2024 Vol. 43, No. 1
Article Contents

ZHU Jinqi, GONG Xulong, GOU Fugang, ZHANG Ping, ZHANG Yan, YANG Lei, LIU Yuan. 2024. Physicochemical characteristics and geological formation of the first hard soil layer of the north wing of the Yangtze River delta. Geological Bulletin of China, 43(1): 1-12. doi: 10.12097/gbc.2021.08.002
Citation: ZHU Jinqi, GONG Xulong, GOU Fugang, ZHANG Ping, ZHANG Yan, YANG Lei, LIU Yuan. 2024. Physicochemical characteristics and geological formation of the first hard soil layer of the north wing of the Yangtze River delta. Geological Bulletin of China, 43(1): 1-12. doi: 10.12097/gbc.2021.08.002

Physicochemical characteristics and geological formation of the first hard soil layer of the north wing of the Yangtze River delta

More Information
  • The first hard soil layer(FHSL) is widely distributed in the two wings of the Yangtze River estuary, and the study of its formation mechanism and engineering geological characteristics is of good guidance for engineering construction. Based on the survey data (935 boreholes with a total depth of 42128 m) and experimental data, the distribution boundary of the FHSL in the northern flank of the Yangtze River estuary was accurately confirmed for the first time, and the formation age, grain size characteristics, geochemical characteristics and engineering geological properties of the FHSL were studied. The study shows that the formation age of the FHSL was about 20 ~ 11 ka B.P. (OSL and 14C dating data). The water content of the FHSL tends to increase with depth, indicating that the climate was gradually cooler and drier from bottom to top. The particle size gradation, frequency curve of particle size distribution and C-M sedimentation diagram of the FHSL show that the FHSL mainly consists of fine sand, very fine sand and clay. The grain size frequency curves of the FHSL mainly show a single peak distribution, reflecting that the transport camp force was single before the material deposition. The deposition of soil particles were absolutely dominated by uniform suspension, and the deposition environment was a relatively stable low-energy environment. The development of the FHSL was controlled by climate and can be roughly divided into three stages: the first stage (about 20 ~ 15 ka B.P.) was the period of alternate deposition and soil formation, and the deposition was the main effect, and the thickness of FHSL was mainly controlled by this stage until the end of the last bloom ice period. The second stage (about 15 ~ 11 ka B.P.) was the period of exposed soil formation, at which time floods cannot form transgressive deposits, accretion basically stops, the thickness of FHSL no longer obviously increased. The formed area of the FHSL was erosion cutting by frequently shifting divergent river networks, forming many irregular ancient river channels and terraces. The FHSL gradually dehydrated into land and underwent the process of weathering and pedogenesis. The third stage (about 11 ka B.P. to present) was the inundation period. With the arrival of the Holocene, the climate warmed, and the sea level kept rising. The FHSL was buried by its overlying marine sedimentary layer, and the rock formation began until the present day. The soils have a high content of soluble salts and are typical chlorosaline soils. The soluble salt content has a trend of increasing from low to high, which was caused by the diagenesis process after the marine layer was covered with the FHSL.

  • 加载中
  • [1] Christopher R A. 1976. Morphology and Taxonomic Status of Pseudoschizaea Thiergart and Frantz ex R. Potonie emend[J]. Micropaleontology, 22: 143−150. doi: 10.2307/1485396

    CrossRef Google Scholar

    [2] Li C X, Wang P, Sun H P. 2002. Late Quaternary incised vally fill of the Yangtze delta(China): its strati graphic framework and evolution[J]. Sedimentary Geology, 152: 133−158. doi: 10.1016/S0037-0738(02)00066-0

    CrossRef Google Scholar

    [3] Li G, Li P, Liu Y, et al. 2014. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 139: 390−405. doi: 10.1016/j.earscirev.2014.09.007

    CrossRef Google Scholar

    [4] Park Y A. 1992. The changes of sea level and climate during the late Pleistocene and Holocene in the Yellow Sea region[J]. Korean J. Quat. Res. 6: 13-20.

    Google Scholar

    [5] Saito Y. 1998. Sea levels of the last glacial in the East China Sea continental shelf[J]. Quat. Res., 37(3): 235−242.

    Google Scholar

    [6] Schoonheydt R A. 2015. Reflections on the material science of clay minerals[J]. Applied Clay Science, 131: 107−112.

    Google Scholar

    [7] Solberg I L, Long M, Baranwal V C, et al. 2016. Geophysical and geotechnical studies of geology and sediment properties at a quick - clay landslide site at Esp, Trondheim, Norway[J]. Engineering Geology, 208: 214−230. doi: 10.1016/j.enggeo.2016.04.031

    CrossRef Google Scholar

    [8] Vogt T. 2002. Clays and secondary minerals as permafrost indicators: examples from the circum- Baikal region[J]. Quaternary International, 95: 175−187.

    Google Scholar

    [9] Wang Y H, Li G X, Zhang W G, et al. 2014. Sedimentary environment and formation mechanism of the mud deposit in the central South Yellow Sea during the past 40 kyr[J]. Marine Geology, 347: 123−135. doi: 10.1016/j.margeo.2013.11.008

    CrossRef Google Scholar

    [10] Ye G L, Ye B. 2016. Investigation of the overconsolidation and structural behavior of Shanghai clays by element testing and constitutive modeling[J]. Underground Space, 1(1): 62−77. doi: 10.1016/j.undsp.2016.08.001

    CrossRef Google Scholar

    [11] Zhang Z W, Zheng G D, Takahashi Y, et al. 2016. Extreme enrichment of rare earth elements in hard clay rocks and its potential as a resource[J]. Ore Geology Reviews, 72: 191−212. doi: 10.1016/j.oregeorev.2015.07.018

    CrossRef Google Scholar

    [12] Zhao Y, Marriott S, Rogers J. 1999. A preliminary study of heavy metal distribution on the flood plain of the River Severn, UK by a single flood event[J]. The Science of the Total Environment, 243: 219−231.

    Google Scholar

    [13] 陈报章, 李从先, 业治铮. 1991. 长江三角洲北翼全新统底界和”硬粘土层”的讨论[J]. 海洋地质与第四纪地质, 11(2): 37−46.

    Google Scholar

    [14] 陈庆强, 李从先. 1998. 长江三角洲地区晚第四纪古土壤发育的阶段性[J]. 科学通报, 43(23): 2557−2559.

    Google Scholar

    [15] 陈中原, 许世远. 1996. 尼罗河与长江三角洲晚更新世末期硬土层特征及其成因对比研究[J]. 第四纪研究, 160(2): 169−175.

    Google Scholar

    [16] 邓兵, 李从先, 张经, 等. 长江三角洲古土壤发育与晚更新世末海平面变化的耦合关系[J], 第四纪研究, 2004, 24(2): 222-230.

    Google Scholar

    [17] 邓兵, 李从先. 2002. 长江三角洲古土壤有机元素组成及其古环境意义[J]. 同济大学学报, 30(7): 833−838.

    Google Scholar

    [18] 邓兵, 吴国瑄, 李从先. 1999. 长江三角洲地区第一古土壤层及其古气候记录[J]. 海洋地质与第四纪地质, 19(3): 29−37.

    Google Scholar

    [19] 邓兵, 吴国瑄, 李从先. 2003. 长江三角洲晚第四纪古土壤的古环境及古气候信息[J]. 海洋地质与第四纪地质, 23(2): 1−8 .

    Google Scholar

    [20] 范德江, 杨作升, 毛登, 等. 2001. 长江与黄河沉积物中粘土矿物及地化成分的组成[J]. 海洋地质与第四纪地质, 21(4): 7−12.

    Google Scholar

    [21] 冯铭璋, 薛金官. 1996. 关于“暗绿色硬土层”研究的讨论[J]. 上海国土资源, (3): 13−19.

    Google Scholar

    [22] 苟富刚, 龚绪龙, 梅芹芹. 2018a. 长江三角洲北岸土体工程地质层组划分及其应用[J]. 地质论评, 64(1): 237−245.

    Google Scholar

    [23] 苟富刚, 龚绪龙, 杨磊, 等. 2018b. 江苏沿海地区土体含盐特征及指示作用[J]. 长江流域资源与环境, 27(6): 1380−1387.

    Google Scholar

    [24] 苟富刚, 龚绪龙, 杨露梅, 等. 2022. 长江河口百米以浅土体含盐特征及其沉积环境演化[J]. 现代地质, 36(2): 462−473.

    Google Scholar

    [25] 金秉福, 张云吉, 宋健. 2007. 长江三角洲第一硬土层中微结核的矿物化学特征及其成因[J]. 海洋地质与第四纪地质, 27(3): 9−15.

    Google Scholar

    [26] 李从先, 陈庆强, 李萍. 1996. 长江三角洲晚第四纪埋藏古土壤及成土母质[J]. 同济大学学报, 24(4): 439−444.

    Google Scholar

    [27] 李燕, 金振奎, 高白水, 等. 2021. 汊口滩沉积特征及沉积模式——以鄱阳湖赣江三角洲汊口滩为例[J]. 吉林大学学报(地球科学版), 51(6): 1678−1688.

    Google Scholar

    [28] 李从先, 汪品先, 赵泉鸿. 1998. 长江晚第四纪河口地层学研究[M]. 北京: 科学出版社, 144, 152- 155, 163-165.

    Google Scholar

    [29] 李冬雪, 刘楠楠, 杨胜利, 等. 2021. 石英标准生长曲线在青藏高原东缘黄土光释光测年中的应用[J]. 第四纪研究, 41(1): 111−122.

    Google Scholar

    [30] 李清, 殷勇. 2013. 南黄海辐射沙脊群里磕脚11DT02孔沉积相分析及环境演化[J]. 地理研究, 32(10): 1843−1855.

    Google Scholar

    [31] 李延军. 2012. 南黄海辐射沙脊群小庙洪潮流通道晚更新世以来的沉积环境演变[D]. 南京大学硕士学位论文, 24−44.

    Google Scholar

    [32] 缪卫东, 李世杰, 冯金顺, 等. 2016. 长江三角洲NB5孔第四纪地层划分及环境变化信息[J]. 中国地质, 43(6): 2022−2035.

    Google Scholar

    [33] 覃军干, 吴国瑄, 郑洪波, 等. 2004. 长江三角洲及邻近海域第一硬质黏土层的生物化石标志[J]. 海洋地质与第四纪地质, 24(3): 11−18.

    Google Scholar

    [34] 覃军干, 郑洪波. 2004. 从孢粉、藻类化石组合看长江三角洲第一硬土层的成因及其古环境意义[J]. 第四纪研究, 24(5): 547−554.

    Google Scholar

    [35] 上海市城乡建设和交通委员会. 2012. DGJ08-37-2012.上海市岩土工程勘察规范[S].

    Google Scholar

    [36] 王富葆, 曹琼英, 李弘, 等. 2002. 上海市15-17 ka B. P. 的古地貌与工程地质条件[J]. 上海国土资源, (3): 19−24.

    Google Scholar

    [37] 王开发, 韩信斌. 1983. 我国东部新生界环纹藻化石研究[J]. 古生物学报, 22(4): 468−472.

    Google Scholar

    [38] 王张华, 丘金波, 冉莉华, 等. 2004. 长江三角洲南部地区晚更新世年代地层和海水进退[J]. 海洋地质与第四纪地质, 24(4): 1−8.

    Google Scholar

    [39] 吴超, 郑祥民, 王辉, 等. 2019. 长江三角洲第一硬质黏土层粒度多元统计分析及沉积环境判别[J]. 沉积学报, 37(1): 115−123.

    Google Scholar

    [40] 吴惠根. 1989. 暗绿色硬质亚粘土层桩基的工程地质条件[J]. 上海国土资源, (2): 7−18.

    Google Scholar

    [41] 闫纪元, 胡健民, 王东明, 等. 2021. 黄淮海平原晚新生代重大地质事件[J]. 地质通报, 40(5): 623−648.

    Google Scholar

    [42] 于洪军, 刘敬圃. 1995. 中国陆架第四纪地质学研究的最新进展[J], 地球科学进展, 10(6): 531-536.

    Google Scholar

    [43] 张亮, 刘文涛, 贾磊, 等. 2021. 海南三亚海域沉积物分布特征及其沉积环境指示[J]. 地质通报, 40(2/3): 341−349.

    Google Scholar

    [44] 张文龙, 史玉金. 2013. 上海市工程地质分区问题[J]. 上海国土资源, (1): 5−9.

    Google Scholar

    [45] 张姚, 崔巧玉, 周爱锋. 2021. 孢粉浓缩物在AMS 14C测年研究中的应用及展望[J]. 第四纪研究, 41(1): 136−145.

    Google Scholar

    [46] 张玉兰. 2005. 长江三角洲地区晚更新世晚期的孢粉特征及古环境[J]. 同济大学学报(自然科学版), 33(9): 121−1205.

    Google Scholar

    [47] 赵梅. 2008. 黄海中部海岸末次冰盛期第1硬质黏土层的粒度分维特征及其环境意义[J]. 海洋地质动态, 24(10): 8−13.

    Google Scholar

    [48] 赵永胜, 宋振亚, 温景萍, 等. 1998. 保山盆地湖相泥岩微量元素分布与古盐度定量评价[J]. 海洋与湖沼, 29(4): 409−415.

    Google Scholar

    [49] 郑祥民, 俞立中. 1991. 上海地区晚更新世晚期暗绿色硬土层风积黄土成因说[J]. 上海国土资源, (2): 13−21.

    Google Scholar

    [50] 中华人民共和国水利部. 2019. GB/T 50123—2019: 土工试验方法标准[S].

    Google Scholar

    [51] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 2011. GB50007—2011: 建筑地基基础设计规范[S].

    Google Scholar

    [52] 韦桃源, 陈中原, 魏子新, 等. 2006. 长江河口区第四纪沉积物中的地球化学元素分布特征及其古环境意义[J]. 第四纪研究, 26(3): 397−405.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1082) PDF downloads(178) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint