| Citation: | GUO Weimin, YAO Chunyan, ZENG Min, YANG Xiantao, WANG Tiangang, LIU Jun'an. 2024. Metallogenic geological characteristics and regional prospecting direction of the Morococha porphyry-skarn-epithermal deposit in Peru. Geological Bulletin of China, 43(7): 1158-1172. doi: 10.12097/gbc.2022.12.024 | 
The Morococha area of central Peru, located in the Miocene metallogenic belt of Central Andean Peru, is one of the most representative porphyry−skarn and epithermal ore−forming systems in the world. In this paper, the characteristics and latest research progress of polymetallic mineralization of Cu, Mo, Pb, Zn and Ag in this area, such as porphyry type, skarn type and epithermal type, are systematically summarized. Combined with regional magma-hydrothermal mineralization process, the next prospecting direction in central Peru is proposed. The Morococha deposit, located in the northern section of the Yali Dome in central Peru, consists of a central Toromocho porphyry copper-molybdenum deposit and an peripheral polymetallic vein of lead, zinc, silver and gold. The main structure in the area is the NW Morococha anticline, and the stratigraphy is mainly composed of Permian−Triassic Mitu Group pyroclastic rocks, Jurassic Pucara Group carbonate rocks, Early Cretaceous Goyllarisquizga Group marine clastic rocks and carbonate rocks. The Miocene magmatic activities in the mining area are mainly the ore−free diorite (14.3~14.1 Ma) intrusive rocks in the Middle Miocene and the ore−forming granodiorite and feldspathic porphyry strains (9.4~7.7 Ma) in the Late Miocene. Morococha magma−hydrothermal system (8.5~7.2 Ma) is one of the reasons for the formation of super−large porphyry copper mineralization. Pb−Zn−Ag polymetallic mineralization mainly occurs about 0.5 Ma after porphyry mineralization and is controlled by regional structure. The deposit shows distinct metal zonation features spatially, with the central porphyry area hosting rich Cu ores, while more Zn, Pb, and Ag ores appear farther away from the porphyry zone. The Middle Miocene metallogenic belt in central Peru hosts numerous economically significant vein−type hydrothermal Pb−Zn−Ag polymetallic deposits. Recent comprehensive geological surveys and research results indicate that these polymetallic deposits are all part of the porphyry−skarn metallogenic system. Therefore, porphyry−skarn copper deposits and epithermal precious metal deposits are important exploration directions in central Peru.
 
		                | [1] | Ballard J R, Palin J M, Williams I S, et al. 2001. Two ages of porphyry intrusion resolved for the super−giant Chuquicamata copper deposit of northern Chile by ELA−ICP−MS and SHRIMP[J]. Geology, 29: 383−386. | 
| [2] | Barra F, Alcota H, Rivera S, et al. 2013. Timing and formation of porphyry Cu−Mo mineralization in the Chuquicamata district, northern Chile: new constraints from the Toki cluster[J]. Miner Deposita, 48: 629−651. doi: 10.1007/s00126-012-0452-1 | 
| [3] | Bartos P J. 1987. Quiruvilca, Peru: Mineral zoning and timing of wall−rock alteration relative to Cu−Pb−Zn−Ag vein−fill deposition[J]. Economic Geology, 82: 1431−1452. doi: 10.2113/gsecongeo.82.6.1431 | 
| [4] | Baumgartner R, Fontbote L, Vennemann T. 2008. Mineral zoning and geochemistry of epithermal polymetallic Pb−Zn−Ag−Cu−Bi mineralization at Cerro de Pasco, Peru[J]. Economic Geology, 103: 493−537. doi: 10.2113/gsecongeo.103.3.493 | 
| [5] | Benavides V. 1999. Orogenic evolution of the Peruvian Andes: the Andean Cycle[C]// Skinner B J. Geology and Ore Deposits of the Central Andes. Society of Economic Geologists Special Publication: 61−107. | 
| [6] | Bendezu A, Catchpole H, Kouzmanov K, et al. 2008a. Miocene magmatism and related porphyry and polymetallic mineralization in the Morococha district, central Peru [C]//Sociedad Geologica del Peru, ⅩⅢ Congreso Latinoamericano de Geología, Lima, Peru. | 
| [7] | Bendezu R, Page L, Spikings R, et al. 2008b. New 40Ar/39Ar alunite ages from the Colquijirca district, Peru: evidence of a long period of magmatic SO2 degassing during formation of epithermal Au−Ag and Cordilleran polymetallic ores[J]. Miner Deposita, 43: 777−789. doi: 10.1007/s00126-008-0195-1 | 
| [8] | Bendezu R, Fontbote L. 2009. Cordilleran Epithermal Cu−Zn−Pb−(Au−Ag) Mineralization in the Colquijirca District, Central Peru: Deposit−Scale Mineralogical Patterns[J]. Economic Geology, 104: 905−944. doi: 10.2113/econgeo.104.7.905 | 
| [9] | Bendezu A, Kouzmanov K, Ovtcharova M, et al. 2012. Timing of porphyry emplacement in the Miocene Morococha district, central Peru: U−Pb and Ar−Ar geochronological record [C]// International Geological Congress, 34th Brisbane, Australia: 1−6. | 
| [10] | Benites D, Torro L, Vallance J, et al. 2021. Distribution of indium, germanium, gallium and other minor and trace elements in polymetallic ores from a porphyry system: The Morococha district, Peru[J]. Ore Geology Reviews, 136: 104−236. | 
| [11] | Beuchat S. 2003. Geochronological, structural, isotopes and fluid inclusion constraints of the polymetallic Domo de Yauli district, Peru [M]. Terre & Environnement: 130. | 
| [12] | Bissig T, Ullrich T D, Tosdal R M, et al. 2008. The timespace distribution of Eocene to Miocene magmatism in the central Peruvian polymetallic province and its metallogenetic implications[J]. Journal of South American Earth Sciences, 26: 16−35. doi: 10.1016/j.jsames.2008.03.004 | 
| [13] | Bissig T, Tosdal R M. 2009. Petrogenetic and metallogenetic relationships in the eastern Cordillera Occidental of central Peru[J]. Journal of Geology, 117(5): 499−518. doi: 10.1086/600862 | 
| [14] | Catchpole H, Kouzmanov K, Fontbote L, et al. 2011. Fluid evolution in zoned Cordilleran polymetallic veins−insights from microthermometry and LA−ICP−MS of fluid inclusions[J]. Chemical Geology, 281: 293−304. doi: 10.1016/j.chemgeo.2010.12.016 | 
| [15] | Catchpole H, Kouzmanov K, Fontbote L. 2012. Copper excess stannoidite and tennantite−tetrahedrite as proxies for hydrothermal fluid evolution in a zoned Cordilleran base metal district, Morococha, central Peru[J]. Canadian Mineral, 50: 719−743. doi: 10.3749/canmin.50.3.719 | 
| [16] | Catchpole H, Kouzmanov K, Bendezu A, et al. 2015a. Timing of porphyry (Cu−Mo) and base metal mineralization (Pb−Zn−Ag−Cu) in a magmatic−hydrothermal system−Morococha district, Peru[J]. Miner Deposita, 50: 895−922. doi: 10.1007/s00126-014-0564-x | 
| [17] | Catchpole H, Kouzmanov K, Putlitz B, et al. 2015b. Zoned base metal mineralization in a porphyry system: Origin and evolution of mineralizing fluids in the Morococha District, Peru[J]. Economic Geology, 110: 39−71. doi: 10.2113/econgeo.110.1.39 | 
| [18] | Deckart K, Silva W, Sprohnle C, et al. 2014. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: an update[J]. Mineralium Deposita, 49: 535−546. doi: 10.1007/s00126-014-0512-9 | 
| [19] | Einaudi M T. 1982. Description of skarns associated with porphyry copper plutons, southwestern North America[C]//Titley S R. Advances in geology of the porphyry copper deposits, southwestern North America. Tuscon, Arizona, University Arizona Press: 139−184. | 
| [20] | Eyzaguirre V R, Montoya D E, Silberman M L, et al. 1975. Age of igneous activity and mineralization, Morococha district, central Peru[J]. Economic Geology, 70: 1123−1126. doi: 10.2113/gsecongeo.70.6.1123 | 
| [21] | Fontbote L. 2018. Ore deposits of the Central Andes[J]. Elements, 14: 257−261. doi: 10.2138/gselements.14.4.257 | 
| [22] | Fontbote L, Bendezu R. 2009. Cordilleran or Butte−type veins and replacement bodies as a deposit class in porphyry systems [C]//Biennial Society of Geology Applied to Ore Deposits Meeting, 10th, Townsville, Australia, Proceedings: 521−523. | 
| [23] | Goodell P C. 1970. Zoning and paragenesis in the Julcani district, Peru [D]. Harvard University Ph. D. thesis, Harvard, USA. | 
| [24] | Gutscher M A, Olivet J L, Aslanian D, et al. 1999. The “lost Inca Plateau”: Cause of flat subduction beneath Peru?[J]. Earth and Planet Science Letters, 171: 335−341. doi: 10.1016/S0012-821X(99)00153-3 | 
| [25] | HacKbart H C J, Petersen U. 1984. A fractional crystallization model for the deposition of argentian tetrahedrite[J]. Economic Geology, 79: 448−460. doi: 10.2113/gsecongeo.79.3.448 | 
| [26] | Hampel A. 2002. The migration history of the Nazca Ridge along the Peruvian active margin: A re−evaluation[J]. Earth and Planet Science Letters, 203: 665−679. doi: 10.1016/S0012-821X(02)00859-2 | 
| [27] | Harris A C, Dunlap W J, Reiners P W, et al. 2008. Multimillion year thermal history of a porphyry copper deposit: Application of U−Pb, 40Ar/39Ar and (U−Th)/He[J]. Miner Deposita, 43: 295−314. doi: 10.1007/s00126-007-0151-5 | 
| [28] | Kouzmanov K, Bendezu A, Catchpole H, et al. 2008a. The Miocene Morococha district, central Peru: Largescale epithermal polymetallic overprint on multiple intrusion−centered porphyry systems [C]// Australasian Institute of Mining and Metallurgy, Pacific Rim Congress 2008, Gold Coast, Queensland, Australia: 117−121. | 
| [29] | Kouzmanov K, Ovtcharova M, Von Quadt A, et al. 2008b. U−Pb and 40Ar/39Ar age constraints for the timing of magmatism and mineralization in the giant Toromocho porphyry Cu−Mo deposit, central Peru [C]// Congreso Latinoamericano de Geología, 13th, Lima, Peru, Proceedings: 6. | 
| [30] | Kouzmanov K, Chiaradia M, Fontbote L, et al. 2011. Origin of massive anhydrite bodies in the Morococha district, central Peru: Insights from stable (O, S) and radiogenic (Sr, Nd) isotope geochemistry [C]// Society for Geology Applied to Mineral Deposits (SGA) 11th Biennial Meeting: Antofagasta, Chile, SGA: 405−407. | 
| [31] | Lepry L A J. 1981. The structural geology of the Yauli dome region, Cordillera Occidental, Peru [D]. University of Arizona M. Sc. Thesis. , Tucson, United States. | 
| [32] | Lowell D, Alvarez A. 2005. Deposito pórfido−Skarn de cobre−Toromocho [C]// Instituto de Ingenieros de Minas del Peru, ProEXPLO’06, Lima, Peru, Proceedings: 24. | 
| [33] | Lund K, Aleinikoff J N, Kunk M J, et al. 2002. SHRIMP U−Pb and 40Ar/39Ar age constraints for relating plutonism and mineralization in the Boulder batholith region, Montana[J]. Economic Geology, 97: 241−267. doi: 10.2113/gsecongeo.97.2.241 | 
| [34] | Mao J W, Zhang J D, Pirajno F, et al. 2011. Porphyry Cu−Au−Mo−epithermal Ag−Pb−Zn−dis tal hydrothermal Au deposits in the Dexing area, Jiangxi province, East China—a linked ore system[J]. Ore Geology Reviews, 43(1): 203−216. doi: 10.1016/j.oregeorev.2011.08.005 | 
| [35] | Masterman G J, Cooke D R, Berry R F, et al. 2005. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu−Mo porphyry and Cu−Ag−Au epithermal veins, Collahuasi district, northern Chile [J]. Economic Geology, 100: 835−862. | 
| [36] | McLaughlin D H, Graton L C. 1935. Copper in the Cerro de Pasco and Morococha districts, Department of Junin, Peru[C]//Copper resources of the world − ⅩⅥ International Geological Congress, Washington, Banta: 513−544. | 
| [37] | Megard F. 1984. The Andean orogenic period and its major structures in central and northern Peru[J]. Journal of the Geological Society of London, 141: 893−900. doi: 10.1144/gsjgs.141.5.0893 | 
| [38] | Meyer C, Shea E P, Goddard C, et al. 1968. Ore deposits at Butte, Montana [C]// Ridge J D. Ore deposits of the United States, 1933−1967 (Graton Sales volume): New York, American Institute of Mining and Metallurgical Engineers (AIME), 1372−1416. | 
| [39] | Moritz R, Beuchat S, Chiaradia M, et al. 2001. Zn−Pb mantos and veins at Domo de Yauli, Central Peru: Two products of one hydrothermal system with common Pb and S sources, but contrasting fluid inclusion characteristics [C]// Mineral Deposits at the Beginning of the 21st Century−Proceedings of the Sixth Biennial SGA Meeting (Eds: A Piestrzynski): 173−176. | 
| [40] | Noble D C, McKee E H. 1999. The Miocene metallogenic belt of central and northern Peru [C]// Skinner B J. Geology and Ore Deposits of the Central Andes, Society of Economic Geologists Special Publication: 155−193. | 
| [41] | Ojeda J M. 1986. The Escondida porphyry copper deposit, Ⅱ Region, Chile: Exploration drilling and current geological interpretation [C]//Mining Latin America. Institution of Mining and Metallurgy, London: 299−318. | 
| [42] | Pan American Silver Corp. 2008. Annual Report[R]. | 
| [43] | Padilla Garza R A, Titley S R, Pimentel F. 2001. Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile[J]. Economic Geology, 96: 307−324. doi: 10.2113/gsecongeo.96.2.307 | 
| [44] | Perez J, Kouzmanov K, Fontbote L, et al. 2011. Mineralization, structural, and geochemical characteristics of the Toldojirca prospect and the San Andres vein, Morococha district, central Peru [C]// Society for Geology Applied to Mineral Deposits (SGA) 11st biennial Meeting: 247−249. | 
| [45] | Petersen U. 1965. Regional geology and major ore deposits of Central Peru[J]. Economic Geology, 60: 407−476. doi: 10.2113/gsecongeo.60.3.407 | 
| [46] | Reed M, Rusk B, Palandi J. 2013. The Butte magmatic−hydrothermal system: One fluid yields all alteration and veins[J]. Economic Geology, 108: 1379−1396. doi: 10.2113/econgeo.108.6.1379 | 
| [47] | Ritterbush K A, Ibarra Y, Bottjer D J, et al. 2015. Marine ecological state−shifts following the Triassic Jurassic mass extinction [C]// Paleontological Society Papers: 121−136. | 
| [48] | Rosas S, Fontbote L, Morche W. 1996. Within−plate volcanism in Upper Triassic to Lower Jurassic Pucara Group carbonates (central Peru) [C]//International Symposium on Andean Geodynamics (ISAG), 3rd, Saint Malo, France, Extended Abstracts: 641−644. | 
| [49] | Rosas S. 1994. Facies, diagenetic evolution, and sequence analysis along a SW−NE profile in the southern Pucara basin (Upper Triassic−Lower Jurassic), central Peru[M]. Heidelberger Geowissenschaftliche Abhandlungen: 1−337. | 
| [50] | Rosas S, Fontbote L, Tankard A. 2007. Tectonic evolution and paleogeography of the Mesozoic Pucara Basin, central Peru[J]. Journal of South American Earth Sciences, 26: 16−35. | 
| [51] | Rosenbaum G, Giles D, Saxon M, et al. 2005. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru[J]. Earth and Planetary Science Letters, 239: 18−32. doi: 10.1016/j.jpgl.2005.08.003 | 
| [52] | Rottier B, Kouzmanov K, Walle M, et al. 2016a. Sulfide replacement processes revealed by textural an LA−ICP−MS trace element analyses: example from the early mineralization stages at Cerro de Pasco, Peru[J]. Economic Geology, 111: 1347−1367. doi: 10.2113/econgeo.111.6.1347 | 
| [53] | Rottier B, Kouzmanov K, Bouvier A S, et al. 2016b. Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the magmatic hydrothermal transition (Cerro de Pasco district, Peru)[J]. Chemical Geology, 447: 93−116. doi: 10.1016/j.chemgeo.2016.10.032 | 
| [54] | Rottier B, Kouzmanov K, Casanova V, et al. 2018a. Cyclic dilution of magmatic metal−rich hypersaline fluids by magmatic low−salinity fluid: a major process generating the giant epithermal polymetallic deposit of Cerro de Pasco, Peru [J]. Economic Geology, 113: 825−856. | 
| [55] | Rottier B, Kouzmanov K, Casanova C, et al. 2018b. Hydrothermal evolution of a hidden porphyry−type mineralization related to the large epithermal polymetallic deposit of Cerro de Pasco district (Peru)[J]. Miner Deposita, 53: 919−946. doi: 10.1007/s00126-017-0786-9 | 
| [56] | Rottier B, Kouzmanov K, Ovtcharova M, et al. 2020. Multiple rejuvenation episodes of a silicic magma reservoir at the origin of the large diatreme−dome complex and porphyry−type mineralization events at Cerro de Pasco (Peru)[J]. Lithos, 376: 1−19. | 
| [57] | Rusk B G, Miller B J, Reed M H. 2008a. Fluid inclusion evidence for the formation of Main stage polymetallic base−metal veins, Butte, Montana, USA[J]. Arizona Geological Society Digest, 22: 573−581. | 
| [58] | Rusk B G, Reed M H, Dilles J H. 2008b. Fluid inclusion evidence for magmatic−hydrothermal fluid evolution in the porphyry copper−molybdenum deposit at Butte, Montana[J]. Economic Geology, 103: 307−334. doi: 10.2113/gsecongeo.103.2.307 | 
| [59] | Sawkins F J. 1972. Sulfide ore deposits in relation to plate tectonics[J]. Journal of Geology, 80: 377−397. doi: 10.1086/627762 | 
| [60] | Scherrenberg A F, Kohn B P, Holcombe R J, et al. 2016. Thermotectonic history of the Maranon Fold−Thrust Belt, Peru[J]. Tectonophysics, 667: 16−36. doi: 10.1016/j.tecto.2015.11.007 | 
| [61] | Seedorff E, Dilles J H, Proffett J M, et al. 2005. Porphyry deposits: characteristics and origin of hypogene features[J]. Economic Geology, 100th Annivery: 251−298. | 
| [62] | Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105: 3−41. doi: 10.2113/gsecongeo.105.1.3 | 
| [63] | Sillitoe R H, Mortensen J K. 2010. Longevity of porphyry copper formation at Quellaveco, Peru[J]. Economic Geology, 105: 1157−1162. doi: 10.2113/econgeo.105.6.1157 | 
| [64] | Spikings R, Reitsma M, Boekhout F, et al. 2016. Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea[J]. Gondwana Research, 35: 124−143. doi: 10.1016/j.gr.2016.02.008 | 
| [65] | Wu I, Petersen U. 1977. Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru[J]. Economic Geology, 72: 993−1016. doi: 10.2113/gsecongeo.72.6.993 | 
| [66] | Victor B C. 1999. Orogenic evolution of the Peruvian Andes: the Andean cycle[J]. Society of Economic Geologists, 7: 61−107. | 
| [67] | 陈港, 陈懋弘, 葛锐, 等. 2023. 广西镇龙山岩浆热液成矿系统——来自成矿流体、成矿物质的证据[J]. 地质通报, 42(11): 1854−1874. doi: 10.12097/j.issn.1671-2552.2023.11.006 | 
| [68] | 金露英, 秦克章, 张西平, 等. 2021. 秘鲁中部超大型特罗克斑岩型−矽卡岩型铜钼矿地质特征及区域成矿作用[J]. 矿床地质, 40(3): 587−602. | 
| [69] | 王兆强, 张岩. 2023. 长江中下游成矿带鸡笼山矽卡岩型铜金钼矿床花岗闪长岩斑岩对成岩−成矿的指示: 来自地球化学和锆石U−Pb年龄的证据[J]. 地质通报, 42(9): 1480−1493. doi: 10.12097/j.issn.1671-2552.2023.09.005 | 
| [70] | 杨献忠, 周延 孙建东, 等. 2022. 斑晶斜长石环带结构及成因研究进展[J]. 华东地质, 43(4): 415−427. | 
| [71] | 余明刚, 洪文涛, 李凯, 等. 2022. 江西德兴银山中侏罗世火山岩年代学、岩石成因及构造背景[J]. 华东地质, 43(4): 428−447. | 
 
			            
			            
			            
			        Geological map of the Morococha mining district
Representative intrusive rock of Toromocho porphyry type Cu-Mo deposit
Geological map of Toromocho porphyry deposit in the central Morococha area
Cross-sectional and grade distribution map of the 43 exploration lines in the Toromocho porphyry deposit
The coexistence sequence of minerals in Pb−Zn−Ag polymetallic vein deposits
Compositions of tennantite-tetrahedrite from polymetallic vein and replacement orebodies in the central Morococha district