractures are called homo-step-slip ones. These oversteps between two shear faults are divergent. Based on the Coulomb fracture theory, it is suggested that the shear fracture belts would be formed in the fault blocks between two wrench belts. In these cases, two conjugate potential shear faults would be formed along the maximum principal stress trajectories. In the progressive deformation, the shears with smaller acute angle to the maximum shear stress (principal strike-slip) trajectories have priority to develop. The shears with bigger acute angle to the maximum shear stress trajectories would be delimited between the former shears. A new-type shear fracture belt is formed different from the typical Riedel shears in shear fracture assemblages. This shear fracture belt will be favorable for both hydrocarbon accumulation and mineral deposit formation due to the divergent oversteps.

  • 加载中
  • [1] Byerlee J. 1978. Friction of rocks[J]. Pure Appl. Geophysics, 116: 615−626. doi: 10.1007/BF00876528

    CrossRef Google Scholar

    [2] Cloos H. 1928. Exiperimente zur inneren Tectonik: Zentralblatt fur Mineralogie[J]. Geologie und Paleontologie, 12b: 609−621.

    Google Scholar

    [3] Embley R, Kulm V, Massoth G, et al. 1987. Morphology, structure, and resource potential of the Blanco transform fault zone[C]//Scholl D, Grantz A, Vedder J. Geology and resource potential of the continental margin of western North America and adjacent ocean basins – Beaufort Sea to Baja, California[J]. AAPG Bulletin, 6: 549−562.

    Google Scholar

    [4] Fornari D, Gallo D, Edwards M, et al. 1989. Structure and topography of the Siqueiros transform fault system: evidence for the development of intra-transform spreading centers[J]. Marine Geophysical Researches, 11: 263−299. doi: 10.1007/BF00282579

    CrossRef Google Scholar

    [5] Fossen H. 2016. Structural Geology (Second Edition)[M]. Cambridge: Cambridge University Press: 402−414.

    Google Scholar

    [6] Lowell J D. 1985. Structural styles in Petroleum Exploration [M]. Tulsa: OGCI Publications: 45−124.

    Google Scholar

    [7] Mann P. 2007. Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems[C]//Cunningham W D, Mann P. Tectonics of strike-slip restraining and releasing bends. Geological Society, London, Special Publications, 290: 13−142.

    Google Scholar

    [8] Misra S, Mandal N, Chakraborty C. 2009. Formation of Riedel shear fractures in granular materials: Findings from analogue shear experiments and theoretical analyses[J]. Tectonophysics, 471(3/4): 253−259.

    Google Scholar

    [9] Ramsay J G, Huber M I. 1987. The techniques of mordern structural geology (Volume 2: Folds and Fractures) [M]. London: Academic Press: 595−640.

    Google Scholar

    [10] Riedel W. 1929. Zur mechanik geologischer brucherscheinungen. Zentralblatt fur Mineralogie[J]. Geologie und Paleontologie, B: 354−368.

    Google Scholar

    [11] Sieh K, Natawidjaja D. 2000. Neotectonics of the Sumatran Fault, Indonesia[J]. Journal of Geophysical Research, 105(B12): 28295−228326. doi: 10.1029/2000JB900120

    CrossRef Google Scholar

    [12] Skempton A W. 1966. Some observations on tectonic shear zones[C]// Proceedings of 1st International Congress on Rock Mechanics, Lisbon, 329−335.

    Google Scholar

    [13] Tchalenko J S, Ambraseys N N. 1970. Structural analysis of the Dashate Bayaz (Iran) earthquake fractures[J]. Geological Society of America Bulletin, 81: 41−60. doi: 10.1130/0016-7606(1970)81[41:SAOTDB]2.0.CO;2

    CrossRef Google Scholar

    [14] Twiss R J, Moores E M. 1992. Structural geology[M]. New York: W. H. Freeman and Company.

    Google Scholar

    [15] Wakabayashi J. 1999. Distribution of displacement on, and evolution of a young transform fault system: the northern San Andreas fault system, California[J]. Tectonics, 18: 1245−1274. doi: 10.1029/1999TC900049

    CrossRef Google Scholar

    [16] Wesnousky S G. 2005. The San Andreas and Walker Lane fault systems, western North America: Transpression, transtension, cumulative slip and the structural evolution of a major transform plate boundary[J]. Journal of Structural Geology, 27: 1505−1512. doi: 10.1016/j.jsg.2005.01.015

    CrossRef Google Scholar

    [17] Yuan H, Chen S, Neng Y, et al. 2021. Composite strike-slip deformation belts and their control on oil and gas reservoirs: A case study of the northern part of the Shunbei 5 strike-slip deformation belt in Tarim Basin, Northwestern China[J]. Front. Earth Sci., 9: 755050. doi: 10.3389/feart.2021.755050

    CrossRef Google Scholar

    [18] Yuan H W, Chen S P, Dai K, et al. 2022. Cenozoic tectonic evolution of the Bohai Bay Basin: Constraints from strike-slip activities of the Wangjiagang fault zone, NE China[J]. Journal of Asian Earth Sciences, 233: 105262. doi: 10.1016/j.jseaes.2022.105262

    CrossRef Google Scholar

    [19] Zhang P Z, Burchfiel B C, Chen S, et al. 1989. Extinction of pull-apart basins[J]. Geology, 17: 814−817.

    Google Scholar

    [20] 陈平, 能源, 吴鲜, 等. 2023. 塔里木盆地顺北5号走滑断裂带分层分段特征及构造演化[J]. 新疆石油地质, 44(1): 33−42.

    Google Scholar

    [21] 陈书平, 柳钧译, 勾琪玮, 等. 2022a. 沉积盆地走滑构造的力学机制和变形特征[J]. 地质论评, 68(5): 1729−1742.

    Google Scholar

    [22] 陈书平, 万华川, 袁浩伟, 等. 2022b. 前陆冲断带非对称性变形与逆冲断层运动学指向[J]. 地质力学学报, 28(2): 182−190.

    Google Scholar

    [23] 金峰, 朱秀香, 余一欣, 等. 2023. 塔里木盆地顺北地区13号走滑断裂带发育特征[J]. 大地构造与成矿学, 47(1): 54−65. doi: 10.16539/j.ddgzyckx.2023.01.003

    CrossRef Google Scholar

    [24] 刘雨晴, 邓尚, 张继标, 等. 2023. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨[J]. 地学前缘, 30(6): 1−15.

    Google Scholar

    [25] 许顺山, 彭华, Nieto-Samaniego A F, 等. 2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性[J]. 地质论评, 63(2): 287−301. doi: 10.16509/j.georeview.2017.02.003

    CrossRef Google Scholar

    [26] 郑和荣, 胡宗全, 云露, 等. 2022. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 29(6): 224−238.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1398) PDF downloads(137) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint