2024 Vol. 43, No. 7
Article Contents

NYIMA Tsring, UUN Du, TIAN Yangyang, LOBSANG Namgyal, NYIMA Tathy, KHASANG Dolkal. 2024. Neogene volcanic rock sequence and its reconstruction of Daruo-Zhuangla volcanoes in the western segment of Gangdise igneous rock belt, Xizang Plateau. Geological Bulletin of China, 43(7): 1173-1190. doi: 10.12097/gbc.2023.02.050
Citation: NYIMA Tsring, UUN Du, TIAN Yangyang, LOBSANG Namgyal, NYIMA Tathy, KHASANG Dolkal. 2024. Neogene volcanic rock sequence and its reconstruction of Daruo-Zhuangla volcanoes in the western segment of Gangdise igneous rock belt, Xizang Plateau. Geological Bulletin of China, 43(7): 1173-1190. doi: 10.12097/gbc.2023.02.050

Neogene volcanic rock sequence and its reconstruction of Daruo-Zhuangla volcanoes in the western segment of Gangdise igneous rock belt, Xizang Plateau

More Information
  • The volcanic strata, lithofacies (rocks), and structures of the Cenozoic volcanoes in the Xizang Plateau are important records to decipher the evolution process of the plateau. In order to reconstruct the Neogene volcanism process in the Daruo-Zhuangla volcano-tectonic depression, a "three-facies geological survey" was carried out for the volcanic rocks in the study area using 1∶50000 geological survey, 1∶50000 remote sensing geological interpretation, 1∶2000 lithostratigraphic section, zircon U−Pb isotope dating and other methods. It is found that the Neogene volcanic activities in the

    study area are characterized by early and late stages, in which the early volcanic activity is dominated by simple central-type eruption accompanied by small-scale eruption, forming a shield lava dome or lava platform, and the volcanic eruptions are trachyandesite, trachyandesitic ignimbrite, and trachyandesitic tufflava, etc; the late volcanic activity is dominated by small-scale eruption, invasion and intrusion, forming a volcanic cone composed of lava and volcanic cinder. The volcanic eruptions are trachyandesitic ignimbrite, trachyandesitic tufflava, trachyandesitic volcaniclastic and vitroporphyric rocks. On the whole, the Neogene volcanic eruption index in the study area is low. The eruption style belongs to the Stromboli type or Hawaiian type. The distribution scale is small, and the spatial and Early Paleogene volcanic edifice are cross-cutting and stacked, which reflects the local migration characteristics of the volcanic activity center. New zircon U−Pb dating ages of the two stages of volcanic products are 11 Ma and 10 Ma, respectively. The ages of the rocks overlap with the development time of the regional extensional structure, indicating that the Neogene volcanic activity was formed in the intracontinental extensional environment after the collision of the Xizang Plateau, and its formation and distribution are controlled by the nearly N-S graben generated by the Late Cenozoic detachment and extension of the Xizang Plateau.

  • 加载中
  • [1] Armijo R, Tapponmier P, Mercier J L, et al. 1986. Quaternary extension in southern Xizang: Field observations and tectonic implications[J]. Journal of Geophysical Research Solid Earth, 91: 13803−13872.

    Google Scholar

    [2] Blisniuk P M, Hacker B R, Glodny J, et al. 2002. Normal faulting in central Xizang since al least 13.5 Myr ago[J]. Nature, 412: 628−632.

    Google Scholar

    [3] Colem M, Hodges K. 1995. Evidence for Tiberan placeau uplift before 14 Myr ago from a new minimumage for east−west extension[J]. Nature, 374: 49−52.

    Google Scholar

    [4] Hou Z Q, Gao Y F, Qu X M, et al. 2004. Origin of adakitic intrusive generated during mid−Miocene east−west extension in southern Xizang[J]. Earth and Planetary Science Letters, 220: 139−155. doi: 10.1016/S0012-821X(04)00007-X

    CrossRef Google Scholar

    [5] Ludwig K R. 2003. Isoplot/Ex Version 3.00: a Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Berkeley. CA, USA.

    Google Scholar

    [6] Liu Y, Gao S, Hu Z, et al. 2010. Continental and oceanic crust recycling−induced melt−CPeridotite interactions in the Trans−North China orogen: U−Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51: 537−571.

    Google Scholar

    [7] Wiedenbeck M, Aiie P, Corfu F, et al. 1995. Three natural zircon standards for U−Th−Pb, Lu−hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 19: 1−23.

    Google Scholar

    [8] Wolff R, Hetzel R, Dunkl I, et al. 2019. High−angle normal faulting at the Tangra Yumco Graben ( Southern Xizang) since 15 Ma[J]. The Journal of Geology, 127(1): 15−36. doi: 10.1086/700406

    CrossRef Google Scholar

    [9] Zuo J M, Wu Z H, Ha G G, et al. 2021. Spatial variation of nearly NS−trending normal faulting in the southern Yadong−Gulu rift, Xizang: New constraints from the Chongba Yumtso fault, Duoqing Co graben[J]. Journal of Structural Geology, 144: 104256. doi: 10.1016/j.jsg.2020.104256

    CrossRef Google Scholar

    [10] 卞爽, 于志泉, 龚俊峰, 等. 2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报, 27(2): 1006−6616.

    Google Scholar

    [11] 陈建林, 许继峰, 康志强, 等. 2006. 青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J]. 岩石学报, 22(3): 585−594.

    Google Scholar

    [12] 丁林, 岳雅慧, 蔡福龙, 等. 2006. 西藏拉萨地块高镁超钾质火山岩及南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 80(9): 1252−1261.

    Google Scholar

    [13] 黄勇, 牟世勇, 卢定彪, 等. 2004. 藏北鱼鳞山地区鱼鳞山组火山岩的特征及时代探讨[J]. 贵州地质, 21(3): 148−151.

    Google Scholar

    [14] 胡文洁, 田世洪, 杨竹森, 等. 2012. 拉萨地块西段中新世查加寺钾质火山岩岩石成因−岩石地球化学、年代学和Sr−Nd同位素约束[J]. 矿床地质, 31(4): 813−830.

    Google Scholar

    [15] 哈广浩, 吴中海, 何林, 等. 2018. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 92(10): 2051−2067.

    Google Scholar

    [16] 李光明. 2000. 藏北羌塘地区新生代火山岩岩石特征及其成因探过[J]. 地质地球化学, 28(2): 38−44.

    Google Scholar

    [17] 李才, 朱志勇, 迟效国. 等. 2002. 藏北改则地区鱼鳞山组火山岩同位素年代学[J]. 地质通报, 21(11): 732−734.

    Google Scholar

    [18] 刘栋, 赵志丹, 朱弟成, 等. 2011. 青藏高原拉萨地块西部雄巴盆地后碰撞钾质−超钾质火山岩年代学与地球化学[J]. 岩石学报, 27(7): 2045−2059.

    Google Scholar

    [19] 刘栋, 赵志丹, 朱弟成, 等. 2013. 青藏高原南部拉萨地块中新世超钾质岩石中的锆石记录[J]. 岩石学报, 29(11): 3703−3715.

    Google Scholar

    [20] 刘登忠, 陶晓风, 马润则, 等. 2015. 中华人民共和国1∶ 25万措勤县幅(H45 C 001001)区域地质调查报告[M]. 北京: 地质出版社.

    Google Scholar

    [21] 马润则, 刘登忠, 陶晓风, 等. 2002. 西藏措勤地区发现第三纪富钾岩浆岩[J]. 地质通报, 21(11): 728−731.

    Google Scholar

    [22] 莫宣学, 赵志丹, 邓晋福, 等. 2003. 印度−亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 10(3): 135−148.

    Google Scholar

    [23] 尼玛次仁, 王国灿, 顿多, 等. 2015. 西藏狮泉河地区高钾−钾玄质火山岩的岩石学、地球化学及锆石U−Pb年龄[J]. 地质通报, 34(9): 1671−2552.

    Google Scholar

    [24] 潘桂棠, 李兴振, 王立全, 等. 2002. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 21(11): 701−707.

    Google Scholar

    [25] 石和, 马润则, 刘登忠, 等. 2005. 西藏措勤地区的中新世布嘎寺组[J]. 成都理工大学学报: 自然科学版, 32(2): 173−176.

    Google Scholar

    [26] 陶奎元. 2021. 火山岩相构造学[M]. 南京: 江苏凤凰科学技术出版社.

    Google Scholar

    [27] 王保弟, 陈凌康, 许继峰, 等. 2011. 拉萨地块麻江地区具有“超钾质”成分的钾质火山岩的识别及成因[J]. 岩石学报, 27(6): 1662−1674.

    Google Scholar

    [28] 谢国刚, 邹爱建, 袁建芽, 等. 2014. 中华人民共和国1∶ 25万措麦区幅(H4 C 002002)区域地质调查报告[M]. 北京: 地质出版社.

    Google Scholar

    [29] 杨硕, 向树元, 张先, 等. 2016. 西藏仲巴地块加达钾质火山岩LA−ICP−MS锆石U−Pb年龄和地球化学特征[J]. 地质通报, 35(6): 1671−2552.

    Google Scholar

    [30] 赵志丹, 莫宣学, Nomade Sebastien, 等. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 22(4): 787−794.

    Google Scholar

    [31] 张巨, 马润则, 岳相元, 等. 2011. 西藏措勤布嘎寺组中基性火山岩特征及成因[J]. 成都理工大学学报: 自然科学版, 38(2): 1671−9727.

    Google Scholar

    [32] 张计东, 张振利, 魏文通, 等. 2015. 中华人民共和国1∶ 25万霍尔巴幅(H44 C 002004)、巴巴扎东幅(H45 C 003004)区域地质调查报告[M]. 北京: 地质出版社.

    Google Scholar

    [33] 张振利, 张计东, 魏文通, 等. 2015. 中华人民共和国1∶ 25万亚热幅(H44 C 001003)、普兰县幅(H44 C 002003, 国内部分)区域地质调查报告[M]. 北京: 地质出版社.

    Google Scholar

    [34] 张佳伟, 李汉敖, 张会平, 等. 2020. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 35(8): 848−862.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(666) PDF downloads(1135) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint