Citation: | HE Guangwu, CAI Minghai, HU Pengfei, XIAO Junjie, GAN Nengjian, ZHU Minjie, LYU Tang'an. 2024. The genesis of the Jianzhupo Pb-Zn-Sb polymetallic deposit in northwestern Guangxi: Evidence from the characteristics of trace elements, rare earth elements, and hydrogen and oxygen isotopes of sphalerite. Geological Bulletin of China, 43(2~3): 246-257. doi: 10.12097/gbc.2022.04.048 |
The Danchi metallogenic belt, located in the northeast of the Youjiang basin, is an important non-ferrous metal ore concentration area in southern China, and the Jianzhupo deposit, the largest and most representative large-scale Pb-Zn-Sb polymetallic deposit in the Wuxu ore field in the southern section of the deposit, consisting of vein Pb-Zn-Sb orebody and newly discovered stratified Sn polymetallic orebody. In this paper, through the analysis of trace elements, rare earth elements, and H-O isotopes of sphalerite, the differences in metallogenic characteristics of the two types of ore bodies are compared and studied, and the source of ore-forming fluids and the genesis of deposits are further discussed. The results show that sphalerite in different types of ore bodies in the Jianzhupo deposit is relatively enriched in Fe, Cu, Pb, Sn and Sb, and depleted in Ga, Ge, Co and Ni, which is similar to typical magmatic hydrothermal deposits. Meanwhile, the total amount of rare earth in the stratified ore body (ΣREE=12.80×10−6~44.31×10−6) is higher than that in the vein ore body (ΣREE=3.34×10−6), with obvious LREE and HREE fractionation and Eu depletion. The results of H-O isotope analysis of sphalerite show that δD=−81.8‰~−69.2‰, δ18O=2.1‰~5.2‰ (vein orebody); δD=−109.4‰~−75.2‰, δ18O=−4.0‰~4.0‰ (stratified orebody), indicating that the ore-forming fluids of the two types of ore bodies are mixed fluids with different proportions of magmatic hydrothermal and atmospheric precipitation. The above characteristics show that the Jianzhupo deposit belongs to magmatic hydrothermal Pb-Zn deposit, and the ore-forming materials (fluids) of vein ore bodies and stratified ore bodies are mainly derived from magmatic hydrothermal fluid.
[1] | Bau M, Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 155(1/2): 77−90. |
[2] | Bauer M E, Burisch M, Ostendorf J, et al. 2019. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry[J]. Mineralium Deposita, 54(2): 237−262. doi: 10.1007/s00126-018-0850-0 |
[3] | Cook N J, Ciobanu C L, Pring A, et al. 2009. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 73: 4761−4791. doi: 10.1016/j.gca.2009.05.045 |
[4] | Guo J, Zhang R Q, Sun W D, et al. 2018. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U-Pb ages and trace element compositions[J]. Ore Geology Reviews, 95: 863−879. doi: 10.1016/j.oregeorev.2018.03.023 |
[5] | Sheppard S M F, Taylor H P. 1974. Hydrogen and oxygen isotope evidence for the origins of water in the Boulder batholith and the Butte ore deposits, Montana[J]. Economic Geology, 16(1): 926−946. |
[6] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[7] | Witt-Eickschen G, Palme H, O’Neill H S C, et al. 2009. The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: New evidence from in situ analyses of mantle xenoliths[J]. Geochimica et Cosmochimica Acta, 6: 1755−1778. |
[8] | Wood S A. 2006. Rare earth element systematics of acidic geothermal waters from the Taupo volcanic zone, New Zealand[J]. Journal of Geochemical Exploration, 89(1/3): 424−427. |
[9] | Xiao C H, Chen Z L, Liu X C, et al. 2022. Structural analysis, mineralogy, and cassiterite U-Pb ages of the Wuxu Sb-Zn-polymetallic district, Danchi Fold-and-Thrust belt, South China[J]. Ore Geology Reviews, 150: 105150. doi: 10.1016/j.oregeorev.2022.105150 |
[10] | Ye L, Cook N J, Ciobanu C L, et al. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study[J]. Ore Geology Reviews, 39: 188−217. doi: 10.1016/j.oregeorev.2011.03.001 |
[11] | Zhang J, Huang W T, Liang H Y, et al. 2018. Genesis of the Jianzhupo Sb–Pb–Zn–Ag deposit and formation of an ore shoot in the Wuxu ore field, Guangxi, South China[J]. Ore Geology Reviews, 102: 654−665. doi: 10.1016/j.oregeorev.2018.09.026 |
[12] | Zhang Q. 1987. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J]. Geochemistry, 6(2): 177−130. doi: 10.1007/BF02872218 |
[13] | 蔡建明, 徐新煌, 刘文周. 1995a. 广西五圩矿田多金属矿床的成矿特征及物质来源[J]. 矿物岩石, (3): 63−68. |
[14] | 蔡建明, 徐新煌, 李保华. 1995b. 五圩多金属矿田包裹体地球化学特征研究[J]. 成都理工学院学报, (1): 69−77. |
[15] | 蔡明海, 梁婷, 彭振安, 等. 2014. 大厂锡多金属矿田地质与成矿[M]. 北京: 地质出版社: 20−21. |
[16] | 蔡明海, 赵广春, 郑阳, 等. 2012. 桂西北丹池成矿带控矿构造样式[J]. 地质与勘探, 48(1): 68−75. |
[17] | 陈玲, 黄文婷, 伍静, 等. 2015. 广西五圩矿田成矿温度变化及找矿方向分析[J]. 地球化学, 44(6): 546−555. doi: 10.3969/j.issn.0379-1726.2015.06.003 |
[18] | 陈振胜, 张理刚. 1989. 水/岩交换作用及其找矿[J]. 地质与勘探, (2): 7−11. |
[19] | 广西区域地质调查研究院. 2018. 广西河池市金城江区拔旺矿区铅锌矿普查报告[R]. |
[20] | 郭飞, 王智琳, 许德如, 等. 2020. 湖南栗山铅锌铜多金属矿床闪锌矿微量元素特征及成矿指示意义[J]. 地学前缘, 27(4): 66−81. |
[21] | 韩照信. 1994. 秦岭泥盆系铅锌成矿带中闪锌矿的标型特征[J]. 西安地质学院学报, 16(1): 12−17. |
[22] | 胡乔帆, 刘伟, 安玉伟, 等. 2017. 广西河池箭猪坡铅锌锑矿地质地球化学特征及矿床成因[J]. 地质论评, 63(S1): 47−48. |
[23] | 康凯, 杜泽忠, 于晓飞, 等. 2020. 甘肃花牛山铅锌矿床闪锌矿LA-ICP-MS微量元素组成及其地质意义[J]. 吉林大学学报(地球科学版), 50(5): 1418−1432. |
[24] | 李厚民, 王登红, 张长青, 等. 2009. 陕西几类重要铅锌矿床的矿物微量元素和稀土元素特征[J]. 矿床地质, 28(4): 434−448. doi: 10.3969/j.issn.0258-7106.2009.04.006 |
[25] | 李徽. 1986. 闪锌矿中杂质元素的特征及地质意义[J]. 地质与勘探, (10): 42−46. |
[26] | 李晔. 2021. 桂西北箭猪坡矿床似层状Sn-Pb-Zn-Sb多金属矿成矿流体特征及控矿因素探讨[D]. 广西大学硕士学位论文. |
[27] | 梁婷, 蔡明海, 王登红, 等. 2012. 广西铜坑锡矿床总结研究报告[R]. |
[28] | 刘艳荣, 关强兵, 张海东, 等. 2023. 大兴安岭西坡二道河子铅锌矿床硫化物Rb-Sr、锆石U-Pb年龄及其对构造背景的制约[J]. 地质通报, 42(11): 1843−1853. |
[29] | 刘涛涛, 朱传威, 王大鹏, 等. 2020. 广西五圩矿田箭猪坡Pb-Zn-Sb多金属矿床成因研究: 来自硫同位素和闪锌矿微量元素的制约[J]. 矿物岩石地球化学通报, 39(3): 646−662. |
[30] | 刘伟, 周守余, 丁汝福, 等. 2020. 广西箭猪坡矿床首次发现的石英脉型锡矿体特征及锡石微量元素地球化学意义[J]. 有色金属工程, 10(9): 122−133. doi: 10.3969/j.issn.2095-1744.2020.09.019 |
[31] | 刘英俊. 1984. 元素地球化学[M]. 北京: 科学出版社. |
[32] | 裴秋明, 张寿庭, 曹华文, 等. 2015. 豫西栾川县骆驼山硫锌多金属矿床闪锌矿微量元素地球化学特征及其地质意义[J]. 岩石矿物学杂志, 34(5): 741−754. doi: 10.3969/j.issn.1000-6524.2015.05.011 |
[33] | 孙德梅, 刘心铸, 彭聪, 等. 1994. 应用重磁资料研究广西芒场-大厂成矿带的地质构造及隐伏岩体预测[C]//中国地质科学院矿床地质研究所文集(27): 125-143. |
[34] | 万庆, 杨立功, 黄光琼, 等. 2016. 广西五圩箭猪坡铅锌锑矿床“西脉东层”找矿潜力分析[J]. 矿产与地质, 30(2): 175−180. doi: 10.3969/j.issn.1001-5663.2016.02.008 |
[35] | 王东明. 2012. 广西丹池成矿带锑矿成矿特征及成因探讨[D]. 长安大学硕士学位论文. |
[36] | 王皓宇, 叶霖, 胡宇思, 等. 2021. 渝东南老厂坪铅锌矿床闪锌矿微量元素组成特征[J]. 矿物学报, 41(6): 623−634. |
[37] | 王中刚. 1989. 稀土元素地球化学[M]. 北京: 科学出版社. |
[38] | 吴越, 孔志岗, 陈懋弘, 等. 2019. 扬子板块周缘MVT型铅锌矿床闪锌矿微量元素组成特征与指示意义: LA-ICPMS研究[J]. 岩石学报, 35(11): 3443−3460. doi: 10.18654/1000-0569/2019.11.12 |
[39] | 邢波, 郑伟, 欧阳志侠, 等. 2016. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约[J]. 地质学报, 90(5): 971−986. doi: 10.3969/j.issn.0001-5717.2016.05.010 |
[40] | 叶霖, 李珍立, 胡宇思, 等. 2016. 四川天宝山铅锌矿床硫化物微量元素组成: LA-ICPMS研究[J]. 岩石学报, 32(11): 3377−3393. |
[41] | 袁波, 毛景文, 闫兴虎, 等. 2014. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J]. 岩石学报, 30(1): 209−220. |
[42] | 张健, 黄文婷, 伍静, 等. 2018. 广西五圩矿田箭猪坡铅锌锑多金属矿床成矿流体特征及特富矿体形成分析[J]. 地球化学, 47(3): 257−267. |
[43] | 张理刚. 1985. 稳定同位素在地质科学中的应用[M]. 西安: 陕西科学技术出版社. |
[44] | 张沛, 吴越, 段登飞, 等. 2021. 湖南花垣矿田长登坡铅锌矿床闪锌矿微量元素组成与指示意义[J]. 资源环境与工程, 35(2): 269−276. |
[45] | 张天栋, 刘忠法, 邸洪飞, 等. 2021. 湘南宝山铜铅锌多金属矿床闪锌矿元素地球化学特征及其对成矿的制约[J]. 矿产勘查, 12(8): 1716−1726. doi: 10.3969/j.issn.1674-7801.2021.08.002 |
[46] | 张政, 唐菊兴, 林彬, 等. 2016. 藏南扎西康矿床闪锌矿微量元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 35(6): 1203−1216, 1289. |
[47] | 赵京, 蔡明海, 胡家刚, 等. 2016. 广西五圩矿田成矿分带特征及其地质意义[J]. 地质与勘探, 52(1): 60−69. |
[48] | 赵毅, 黄理善, 唐艳萍, 等. 2020. 广西五圩锑多金属矿田深部隐伏岩体探索与找矿预测[J]. 矿产与地质, 34(1): 109−114. |
[49] | 郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社. |
[50] | 周卫宁, 傅金宝, 李达明. 1989. 广西大厂矿田铜坑-长坡矿区闪锌矿的标型特征研究[J]. 矿物岩石, 9(2): 65−72. |
Structural geological maps of Wuxu ore field
Geological map (a) and cross-section along No.300 exploration line (b) of the Jianzhupo deposit
Rare earth elements distribution patterns of the two types of orebodies in the Jianzhupo deposit
H-O isotope diagram of the Jianzhupo deposit
Diagram of Co-Ni (a), Ga-Ge (b), In-Ge (c), In-Sn (d) in sphalerite from the Jianzhupo and other Pb-Zn deposits
ln(In)-ln(Ga) diagram of sphalerite of the Jianzhupo deposit