Citation: | ZHU Yiping, JIANG Hantao, XU Mengjie, ZHAO Yuhao, MA Canxuan, TAN Guili, XI Wanwan, YAO Chunyan. 2024. Characteristics of lithium resources and assessment on mining environment in “Lithium Triangle”, South America. Geological Bulletin of China, 43(2~3): 258-269. doi: 10.12097/gbc.2022.11.032 |
“Lithium Triangle”, a junction area among Argentina, Bolivia and Chile in South America, is a hot spot for lithium mining in this era of new energy industry revolution, hence it is necessary to discuss and compare the lithium resources distribution and mining investment environment of the area, so as to provide Chinese enterprises with suggestions for investing in the local lithiummining. The paper analyzes the metallogenic geological settings, resources distribution, exploration and development of lithium mining in the study area. It’s concluded that the vocalism since Miocene provided abundant metallogenic materials, and numerous closed catchment basins were formed in the process of Pliocene tectonic subsidence, coupled with the perennial evaporation in extremely arid climate of the Andean desert, then lithium resources were accumulated and conserved in the salt lakes. The superior-quality lithium resources, featured with high content of lithium ion and low ratio of Mg/Li in the brine water, are widely distributed in the junction of Argentina, Bolivia and Chile. Based on the specific conditions of the three countries in the Lithium Triangle, this paper adopted Analytic Hierarchy Process and Linear Weighted Comprehensive Evaluation to establish an evaluation index system of lithium mining environment. Four Tier I indexes including mineral resources endowment, policy and law, social environment and infrastructure, and 11 Tier II indexes including resource grade, Mg/Li ratio, resource quantity, exploration input, lithium mining foreign policy, fiscal and tax system, restrictions on profit repatriation, inflation rate, mining conflicts, infrastructure quality and water availability were generally analyzed. By calculation, the overall score of lithium mining environment in Argentina is 0.8, Chile 0.36 and Bolivia 0.27, indicating that Argentina is the best mining target in the region, and salt lakes such as Hombre Muerto, Cauchari-Olaroz deserve investment attention. The research conclusion may practically guide Chinese mining companies’ investment choice in Lithium Triangle.
[1] | Agusdinata D, Liu W J, Eakin H R, et al. 2018. Socio-environmental impacts of lithium mineral extraction: towards a research agenda[J]. Environmental Research Letters, 13(12): 123001. doi: 10.1088/1748-9326/aae9b1 |
[2] | Allmendinger R W, Jordan T E, Kay S M, et al. 1997. The evolution of the Altiplano–Puna plateau of the Central Andes[J]. Annual Review of Earth and Planetary Sciences, 27: 139−174. |
[3] | Alonso R N, Jordan T E, Tabbutt K T, et al. 1991. Giant evaporate belts of the Neogene Central Andes[J]. Geology, 19: 401−404. |
[4] | Bookhagen B, Strecker M R. 2008. Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes[J]. Geophysical Research Letters, 35(6): 403−406. |
[5] | Bradly D, Munk L A, Jochens H, et al. 2013. A Preliminary Deposits Model for Lithium Brines[R]. USGS, Openfile, 1006-1011. |
[6] | Coira B, Davidson J, Mpodozis C, et al. 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile[J]. Earth-Science Reviews, 18: 303−332. doi: 10.1016/0012-8252(82)90042-3 |
[7] | Conflictos Mineros en América Latina. 2021. [EB/OL]. [2021-11-12].https://mapa. osmineros.net/ocmal_db-v2/. |
[8] | Cuellar V D. 2017. The political economy of mining in Bolivia during the government of the Movement Towards. Socialism (2006-2015)[J]. The Extractive Industries and Society, (4): 120-130. |
[9] | EJAtlas-Global Atlas of Environmental Justice. 2021. [EB/OL]. [2021-11-12]. https://ejatlas.org/. |
[10] | Frias Saravia. 2021. Marco Normativo Minero: NOA Argentino[M]. Salta: Estudio Saravia Frias. |
[11] | Giggenbach W F. 1995. Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand[J]. Journal of Volcanology and Geothermal Research, 68: 89−116. doi: 10.1016/0377-0273(95)00009-J |
[12] | Gruber P W. 2011. Global lithium availability[J]. Journal of Industrial Ecology, 5: 760−775. |
[13] | IEA. 2021. The role of critical minerals in clean energy transitions[R]. France International Energy Agency. |
[14] | Isacks B. 1988. Uplift of the central Andean plateau and bending of the Bolivian orocline[J]. Journal of Geophysical Research:Solid Earth, 93: 3211−3231. doi: 10.1029/JB093iB04p03211 |
[15] | Liu W J, Agusdinata D B. 2020. Interdependencies of lithium mining and communities’ sustainability in Salar de Atacama, Chile[J]. Journal of Cleaner Production, 260: 120838. doi: 10.1016/j.jclepro.2020.120838 |
[16] | Meixner A, Sarchi C, Lucassen F, et al. 2020. Lithium concentrations and isotope signatures of Palaeozoic basement rocks and Cenozoic volcanic rocks from the Central Andean arc and back-arc[J]. Mineralium Deposita, 55(6): 1071−1084. doi: 10.1007/s00126-019-00915-2 |
[17] | Ministerio de Mineria y Metalurgia. 2018. Ley de Mineria y metalurgia titulo i disposiciones generals capitulo i objeto, dominio y alcance. 2014[Z] La Paz: Ministerio de Mineria y Metalurgia. |
[18] | Molina C F. 2016. Intergenerational dynamics and local development: mining and the indigenous community in Chiu Chiu, El Loa Province, northern Chile[J]. Geoforum, 75: 115−124. doi: 10.1016/j.geoforum.2016.06.015 |
[19] | Munk L A, Hynek S A, Bradley D C, et al. 2016. Lithium brines: A global perspective[J]. Reviews in Economic Geology, 18: 339−365. |
[20] | Petavratzi E, Sanchez L D, Hughes A, et al. 2022. The impacts of environmental, social and governance(ESG) issues in achieving sustainable lithium supply in the Lithium Triangle[J]. Mineral Economics, 10: 1007. |
[21] | Quade J, Dettinger M P, Carrapa B, et al. 2015. The growth of the central Andes, 22°S–26°S[C]// DeCelles P G, Ducea M N, Carrapa B, Kapp P A. Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America, 212:https://doi.org/10.1130/2015.1212(15). |
[22] | Ramos V A, Aleman A. 2000. Tectonic Evolution of the Andes[M]. Rio de Janeiro. |
[23] | Rapela C W, Pankhurst R J, Casquet C, et al. 2018. A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana[J]. Earth-Science Reviews, 187: 259−285. doi: 10.1016/j.earscirev.2018.10.006 |
[24] | Reutter K J, Munier K. 2006. Digital Geological map of the Central Andes[C]// Oncken O, Chong G, Franz G, et al. The Andes. Springer-Verlag, Berlin Heidelberg. |
[25] | Reutter K J, Scheuber E, Wigger P. 1994. Tectonics of the southern Central Andes[M]. Springer-Verlag, Berlin Heidelberg. |
[26] | Scheuber E, Bogdanic T, Jensen A, et al. 1994. Tectonic development of the North Chilean Andes in relation to plate convergence and magmatism since the Jurassic[C]//Reutter K J, Scheuber E, Wigger P J. Tectonics of the Southern Central Andes Springer-Verlag, Heidelberg: 7–22. |
[27] | Schnurr W, Trumbull R B, Clavero J, et al. 2007. Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25 to 27°S, 67 to 72°W[J]. Journal of Volcanology and Geothermal Research, 166: 17−46. doi: 10.1016/j.jvolgeores.2007.06.005 |
[28] | Standard & Pool Capital IQ. 2022. [EB/OL]. [2022-12-03]https://www.capitaliq. spglobal .cn/ web/client auth=inherit#dashboard/metalsandmining. |
[29] | Standard & Pool Capital IQ. 2023. [EB/OL]. [2023-06-03]https://www.capitaliq.spglobal.cn/web/client?auth=inherit#dashboard/metalsandmining. |
[30] | Strecker M R, Alonso R N, Bookhagen B, et al. 2007. Trauth M H. Tectonics and climate of the southern Central Andes[J]. Annual Review of Earth and Planetary Sciences, 35: 747−787. doi: 10.1146/annurev.earth.35.031306.140158 |
[31] | Trading Economics. 2023. [EB/OL]. [2023-06-09]https://tradingeconomics.com/argentina/inflation-expetations. |
[32] | Vásquez P I. 2023. Lithium production in Chile and Argentina: Inverted roles[R]. Washington D C: Woodrow Wilson International Center for Scholars, 6. |
[33] | Vinante D, Alonso R N. 2006. Evapofacies del Salar Hombre Muerto, Puna Argentina: Distribucion y Genesis.[J]. Revista de la Asociacion Geologica Argentina, 61: 286−297. |
[34] | World Bank. 2023. [EB/OL]. [2023-06-09]https://data.worldbank.org/country. |
[35] | Wörner G, MamaniM, Blum-Oeste M. 2018. Magmatism in the Central Andes[J]. Elements, 14: 237−244. doi: 10.2138/gselements.14.4.237 |
[36] | YLB. 2020. Yacimientos de Litio Bolivianos annual report 2019 [R]. La Paz: YLB. |
[37] | Yunis J. et Aliakbari E. 2021. Fraser institute annual survey of mining companies 2021 [R]. Vancouver: The Fraser Institute, 8. |
[38] | Zhang Z J, Zhang S M, Zhang F F, et al. 2016. Validity of sustainability framework for China’s mining cities–a structural equation modelling approach[J]. Applied Economics, 48(48): 4585−4605. doi: 10.1080/00036846.2016.1161720 |
[39] | 曹雪芝, 徐梦洁. 2018. 基于GIS的住宅小区人居环境评价[J]. 地理空间信息, 16(1): 83−85+9. doi: 10.3969/j.issn.1672-4623.2018.01.025 |
[40] | 陈玉明, 邓小林. 2013. 阿根廷锂资源潜力及开发利用[J]. 盐湖研究, 21(4): 67−71. |
[41] | 程丹续, 成怀刚, 高姣丽, 等. 2022. 基于盐湖尾卤溶液结构变化的镁锂分离研究[J]. 盐湖研究, 30(4): 146−153. doi: 10.12119/j.yhyj.202004013 |
[42] | 高峰, 郑绵平, 乜贞, 等. 2011. 盐湖卤水锂资源及其开发进展[J]. 地球学报, 32(4): 483−492. doi: 10.3975/cagsb.2011.04.13 |
[43] | 郭亚军. 2012. 综合评价理论、方法与拓展[M]. 北京: 科学出版社. |
[44] | 康立, 王国梁. 2015. 阿根廷矿业投资环境分析[J]. 资源与产业, 17(6): 33−37. |
[45] | 刘成林, 余小灿, 袁学银, 等. 2021. 世界盐湖卤水型锂矿特征、分布规律与成矿动力模型[J]. 地质学报, 95(7): 2009−2029. |
[46] | 卢佳义, 赵宏军, 朱小三. 2017. 安第斯国家矿业法律特点及对中国企业矿业投资的影响[J]. 地质通报, 36(12): 2332−2343. |
[47] | 卢民杰, 朱小三, 郭维民, 等. 2016. 南美安第斯地区成矿区带划分探讨[J]. 矿床地质, 35(5): 1073−1083. |
[48] | 马哲, 李建武. 2018. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 27(10): 1−7. doi: 10.12075/j.issn.1004-4051.2018.10.022 |
[49] | 商务部国际贸易经济合作研究院, 中国驻阿根廷大使馆经济商务处, 商务部对外投资和经济合作司. 2021a. 阿根廷对外投资合作国别(地区)指南[R]. |
[50] | 商务部国际贸易经济合作研究院, 中国驻玻利维亚大使馆经济商务处, 商务部对外投资和经济合作司. 2021b. 玻利维亚对外投资合作国别(地区)指南[R]. |
[51] | 商务部国际贸易经济合作研究院, 中国驻智利大使馆经济商务处, 商务部对外投资和经济合作司. 2021c. 智利对外投资合作国别(地区)指南[R]. |
[52] | 孙景文, 吴霜. 2022. 全球盐湖提锂的变革: 技术为资源加持, 唤醒“高原上的沉默宝藏”[R]. 北京: 五矿证券研究所. 17. |
[53] | 孙强, 张泰丽, 伍剑波, 等. 2018. 基于GIS与层次分析法的龙溪流域滑坡风险评价[J]. 华东地质, 39(3): 227−233. |
[54] | 隰弯弯, 赵宇浩, 倪培, 等. 2023. 锂矿主要类型、特征、时空分布及找矿潜力分析[J]. 沉积与特提斯地质, 43(1): 19−35. doi: 10.3969/j.issn.1009-3850.2023.01.002 |
[55] | 叶松青, 李守义. 2011. 矿产勘查学[M]. 北京: 地质出版社. |
[56] | 于银杰, 赵宏军. 2013. 玻利维亚矿业管理体制与税费制度[J]. 中国国土资源经济, 2: 51−53. doi: 10.3969/j.issn.1672-6995.2013.02.017 |
[57] | 张炳江. 2014. 层次分析法及其应用案例[M]. 北京: 电子工业出版社: 12-77. |
[58] | 张光进, 徐帅, 罗辉. 2011. 世界著名咨询机构矿业投资环境评价综述[J]. 中国矿业, 11: 39−40. doi: 10.3969/j.issn.1004-4051.2011.02.010 |
[59] | 赵阳, 倪化勇, 伍剑波, 等. 2021. 基于AHP-CF模型的地质灾害易发性评价——以泰顺县仕阳镇为例[J]. 华东地质, 42(1): 66−75. |
[60] | 周平, 唐金荣, 张涛. 2014. 全球锂资源供需前景与对策建议[J]. 地质通报, 33(10): 1532−1538. doi: 10.3969/j.issn.1671-2552.2014.10.009 |
The distribution of Cenozoic volcanic rocks in Lithium Triangle
Salt lakes and brine lithium projects in Lithium Triangle
The assessment index system of the lithium mining environment in Lithium Triangle countries