2024 Vol. 43, No. 1
Article Contents

LIANG Guanghe, ZHANG Baolin. 2024. Discussion on the Cenozoic tectonic evolution of the South China Sea from continental margin extension. Geological Bulletin of China, 43(1): 20-32. doi: 10.12097/gbc.2022.07.008
Citation: LIANG Guanghe, ZHANG Baolin. 2024. Discussion on the Cenozoic tectonic evolution of the South China Sea from continental margin extension. Geological Bulletin of China, 43(1): 20-32. doi: 10.12097/gbc.2022.07.008

Discussion on the Cenozoic tectonic evolution of the South China Sea from continental margin extension

  • The formation and evolution of the South China Sea has been a long-standing debate in the field of geology. Many genetic models have been proposed by predecessors. The most popular model is seafloor spreading model, but it is difficult to reasonably explain the phenomenon of mid-ocean ridge jumping and continental debris in the South China Sea. We based on the stretch of the continental margin of northeast Eurasia, from the new continent drift model driven by mantle upwelling and gravitational slip along the Moho surface, using new geological explanation for several seismic profiles across the South China Sea, to study the process of the formation and evolution of the South China Sea, the result shows that the formation of the South China Sea is a kind of "passive tectonic extrusion + active microcontinents drift" mode. Passive tectonic extrusion was caused by the Indo-Eurasia collision, and the microcontinents formed by the extension of the continental margin drifted actively after extrusion. The seafloor spreading phenomenon in the South China Sea is the result of the active drift of many microcontinents. This new model can reasonably explain the mid-ocean ridge jumping phenomenon during the formation of the South China Sea and the genetic mechanism of the continental debris in the South China Sea. We have further recovered the movement and evolution history of the surrounding continents during the evolution of the South China Sea. It is concluded that the large scale extensional tectonic movement in the eastern margin of Eurasia in the Late Mesozoic was the foundation for the formation of the South China Sea, the India-Eurasia collision in Cenozoic was the direct driving force for the formation of the South China Sea, and the microcontinents drift was the main participant in the formation of the South China Sea. The proposed new continent drift model provides a new dynamic model for plate motion.

  • 加载中
  • [1] Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research:Solid Earth, 98(B4): 6299−6328. doi: 10.1029/92JB02280

    CrossRef Google Scholar

    [2] Camanni G, Ye Q. 2021. The significance of fault reactivation on the Wilson cycle undergone by the northern South China Sea area in the last 60 Myr[J]. Earth-Science Reviews, 225: 103893. doi: 10.1016/j.earscirev.2021.103893

    CrossRef Google Scholar

    [3] Ding W W, Sun Z, Kelsie D, et al. 2018. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes[J]. Earth and Planetary Science Letters, 488: 115−125. doi: 10.1016/j.jpgl.2018.02.011

    CrossRef Google Scholar

    [4] Flower M, Tamaki K, Hoang N. 1998. Mantle extrusion: A model for dispersed volcanism and Dupal‐like asthenosphere in East Asia and the Western Pacific[M]. Washington, DC: American Geophysical Union: 67−88.

    Google Scholar

    [5] Hales A L. 1969. Gravitational sliding and continental drift[J]. Earth and Planetary Science Letters, 6: 31−34. doi: 10.1016/0012-821X(69)90156-3

    CrossRef Google Scholar

    [6] Hayes D E, Nissen S S. 2005. The South China sea margins: Implications for rifting contrasts[J]. Earth and Planetary Science Letters, 237(3/4): 601−616.

    Google Scholar

    [7] Holloway N H. 1982. North Palawan block, Philippines-Its relation to Asian mainland and role in evolution of South China Sea[J]. AAPG Bulletin, 66(9): 1355−1383.

    Google Scholar

    [8] Hubbert M K, Rubey W W. 1959. Role of fluid pressure in mechanics of overthrust faulting[J]. Geological Society of America Bulletin, 70: 115−166. doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2

    CrossRef Google Scholar

    [9] Jacoby W R. 1970. Instability in the upper mantle and global plate movements[J]. Journal of Geophysical Research, 75: 5671−5680.

    Google Scholar

    [10] Karig D E. 1971. Origin and development of marginal basins in the western Pacific[J]. Journal of Geophysical Research, 76(11): 2542−2561. doi: 10.1029/JB076i011p02542

    CrossRef Google Scholar

    [11] Li C F, Xu X, Lin J, et al. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 15(12): 4958−4983. doi: 10.1002/2014GC005567

    CrossRef Google Scholar

    [12] Liu M, Cui X, Liu F. 2004. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo–Asian collision?[J]. Tectonophysics, 393(1/4): 29−42.

    Google Scholar

    [13] Rangin C, Spakman W, Pubellier M, et al. 1999. Tomographic and geological constraints on subduction along the eastern Sundaland continental margin (South-East Asia)[J]. Bulletin de la Société géologique de France, 170(6): 775−788.

    Google Scholar

    [14] Replumaz A, Lacassin R, Tapponnier P, et al. 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China)[J]. Journal of Geophysical Research:Solid Earth, 106(B1): 819−836. doi: 10.1029/2000JB900135

    CrossRef Google Scholar

    [15] Schiffer C, Stephenson R A, Petersen K D, et al. 2015. A sub-crustal piercing point for North Atlantic reconstructions and tectonic implications[J]. Geology, 43(12): 1087−1090.

    Google Scholar

    [16] Shi H, Li C F. 2012. Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea[J]. International Geology Review, 54(15): 1801−1828. doi: 10.1080/00206814.2012.677136

    CrossRef Google Scholar

    [17] Sun L H , Sun Z , Zhang Y Y, et al. 2021. Multi-stage carbonate veins at IODP Site U1504 document Early Cretaceous to early Cenozoic extensional events on the South China Sea margin[J]. Marine Geology, 422: 106656.

    Google Scholar

    [18] Sun W D. 2017. Initiation and evolution of the South China Sea: an overview[J]. Acta Geochimica, 35(3): 215−225.

    Google Scholar

    [19] Tapponnier P, Peltzer G, Dain A Y L, et al. 1982. Propagating extrusion tectonics in Asia New Insights from simple experiments with plasticine[J]. Geology, 10: 611−616.

    Google Scholar

    [20] Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia.[C]//Coward M, Ries A. Collosion tectonics. Geological Society of London Special Publication, 19: 115−157.

    Google Scholar

    [21] Taylor B, Hayes D E. 1983. Origin and history of the South China Basin[C]// Hayes D E. The tectonics and geologic evolution of Southeast Asian Seas and islands: Part 2. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 27: 23−56.

    Google Scholar

    [22] Wu J, Suppe J, Lu R, et al. 2016. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods.[J]. Journal of Geophysical Research:Solid Earth, 121(6): 4670−4741.

    Google Scholar

    [23] Wegener A. 2001. The origins of the continents[J]. Journal of Geodynamics, 32: 31−63. doi: 10.1002/2016JB012923

    CrossRef Google Scholar

    [24] Wu J, Suppe J. 2018. Proto-South China Sea plate tectonics using subducted slab constraints from tomography[J]. Journal of Earth Science, 29(6): 1−15.

    Google Scholar

    [25] Yan Q, Shi X, Castillo P R. 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective[J]. Journal of Asian Earth Sciences, 85: 178−201. doi: 10.1016/j.jseaes.2014.02.005

    CrossRef Google Scholar

    [26] Yin A, Harrison M. 2000. Geological evolution of the Himalayan–Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 28: 211–280.

    Google Scholar

    [27] Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 488(1/4): 293−325.

    Google Scholar

    [28] Zhang G L, Luo Q, Zhao J, et al. 2018. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 489: 145−155. doi: 10.1016/j.jpgl.2018.02.040

    CrossRef Google Scholar

    [29] Zhou H, Xiao L, Dong V, et al. 2009. Geochemical and geochronological study of the Sanshui basin bimodal volcanic rock suite, China: Implications for basin dynamics in southeastern China[J]. Journal of Asian Earth Sciences, 34(2): 178−189. doi: 10.1016/j.jseaes.2008.05.001

    CrossRef Google Scholar

    [30] 陈国达. 1997. 东亚陆缘扩张带——一条离散式大陆边缘成因的探讨[J]. 大地构造与成矿学, 21(4): 285−293.

    Google Scholar

    [31] 郭令智, 施央申, 马瑞士. 1983. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成和演化[J]. 地质学报, 57(1): 13−23.

    Google Scholar

    [32] 雷超, 任建业, 张静. 2015. 南海构造变形分区及成盆过程[J]. 地球科学(中国地质大学学报), 40(4): 744−762.

    Google Scholar

    [33] 雷超. 2012. 南海北部莺歌海−琼东南盆地新生代构造变形格局及其演化过程分析[D]. 中国地质大学博士学位论文.

    Google Scholar

    [34] 梁光河, 杨巍然. 2022. 从南大西洋裂解过程解密大陆漂移的驱动力[J]. 地学前缘, 29(1): 1−14.

    Google Scholar

    [35] 梁光河. 2018. 郯庐断裂带的几个关键问题探讨[J]. 黄金科学技术, 26(5): 543−558.

    Google Scholar

    [36] 刘昭蜀, 杨树康, 何善谋, 等. 1983. 南海陆缘地堑系及边缘海的演化旋回[J]. 热带海洋, 2(4): 3−11.

    Google Scholar

    [37] 栾锡武, 张亮. 2009. 南海构造演化模式: 综合作用下的被动扩张[J]. 海洋地质与第四纪地质, 29(6): 59−74.

    Google Scholar

    [38] 邱燕, 陈国能, 刘方兰, 等. 2008. 南海西南海盆花岗岩的发现及其构造意义[J]. 地质通报, 27(12): 2104−2107.

    Google Scholar

    [39] 邵磊, 李献华, 汪品先, 等. 2004. 南海渐新世以来构造演化的沉积记录——ODP1148站深海沉积物中的证据[J]. 地球科学进展, (4): 539−544.

    Google Scholar

    [40] 施秋华, 万志峰, 夏斌. 2013. 婆罗洲地质构造特征及其对南海南部盆地的影响[J]. 海洋地质前沿, 29(1): 11−16.

    Google Scholar

    [41] 孙金龙, 曹敬贺, 徐辉龙. 2014. 南海东部现时地壳运动、震源机制及晚中新世以来的板块相互作用[J]. 地球物理学报, 57(12): 4074−4084. doi: 10.6038/cjg20141219

    CrossRef Google Scholar

    [42] 汪品先, 翦知湣. 2019. 探索南海深部的回顾与展望[J]. 中国科学:地球科学, 49(10): 1590−1606.

    Google Scholar

    [43] 汪品先. 2012. 追踪边缘海的生命史: "南海深部计划"的科学目标[J]. 科学通报, 57(20): 1807−1826.

    Google Scholar

    [44] 王二七. 2017. 关于印度与欧亚大陆初始碰撞时间的讨论[J]. 中国科学:地球科学, 47(3): 284−292.

    Google Scholar

    [45] 谢建华, 夏斌, 张宴华, 等. 2005. 印度-欧亚板块碰撞对南海形成的影响研究: 一种数值模拟方法[J]. 海洋通报, 24(5): 47−53.

    Google Scholar

    [46] 徐义刚, 黄小龙, 颜文, 等. 2002. 南海北缘新生代构造演化的深部制约(I): 幔源包体[J]. 地球化学, 3: 230−242.

    Google Scholar

    [47] 姚伯初, 万玲. 2006. 中国南海海域岩石圈三维结构及演化[M]. 北京: 地质出版社: 180−221.

    Google Scholar

    [48] 余梦明. 2018. 南海的形成与消亡: 南海及其周缘新生代火成岩之地球化学限定[D]. 中国科学院大学(中国科学院广州地球化学研究所) 博士学位论文.

    Google Scholar

    [49] 张功成, 贾庆军, 王万银, 等. 2018. 南海构造格局及其演化[J]. 地球物理学报, 61(10): 4194−4215.

    Google Scholar

    [50] 张训华, 王忠蕾, 侯方辉, 等. 2014. 印支运动以来中国海陆地势演化及阶梯地貌特征[J]. 地球物理学报, 57(12): 3968−3980.

    Google Scholar

    [51] 张训华. 1997. 单向拉张与南海海盆的形成[J]. 海洋地质动态, (5): 1−3.

    Google Scholar

    [52] 朱志澄. 2003. 构造地质学[M]. 武汉: 中国地质大学出版社: 164−165.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(1280) PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint